|
from sympy.parsing.maxima import parse_maxima |
|
from sympy.core.numbers import (E, Rational, oo) |
|
from sympy.core.symbol import Symbol |
|
from sympy.functions.combinatorial.factorials import factorial |
|
from sympy.functions.elementary.complexes import Abs |
|
from sympy.functions.elementary.exponential import log |
|
from sympy.functions.elementary.trigonometric import (cos, sin) |
|
from sympy.abc import x |
|
|
|
n = Symbol('n', integer=True) |
|
|
|
|
|
def test_parser(): |
|
assert Abs(parse_maxima('float(1/3)') - 0.333333333) < 10**(-5) |
|
assert parse_maxima('13^26') == 91733330193268616658399616009 |
|
assert parse_maxima('sin(%pi/2) + cos(%pi/3)') == Rational(3, 2) |
|
assert parse_maxima('log(%e)') == 1 |
|
|
|
|
|
def test_injection(): |
|
parse_maxima('c: x+1', globals=globals()) |
|
|
|
assert c == x + 1 |
|
|
|
parse_maxima('g: sqrt(81)', globals=globals()) |
|
|
|
assert g == 9 |
|
|
|
|
|
def test_maxima_functions(): |
|
assert parse_maxima('expand( (x+1)^2)') == x**2 + 2*x + 1 |
|
assert parse_maxima('factor( x**2 + 2*x + 1)') == (x + 1)**2 |
|
assert parse_maxima('2*cos(x)^2 + sin(x)^2') == 2*cos(x)**2 + sin(x)**2 |
|
assert parse_maxima('trigexpand(sin(2*x)+cos(2*x))') == \ |
|
-1 + 2*cos(x)**2 + 2*cos(x)*sin(x) |
|
assert parse_maxima('solve(x^2-4,x)') == [-2, 2] |
|
assert parse_maxima('limit((1+1/x)^x,x,inf)') == E |
|
assert parse_maxima('limit(sqrt(-x)/x,x,0,minus)') is -oo |
|
assert parse_maxima('diff(x^x, x)') == x**x*(1 + log(x)) |
|
assert parse_maxima('sum(k, k, 1, n)', name_dict={ |
|
"n": Symbol('n', integer=True), |
|
"k": Symbol('k', integer=True) |
|
}) == (n**2 + n)/2 |
|
assert parse_maxima('product(k, k, 1, n)', name_dict={ |
|
"n": Symbol('n', integer=True), |
|
"k": Symbol('k', integer=True) |
|
}) == factorial(n) |
|
assert parse_maxima('ratsimp((x^2-1)/(x+1))') == x - 1 |
|
assert Abs( parse_maxima( |
|
'float(sec(%pi/3) + csc(%pi/3))') - 3.154700538379252) < 10**(-5) |
|
|