|
from sympy.testing.pytest import raises, XFAIL |
|
from sympy.external import import_module |
|
|
|
from sympy.concrete.products import Product |
|
from sympy.concrete.summations import Sum |
|
from sympy.core.add import Add |
|
from sympy.core.function import (Derivative, Function) |
|
from sympy.core.mul import Mul |
|
from sympy.core.numbers import (E, oo) |
|
from sympy.core.power import Pow |
|
from sympy.core.relational import (GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Unequality) |
|
from sympy.core.symbol import Symbol |
|
from sympy.functions.combinatorial.factorials import (binomial, factorial) |
|
from sympy.functions.elementary.complexes import (Abs, conjugate) |
|
from sympy.functions.elementary.exponential import (exp, log) |
|
from sympy.functions.elementary.integers import (ceiling, floor) |
|
from sympy.functions.elementary.miscellaneous import (root, sqrt) |
|
from sympy.functions.elementary.trigonometric import (asin, cos, csc, sec, sin, tan) |
|
from sympy.integrals.integrals import Integral |
|
from sympy.series.limits import Limit |
|
|
|
from sympy.core.relational import Eq, Ne, Lt, Le, Gt, Ge |
|
from sympy.physics.quantum.state import Bra, Ket |
|
from sympy.abc import x, y, z, a, b, c, t, k, n |
|
antlr4 = import_module("antlr4") |
|
|
|
|
|
disabled = antlr4 is None |
|
|
|
theta = Symbol('theta') |
|
f = Function('f') |
|
|
|
|
|
|
|
def _Add(a, b): |
|
return Add(a, b, evaluate=False) |
|
|
|
|
|
def _Mul(a, b): |
|
return Mul(a, b, evaluate=False) |
|
|
|
|
|
def _Pow(a, b): |
|
return Pow(a, b, evaluate=False) |
|
|
|
|
|
def _Sqrt(a): |
|
return sqrt(a, evaluate=False) |
|
|
|
|
|
def _Conjugate(a): |
|
return conjugate(a, evaluate=False) |
|
|
|
|
|
def _Abs(a): |
|
return Abs(a, evaluate=False) |
|
|
|
|
|
def _factorial(a): |
|
return factorial(a, evaluate=False) |
|
|
|
|
|
def _exp(a): |
|
return exp(a, evaluate=False) |
|
|
|
|
|
def _log(a, b): |
|
return log(a, b, evaluate=False) |
|
|
|
|
|
def _binomial(n, k): |
|
return binomial(n, k, evaluate=False) |
|
|
|
|
|
def test_import(): |
|
from sympy.parsing.latex._build_latex_antlr import ( |
|
build_parser, |
|
check_antlr_version, |
|
dir_latex_antlr |
|
) |
|
|
|
del build_parser, check_antlr_version, dir_latex_antlr |
|
|
|
|
|
|
|
GOOD_PAIRS = [ |
|
(r"0", 0), |
|
(r"1", 1), |
|
(r"-3.14", -3.14), |
|
(r"(-7.13)(1.5)", _Mul(-7.13, 1.5)), |
|
(r"x", x), |
|
(r"2x", 2*x), |
|
(r"x^2", x**2), |
|
(r"x^\frac{1}{2}", _Pow(x, _Pow(2, -1))), |
|
(r"x^{3 + 1}", x**_Add(3, 1)), |
|
(r"-c", -c), |
|
(r"a \cdot b", a * b), |
|
(r"a / b", a / b), |
|
(r"a \div b", a / b), |
|
(r"a + b", a + b), |
|
(r"a + b - a", _Add(a+b, -a)), |
|
(r"a^2 + b^2 = c^2", Eq(a**2 + b**2, c**2)), |
|
(r"(x + y) z", _Mul(_Add(x, y), z)), |
|
(r"a'b+ab'", _Add(_Mul(Symbol("a'"), b), _Mul(a, Symbol("b'")))), |
|
(r"y''_1", Symbol("y_{1}''")), |
|
(r"y_1''", Symbol("y_{1}''")), |
|
(r"\left(x + y\right) z", _Mul(_Add(x, y), z)), |
|
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), |
|
(r"\left( x + y\right ) z", _Mul(_Add(x, y), z)), |
|
(r"\left[x + y\right] z", _Mul(_Add(x, y), z)), |
|
(r"\left\{x + y\right\} z", _Mul(_Add(x, y), z)), |
|
(r"1+1", _Add(1, 1)), |
|
(r"0+1", _Add(0, 1)), |
|
(r"1*2", _Mul(1, 2)), |
|
(r"0*1", _Mul(0, 1)), |
|
(r"1 \times 2 ", _Mul(1, 2)), |
|
(r"x = y", Eq(x, y)), |
|
(r"x \neq y", Ne(x, y)), |
|
(r"x < y", Lt(x, y)), |
|
(r"x > y", Gt(x, y)), |
|
(r"x \leq y", Le(x, y)), |
|
(r"x \geq y", Ge(x, y)), |
|
(r"x \le y", Le(x, y)), |
|
(r"x \ge y", Ge(x, y)), |
|
(r"\lfloor x \rfloor", floor(x)), |
|
(r"\lceil x \rceil", ceiling(x)), |
|
(r"\langle x |", Bra('x')), |
|
(r"| x \rangle", Ket('x')), |
|
(r"\sin \theta", sin(theta)), |
|
(r"\sin(\theta)", sin(theta)), |
|
(r"\sin^{-1} a", asin(a)), |
|
(r"\sin a \cos b", _Mul(sin(a), cos(b))), |
|
(r"\sin \cos \theta", sin(cos(theta))), |
|
(r"\sin(\cos \theta)", sin(cos(theta))), |
|
(r"\frac{a}{b}", a / b), |
|
(r"\dfrac{a}{b}", a / b), |
|
(r"\tfrac{a}{b}", a / b), |
|
(r"\frac12", _Pow(2, -1)), |
|
(r"\frac12y", _Mul(_Pow(2, -1), y)), |
|
(r"\frac1234", _Mul(_Pow(2, -1), 34)), |
|
(r"\frac2{3}", _Mul(2, _Pow(3, -1))), |
|
(r"\frac{\sin{x}}2", _Mul(sin(x), _Pow(2, -1))), |
|
(r"\frac{a + b}{c}", _Mul(a + b, _Pow(c, -1))), |
|
(r"\frac{7}{3}", _Mul(7, _Pow(3, -1))), |
|
(r"(\csc x)(\sec y)", csc(x)*sec(y)), |
|
(r"\lim_{x \to 3} a", Limit(a, x, 3, dir='+-')), |
|
(r"\lim_{x \rightarrow 3} a", Limit(a, x, 3, dir='+-')), |
|
(r"\lim_{x \Rightarrow 3} a", Limit(a, x, 3, dir='+-')), |
|
(r"\lim_{x \longrightarrow 3} a", Limit(a, x, 3, dir='+-')), |
|
(r"\lim_{x \Longrightarrow 3} a", Limit(a, x, 3, dir='+-')), |
|
(r"\lim_{x \to 3^{+}} a", Limit(a, x, 3, dir='+')), |
|
(r"\lim_{x \to 3^{-}} a", Limit(a, x, 3, dir='-')), |
|
(r"\lim_{x \to 3^+} a", Limit(a, x, 3, dir='+')), |
|
(r"\lim_{x \to 3^-} a", Limit(a, x, 3, dir='-')), |
|
(r"\infty", oo), |
|
(r"\lim_{x \to \infty} \frac{1}{x}", Limit(_Pow(x, -1), x, oo)), |
|
(r"\frac{d}{dx} x", Derivative(x, x)), |
|
(r"\frac{d}{dt} x", Derivative(x, t)), |
|
(r"f(x)", f(x)), |
|
(r"f(x, y)", f(x, y)), |
|
(r"f(x, y, z)", f(x, y, z)), |
|
(r"f'_1(x)", Function("f_{1}'")(x)), |
|
(r"f_{1}''(x+y)", Function("f_{1}''")(x+y)), |
|
(r"\frac{d f(x)}{dx}", Derivative(f(x), x)), |
|
(r"\frac{d\theta(x)}{dx}", Derivative(Function('theta')(x), x)), |
|
(r"x \neq y", Unequality(x, y)), |
|
(r"|x|", _Abs(x)), |
|
(r"||x||", _Abs(Abs(x))), |
|
(r"|x||y|", _Abs(x)*_Abs(y)), |
|
(r"||x||y||", _Abs(_Abs(x)*_Abs(y))), |
|
(r"\pi^{|xy|}", Symbol('pi')**_Abs(x*y)), |
|
(r"\int x dx", Integral(x, x)), |
|
(r"\int x d\theta", Integral(x, theta)), |
|
(r"\int (x^2 - y)dx", Integral(x**2 - y, x)), |
|
(r"\int x + a dx", Integral(_Add(x, a), x)), |
|
(r"\int da", Integral(1, a)), |
|
(r"\int_0^7 dx", Integral(1, (x, 0, 7))), |
|
(r"\int\limits_{0}^{1} x dx", Integral(x, (x, 0, 1))), |
|
(r"\int_a^b x dx", Integral(x, (x, a, b))), |
|
(r"\int^b_a x dx", Integral(x, (x, a, b))), |
|
(r"\int_{a}^b x dx", Integral(x, (x, a, b))), |
|
(r"\int^{b}_a x dx", Integral(x, (x, a, b))), |
|
(r"\int_{a}^{b} x dx", Integral(x, (x, a, b))), |
|
(r"\int^{b}_{a} x dx", Integral(x, (x, a, b))), |
|
(r"\int_{f(a)}^{f(b)} f(z) dz", Integral(f(z), (z, f(a), f(b)))), |
|
(r"\int (x+a)", Integral(_Add(x, a), x)), |
|
(r"\int a + b + c dx", Integral(_Add(_Add(a, b), c), x)), |
|
(r"\int \frac{dz}{z}", Integral(Pow(z, -1), z)), |
|
(r"\int \frac{3 dz}{z}", Integral(3*Pow(z, -1), z)), |
|
(r"\int \frac{1}{x} dx", Integral(Pow(x, -1), x)), |
|
(r"\int \frac{1}{a} + \frac{1}{b} dx", |
|
Integral(_Add(_Pow(a, -1), Pow(b, -1)), x)), |
|
(r"\int \frac{3 \cdot d\theta}{\theta}", |
|
Integral(3*_Pow(theta, -1), theta)), |
|
(r"\int \frac{1}{x} + 1 dx", Integral(_Add(_Pow(x, -1), 1), x)), |
|
(r"x_0", Symbol('x_{0}')), |
|
(r"x_{1}", Symbol('x_{1}')), |
|
(r"x_a", Symbol('x_{a}')), |
|
(r"x_{b}", Symbol('x_{b}')), |
|
(r"h_\theta", Symbol('h_{theta}')), |
|
(r"h_{\theta}", Symbol('h_{theta}')), |
|
(r"h_{\theta}(x_0, x_1)", |
|
Function('h_{theta}')(Symbol('x_{0}'), Symbol('x_{1}'))), |
|
(r"x!", _factorial(x)), |
|
(r"100!", _factorial(100)), |
|
(r"\theta!", _factorial(theta)), |
|
(r"(x + 1)!", _factorial(_Add(x, 1))), |
|
(r"(x!)!", _factorial(_factorial(x))), |
|
(r"x!!!", _factorial(_factorial(_factorial(x)))), |
|
(r"5!7!", _Mul(_factorial(5), _factorial(7))), |
|
(r"\sqrt{x}", sqrt(x)), |
|
(r"\sqrt{x + b}", sqrt(_Add(x, b))), |
|
(r"\sqrt[3]{\sin x}", root(sin(x), 3)), |
|
(r"\sqrt[y]{\sin x}", root(sin(x), y)), |
|
(r"\sqrt[\theta]{\sin x}", root(sin(x), theta)), |
|
(r"\sqrt{\frac{12}{6}}", _Sqrt(_Mul(12, _Pow(6, -1)))), |
|
(r"\overline{z}", _Conjugate(z)), |
|
(r"\overline{\overline{z}}", _Conjugate(_Conjugate(z))), |
|
(r"\overline{x + y}", _Conjugate(_Add(x, y))), |
|
(r"\overline{x} + \overline{y}", _Conjugate(x) + _Conjugate(y)), |
|
(r"x < y", StrictLessThan(x, y)), |
|
(r"x \leq y", LessThan(x, y)), |
|
(r"x > y", StrictGreaterThan(x, y)), |
|
(r"x \geq y", GreaterThan(x, y)), |
|
(r"\mathit{x}", Symbol('x')), |
|
(r"\mathit{test}", Symbol('test')), |
|
(r"\mathit{TEST}", Symbol('TEST')), |
|
(r"\mathit{HELLO world}", Symbol('HELLO world')), |
|
(r"\sum_{k = 1}^{3} c", Sum(c, (k, 1, 3))), |
|
(r"\sum_{k = 1}^3 c", Sum(c, (k, 1, 3))), |
|
(r"\sum^{3}_{k = 1} c", Sum(c, (k, 1, 3))), |
|
(r"\sum^3_{k = 1} c", Sum(c, (k, 1, 3))), |
|
(r"\sum_{k = 1}^{10} k^2", Sum(k**2, (k, 1, 10))), |
|
(r"\sum_{n = 0}^{\infty} \frac{1}{n!}", |
|
Sum(_Pow(_factorial(n), -1), (n, 0, oo))), |
|
(r"\prod_{a = b}^{c} x", Product(x, (a, b, c))), |
|
(r"\prod_{a = b}^c x", Product(x, (a, b, c))), |
|
(r"\prod^{c}_{a = b} x", Product(x, (a, b, c))), |
|
(r"\prod^c_{a = b} x", Product(x, (a, b, c))), |
|
(r"\exp x", _exp(x)), |
|
(r"\exp(x)", _exp(x)), |
|
(r"\lg x", _log(x, 10)), |
|
(r"\ln x", _log(x, E)), |
|
(r"\ln xy", _log(x*y, E)), |
|
(r"\log x", _log(x, E)), |
|
(r"\log xy", _log(x*y, E)), |
|
(r"\log_{2} x", _log(x, 2)), |
|
(r"\log_{a} x", _log(x, a)), |
|
(r"\log_{11} x", _log(x, 11)), |
|
(r"\log_{a^2} x", _log(x, _Pow(a, 2))), |
|
(r"[x]", x), |
|
(r"[a + b]", _Add(a, b)), |
|
(r"\frac{d}{dx} [ \tan x ]", Derivative(tan(x), x)), |
|
(r"\binom{n}{k}", _binomial(n, k)), |
|
(r"\tbinom{n}{k}", _binomial(n, k)), |
|
(r"\dbinom{n}{k}", _binomial(n, k)), |
|
(r"\binom{n}{0}", _binomial(n, 0)), |
|
(r"x^\binom{n}{k}", _Pow(x, _binomial(n, k))), |
|
(r"a \, b", _Mul(a, b)), |
|
(r"a \thinspace b", _Mul(a, b)), |
|
(r"a \: b", _Mul(a, b)), |
|
(r"a \medspace b", _Mul(a, b)), |
|
(r"a \; b", _Mul(a, b)), |
|
(r"a \thickspace b", _Mul(a, b)), |
|
(r"a \quad b", _Mul(a, b)), |
|
(r"a \qquad b", _Mul(a, b)), |
|
(r"a \! b", _Mul(a, b)), |
|
(r"a \negthinspace b", _Mul(a, b)), |
|
(r"a \negmedspace b", _Mul(a, b)), |
|
(r"a \negthickspace b", _Mul(a, b)), |
|
(r"\int x \, dx", Integral(x, x)), |
|
(r"\log_2 x", _log(x, 2)), |
|
(r"\log_a x", _log(x, a)), |
|
(r"5^0 - 4^0", _Add(_Pow(5, 0), _Mul(-1, _Pow(4, 0)))), |
|
(r"3x - 1", _Add(_Mul(3, x), -1)) |
|
] |
|
|
|
|
|
def test_parseable(): |
|
from sympy.parsing.latex import parse_latex |
|
for latex_str, sympy_expr in GOOD_PAIRS: |
|
assert parse_latex(latex_str) == sympy_expr, latex_str |
|
|
|
|
|
BAD_STRINGS = [ |
|
r"(", |
|
r")", |
|
r"\frac{d}{dx}", |
|
r"(\frac{d}{dx})", |
|
r"\sqrt{}", |
|
r"\sqrt", |
|
r"\overline{}", |
|
r"\overline", |
|
r"{", |
|
r"}", |
|
r"\mathit{x + y}", |
|
r"\mathit{21}", |
|
r"\frac{2}{}", |
|
r"\frac{}{2}", |
|
r"\int", |
|
r"!", |
|
r"!0", |
|
r"_", |
|
r"^", |
|
r"|", |
|
r"||x|", |
|
r"()", |
|
r"((((((((((((((((()))))))))))))))))", |
|
r"-", |
|
r"\frac{d}{dx} + \frac{d}{dt}", |
|
r"f(x,,y)", |
|
r"f(x,y,", |
|
r"\sin^x", |
|
r"\cos^2", |
|
r"@", |
|
r"#", |
|
r"$", |
|
r"%", |
|
r"&", |
|
r"*", |
|
r"" "\\", |
|
r"~", |
|
r"\frac{(2 + x}{1 - x)}", |
|
] |
|
|
|
def test_not_parseable(): |
|
from sympy.parsing.latex import parse_latex, LaTeXParsingError |
|
for latex_str in BAD_STRINGS: |
|
with raises(LaTeXParsingError): |
|
parse_latex(latex_str) |
|
|
|
|
|
FAILING_BAD_STRINGS = [ |
|
r"\cos 1 \cos", |
|
r"f(,", |
|
r"f()", |
|
r"a \div \div b", |
|
r"a \cdot \cdot b", |
|
r"a // b", |
|
r"a +", |
|
r"1.1.1", |
|
r"1 +", |
|
r"a / b /", |
|
] |
|
|
|
@XFAIL |
|
def test_failing_not_parseable(): |
|
from sympy.parsing.latex import parse_latex, LaTeXParsingError |
|
for latex_str in FAILING_BAD_STRINGS: |
|
with raises(LaTeXParsingError): |
|
parse_latex(latex_str) |
|
|
|
|
|
def test_strict_mode(): |
|
from sympy.parsing.latex import parse_latex, LaTeXParsingError |
|
for latex_str in FAILING_BAD_STRINGS: |
|
with raises(LaTeXParsingError): |
|
parse_latex(latex_str, strict=True) |
|
|