|
from __future__ import annotations |
|
from collections import defaultdict |
|
from collections.abc import Iterable |
|
from inspect import isfunction |
|
from functools import reduce |
|
|
|
from sympy.assumptions.refine import refine |
|
from sympy.core import SympifyError, Add |
|
from sympy.core.basic import Atom, Basic |
|
from sympy.core.kind import UndefinedKind |
|
from sympy.core.numbers import Integer |
|
from sympy.core.mod import Mod |
|
from sympy.core.symbol import Symbol, Dummy |
|
from sympy.core.sympify import sympify, _sympify |
|
from sympy.core.function import diff |
|
from sympy.polys import cancel |
|
from sympy.functions.elementary.complexes import Abs, re, im |
|
from sympy.printing import sstr |
|
from sympy.functions.elementary.miscellaneous import Max, Min, sqrt |
|
from sympy.functions.special.tensor_functions import KroneckerDelta, LeviCivita |
|
from sympy.core.singleton import S |
|
from sympy.printing.defaults import Printable |
|
from sympy.printing.str import StrPrinter |
|
from sympy.functions.elementary.exponential import exp, log |
|
from sympy.functions.combinatorial.factorials import binomial, factorial |
|
|
|
import mpmath as mp |
|
from collections.abc import Callable |
|
from sympy.utilities.iterables import reshape |
|
from sympy.core.expr import Expr |
|
from sympy.core.power import Pow |
|
from sympy.core.symbol import uniquely_named_symbol |
|
|
|
from .utilities import _dotprodsimp, _simplify as _utilities_simplify |
|
from sympy.polys.polytools import Poly |
|
from sympy.utilities.iterables import flatten, is_sequence |
|
from sympy.utilities.misc import as_int, filldedent |
|
from sympy.core.decorators import call_highest_priority |
|
from sympy.core.logic import fuzzy_and, FuzzyBool |
|
from sympy.tensor.array import NDimArray |
|
from sympy.utilities.iterables import NotIterable |
|
|
|
from .utilities import _get_intermediate_simp_bool |
|
|
|
from .kind import MatrixKind |
|
|
|
from .exceptions import ( |
|
MatrixError, ShapeError, NonSquareMatrixError, NonInvertibleMatrixError, |
|
) |
|
|
|
from .utilities import _iszero, _is_zero_after_expand_mul |
|
|
|
from .determinant import ( |
|
_find_reasonable_pivot, _find_reasonable_pivot_naive, |
|
_adjugate, _charpoly, _cofactor, _cofactor_matrix, _per, |
|
_det, _det_bareiss, _det_berkowitz, _det_bird, _det_laplace, _det_LU, |
|
_minor, _minor_submatrix) |
|
|
|
from .reductions import _is_echelon, _echelon_form, _rank, _rref |
|
|
|
from .solvers import ( |
|
_diagonal_solve, _lower_triangular_solve, _upper_triangular_solve, |
|
_cholesky_solve, _LDLsolve, _LUsolve, _QRsolve, _gauss_jordan_solve, |
|
_pinv_solve, _cramer_solve, _solve, _solve_least_squares) |
|
|
|
from .inverse import ( |
|
_pinv, _inv_ADJ, _inv_GE, _inv_LU, _inv_CH, _inv_LDL, _inv_QR, |
|
_inv, _inv_block) |
|
|
|
from .subspaces import _columnspace, _nullspace, _rowspace, _orthogonalize |
|
|
|
from .eigen import ( |
|
_eigenvals, _eigenvects, |
|
_bidiagonalize, _bidiagonal_decomposition, |
|
_is_diagonalizable, _diagonalize, |
|
_is_positive_definite, _is_positive_semidefinite, |
|
_is_negative_definite, _is_negative_semidefinite, _is_indefinite, |
|
_jordan_form, _left_eigenvects, _singular_values) |
|
|
|
from .decompositions import ( |
|
_rank_decomposition, _cholesky, _LDLdecomposition, |
|
_LUdecomposition, _LUdecomposition_Simple, _LUdecompositionFF, |
|
_singular_value_decomposition, _QRdecomposition, _upper_hessenberg_decomposition) |
|
|
|
from .graph import ( |
|
_connected_components, _connected_components_decomposition, |
|
_strongly_connected_components, _strongly_connected_components_decomposition) |
|
|
|
|
|
__doctest_requires__ = { |
|
('MatrixBase.is_indefinite', |
|
'MatrixBase.is_positive_definite', |
|
'MatrixBase.is_positive_semidefinite', |
|
'MatrixBase.is_negative_definite', |
|
'MatrixBase.is_negative_semidefinite'): ['matplotlib'], |
|
} |
|
|
|
|
|
class MatrixBase(Printable): |
|
"""All common matrix operations including basic arithmetic, shaping, |
|
and special matrices like `zeros`, and `eye`.""" |
|
|
|
_op_priority = 10.01 |
|
|
|
|
|
__array_priority__ = 11 |
|
|
|
is_Matrix = True |
|
_class_priority = 3 |
|
_sympify = staticmethod(sympify) |
|
zero = S.Zero |
|
one = S.One |
|
|
|
_diff_wrt: bool = True |
|
rows: int |
|
cols: int |
|
_simplify = None |
|
|
|
@classmethod |
|
def _new(cls, *args, **kwargs): |
|
"""`_new` must, at minimum, be callable as |
|
`_new(rows, cols, mat) where mat is a flat list of the |
|
elements of the matrix.""" |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
def __eq__(self, other): |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
def __getitem__(self, key): |
|
"""Implementations of __getitem__ should accept ints, in which |
|
case the matrix is indexed as a flat list, tuples (i,j) in which |
|
case the (i,j) entry is returned, slices, or mixed tuples (a,b) |
|
where a and b are any combination of slices and integers.""" |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
@property |
|
def shape(self): |
|
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros |
|
>>> M = zeros(2, 3) |
|
>>> M.shape |
|
(2, 3) |
|
>>> M.rows |
|
2 |
|
>>> M.cols |
|
3 |
|
""" |
|
return (self.rows, self.cols) |
|
|
|
def _eval_col_del(self, col): |
|
def entry(i, j): |
|
return self[i, j] if j < col else self[i, j + 1] |
|
return self._new(self.rows, self.cols - 1, entry) |
|
|
|
def _eval_col_insert(self, pos, other): |
|
|
|
def entry(i, j): |
|
if j < pos: |
|
return self[i, j] |
|
elif pos <= j < pos + other.cols: |
|
return other[i, j - pos] |
|
return self[i, j - other.cols] |
|
|
|
return self._new(self.rows, self.cols + other.cols, entry) |
|
|
|
def _eval_col_join(self, other): |
|
rows = self.rows |
|
|
|
def entry(i, j): |
|
if i < rows: |
|
return self[i, j] |
|
return other[i - rows, j] |
|
|
|
return classof(self, other)._new(self.rows + other.rows, self.cols, |
|
entry) |
|
|
|
def _eval_extract(self, rowsList, colsList): |
|
mat = list(self) |
|
cols = self.cols |
|
indices = (i * cols + j for i in rowsList for j in colsList) |
|
return self._new(len(rowsList), len(colsList), |
|
[mat[i] for i in indices]) |
|
|
|
def _eval_get_diag_blocks(self): |
|
sub_blocks = [] |
|
|
|
def recurse_sub_blocks(M): |
|
for i in range(1, M.shape[0] + 1): |
|
if i == 1: |
|
to_the_right = M[0, i:] |
|
to_the_bottom = M[i:, 0] |
|
else: |
|
to_the_right = M[:i, i:] |
|
to_the_bottom = M[i:, :i] |
|
if any(to_the_right) or any(to_the_bottom): |
|
continue |
|
sub_blocks.append(M[:i, :i]) |
|
if M.shape != M[:i, :i].shape: |
|
recurse_sub_blocks(M[i:, i:]) |
|
return |
|
|
|
recurse_sub_blocks(self) |
|
return sub_blocks |
|
|
|
def _eval_row_del(self, row): |
|
def entry(i, j): |
|
return self[i, j] if i < row else self[i + 1, j] |
|
return self._new(self.rows - 1, self.cols, entry) |
|
|
|
def _eval_row_insert(self, pos, other): |
|
entries = list(self) |
|
insert_pos = pos * self.cols |
|
entries[insert_pos:insert_pos] = list(other) |
|
return self._new(self.rows + other.rows, self.cols, entries) |
|
|
|
def _eval_row_join(self, other): |
|
cols = self.cols |
|
|
|
def entry(i, j): |
|
if j < cols: |
|
return self[i, j] |
|
return other[i, j - cols] |
|
|
|
return classof(self, other)._new(self.rows, self.cols + other.cols, |
|
entry) |
|
|
|
def _eval_tolist(self): |
|
return [list(self[i,:]) for i in range(self.rows)] |
|
|
|
def _eval_todok(self): |
|
dok = {} |
|
rows, cols = self.shape |
|
for i in range(rows): |
|
for j in range(cols): |
|
val = self[i, j] |
|
if val != self.zero: |
|
dok[i, j] = val |
|
return dok |
|
|
|
@classmethod |
|
def _eval_from_dok(cls, rows, cols, dok): |
|
out_flat = [cls.zero] * (rows * cols) |
|
for (i, j), val in dok.items(): |
|
out_flat[i * cols + j] = val |
|
return cls._new(rows, cols, out_flat) |
|
|
|
def _eval_vec(self): |
|
rows = self.rows |
|
|
|
def entry(n, _): |
|
|
|
j = n // rows |
|
i = n - j * rows |
|
return self[i, j] |
|
|
|
return self._new(len(self), 1, entry) |
|
|
|
def _eval_vech(self, diagonal): |
|
c = self.cols |
|
v = [] |
|
if diagonal: |
|
for j in range(c): |
|
for i in range(j, c): |
|
v.append(self[i, j]) |
|
else: |
|
for j in range(c): |
|
for i in range(j + 1, c): |
|
v.append(self[i, j]) |
|
return self._new(len(v), 1, v) |
|
|
|
def col_del(self, col): |
|
"""Delete the specified column.""" |
|
if col < 0: |
|
col += self.cols |
|
if not 0 <= col < self.cols: |
|
raise IndexError("Column {} is out of range.".format(col)) |
|
return self._eval_col_del(col) |
|
|
|
def col_insert(self, pos, other): |
|
"""Insert one or more columns at the given column position. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(3, 1) |
|
>>> M.col_insert(1, V) |
|
Matrix([ |
|
[0, 1, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 1, 0, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
col |
|
row_insert |
|
""" |
|
|
|
if not self: |
|
return type(self)(other) |
|
|
|
pos = as_int(pos) |
|
|
|
if pos < 0: |
|
pos = self.cols + pos |
|
if pos < 0: |
|
pos = 0 |
|
elif pos > self.cols: |
|
pos = self.cols |
|
|
|
if self.rows != other.rows: |
|
raise ShapeError( |
|
"The matrices have incompatible number of rows ({} and {})" |
|
.format(self.rows, other.rows)) |
|
|
|
return self._eval_col_insert(pos, other) |
|
|
|
def col_join(self, other): |
|
"""Concatenates two matrices along self's last and other's first row. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(1, 3) |
|
>>> M.col_join(V) |
|
Matrix([ |
|
[0, 0, 0], |
|
[0, 0, 0], |
|
[0, 0, 0], |
|
[1, 1, 1]]) |
|
|
|
See Also |
|
======== |
|
|
|
col |
|
row_join |
|
""" |
|
|
|
if self.rows == 0 and self.cols != other.cols: |
|
return self._new(0, other.cols, []).col_join(other) |
|
|
|
if self.cols != other.cols: |
|
raise ShapeError( |
|
"The matrices have incompatible number of columns ({} and {})" |
|
.format(self.cols, other.cols)) |
|
return self._eval_col_join(other) |
|
|
|
def col(self, j): |
|
"""Elementary column selector. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import eye |
|
>>> eye(2).col(0) |
|
Matrix([ |
|
[1], |
|
[0]]) |
|
|
|
See Also |
|
======== |
|
|
|
row |
|
col_del |
|
col_join |
|
col_insert |
|
""" |
|
return self[:, j] |
|
|
|
def extract(self, rowsList, colsList): |
|
r"""Return a submatrix by specifying a list of rows and columns. |
|
Negative indices can be given. All indices must be in the range |
|
$-n \le i < n$ where $n$ is the number of rows or columns. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(4, 3, range(12)) |
|
>>> m |
|
Matrix([ |
|
[0, 1, 2], |
|
[3, 4, 5], |
|
[6, 7, 8], |
|
[9, 10, 11]]) |
|
>>> m.extract([0, 1, 3], [0, 1]) |
|
Matrix([ |
|
[0, 1], |
|
[3, 4], |
|
[9, 10]]) |
|
|
|
Rows or columns can be repeated: |
|
|
|
>>> m.extract([0, 0, 1], [-1]) |
|
Matrix([ |
|
[2], |
|
[2], |
|
[5]]) |
|
|
|
Every other row can be taken by using range to provide the indices: |
|
|
|
>>> m.extract(range(0, m.rows, 2), [-1]) |
|
Matrix([ |
|
[2], |
|
[8]]) |
|
|
|
RowsList or colsList can also be a list of booleans, in which case |
|
the rows or columns corresponding to the True values will be selected: |
|
|
|
>>> m.extract([0, 1, 2, 3], [True, False, True]) |
|
Matrix([ |
|
[0, 2], |
|
[3, 5], |
|
[6, 8], |
|
[9, 11]]) |
|
""" |
|
|
|
if not is_sequence(rowsList) or not is_sequence(colsList): |
|
raise TypeError("rowsList and colsList must be iterable") |
|
|
|
if rowsList and all(isinstance(i, bool) for i in rowsList): |
|
rowsList = [index for index, item in enumerate(rowsList) if item] |
|
if colsList and all(isinstance(i, bool) for i in colsList): |
|
colsList = [index for index, item in enumerate(colsList) if item] |
|
|
|
|
|
rowsList = [a2idx(k, self.rows) for k in rowsList] |
|
colsList = [a2idx(k, self.cols) for k in colsList] |
|
|
|
return self._eval_extract(rowsList, colsList) |
|
|
|
def get_diag_blocks(self): |
|
"""Obtains the square sub-matrices on the main diagonal of a square matrix. |
|
|
|
Useful for inverting symbolic matrices or solving systems of |
|
linear equations which may be decoupled by having a block diagonal |
|
structure. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x, y, z |
|
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) |
|
>>> a1, a2, a3 = A.get_diag_blocks() |
|
>>> a1 |
|
Matrix([ |
|
[1, 3], |
|
[y, z**2]]) |
|
>>> a2 |
|
Matrix([[x]]) |
|
>>> a3 |
|
Matrix([[0]]) |
|
|
|
""" |
|
return self._eval_get_diag_blocks() |
|
|
|
@classmethod |
|
def hstack(cls, *args): |
|
"""Return a matrix formed by joining args horizontally (i.e. |
|
by repeated application of row_join). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, eye |
|
>>> Matrix.hstack(eye(2), 2*eye(2)) |
|
Matrix([ |
|
[1, 0, 2, 0], |
|
[0, 1, 0, 2]]) |
|
""" |
|
if len(args) == 0: |
|
return cls._new() |
|
|
|
kls = type(args[0]) |
|
return reduce(kls.row_join, args) |
|
|
|
def reshape(self, rows, cols): |
|
"""Reshape the matrix. Total number of elements must remain the same. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 3, lambda i, j: 1) |
|
>>> m |
|
Matrix([ |
|
[1, 1, 1], |
|
[1, 1, 1]]) |
|
>>> m.reshape(1, 6) |
|
Matrix([[1, 1, 1, 1, 1, 1]]) |
|
>>> m.reshape(3, 2) |
|
Matrix([ |
|
[1, 1], |
|
[1, 1], |
|
[1, 1]]) |
|
|
|
""" |
|
if self.rows * self.cols != rows * cols: |
|
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols)) |
|
dok = {divmod(i*self.cols + j, cols): |
|
v for (i, j), v in self.todok().items()} |
|
return self._eval_from_dok(rows, cols, dok) |
|
|
|
def row_del(self, row): |
|
"""Delete the specified row.""" |
|
if row < 0: |
|
row += self.rows |
|
if not 0 <= row < self.rows: |
|
raise IndexError("Row {} is out of range.".format(row)) |
|
|
|
return self._eval_row_del(row) |
|
|
|
def row_insert(self, pos, other): |
|
"""Insert one or more rows at the given row position. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(1, 3) |
|
>>> M.row_insert(1, V) |
|
Matrix([ |
|
[0, 0, 0], |
|
[1, 1, 1], |
|
[0, 0, 0], |
|
[0, 0, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
row |
|
col_insert |
|
""" |
|
|
|
if not self: |
|
return self._new(other) |
|
|
|
pos = as_int(pos) |
|
|
|
if pos < 0: |
|
pos = self.rows + pos |
|
if pos < 0: |
|
pos = 0 |
|
elif pos > self.rows: |
|
pos = self.rows |
|
|
|
if self.cols != other.cols: |
|
raise ShapeError( |
|
"The matrices have incompatible number of columns ({} and {})" |
|
.format(self.cols, other.cols)) |
|
|
|
return self._eval_row_insert(pos, other) |
|
|
|
def row_join(self, other): |
|
"""Concatenates two matrices along self's last and rhs's first column |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(3, 1) |
|
>>> M.row_join(V) |
|
Matrix([ |
|
[0, 0, 0, 1], |
|
[0, 0, 0, 1], |
|
[0, 0, 0, 1]]) |
|
|
|
See Also |
|
======== |
|
|
|
row |
|
col_join |
|
""" |
|
|
|
if self.cols == 0 and self.rows != other.rows: |
|
return self._new(other.rows, 0, []).row_join(other) |
|
|
|
if self.rows != other.rows: |
|
raise ShapeError( |
|
"The matrices have incompatible number of rows ({} and {})" |
|
.format(self.rows, other.rows)) |
|
return self._eval_row_join(other) |
|
|
|
def diagonal(self, k=0): |
|
"""Returns the kth diagonal of self. The main diagonal |
|
corresponds to `k=0`; diagonals above and below correspond to |
|
`k > 0` and `k < 0`, respectively. The values of `self[i, j]` |
|
for which `j - i = k`, are returned in order of increasing |
|
`i + j`, starting with `i + j = |k|`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(3, 3, lambda i, j: j - i); m |
|
Matrix([ |
|
[ 0, 1, 2], |
|
[-1, 0, 1], |
|
[-2, -1, 0]]) |
|
>>> _.diagonal() |
|
Matrix([[0, 0, 0]]) |
|
>>> m.diagonal(1) |
|
Matrix([[1, 1]]) |
|
>>> m.diagonal(-2) |
|
Matrix([[-2]]) |
|
|
|
Even though the diagonal is returned as a Matrix, the element |
|
retrieval can be done with a single index: |
|
|
|
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1] |
|
2 |
|
|
|
See Also |
|
======== |
|
|
|
diag |
|
""" |
|
rv = [] |
|
k = as_int(k) |
|
r = 0 if k > 0 else -k |
|
c = 0 if r else k |
|
while True: |
|
if r == self.rows or c == self.cols: |
|
break |
|
rv.append(self[r, c]) |
|
r += 1 |
|
c += 1 |
|
if not rv: |
|
raise ValueError(filldedent(''' |
|
The %s diagonal is out of range [%s, %s]''' % ( |
|
k, 1 - self.rows, self.cols - 1))) |
|
return self._new(1, len(rv), rv) |
|
|
|
def row(self, i): |
|
"""Elementary row selector. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import eye |
|
>>> eye(2).row(0) |
|
Matrix([[1, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
col |
|
row_del |
|
row_join |
|
row_insert |
|
""" |
|
return self[i, :] |
|
|
|
def todok(self): |
|
"""Return the matrix as dictionary of keys. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> M = Matrix.eye(3) |
|
>>> M.todok() |
|
{(0, 0): 1, (1, 1): 1, (2, 2): 1} |
|
""" |
|
return self._eval_todok() |
|
|
|
@classmethod |
|
def from_dok(cls, rows, cols, dok): |
|
"""Create a matrix from a dictionary of keys. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> d = {(0, 0): 1, (1, 2): 3, (2, 1): 4} |
|
>>> Matrix.from_dok(3, 3, d) |
|
Matrix([ |
|
[1, 0, 0], |
|
[0, 0, 3], |
|
[0, 4, 0]]) |
|
""" |
|
dok = {ij: cls._sympify(val) for ij, val in dok.items()} |
|
return cls._eval_from_dok(rows, cols, dok) |
|
|
|
def tolist(self): |
|
"""Return the Matrix as a nested Python list. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, ones |
|
>>> m = Matrix(3, 3, range(9)) |
|
>>> m |
|
Matrix([ |
|
[0, 1, 2], |
|
[3, 4, 5], |
|
[6, 7, 8]]) |
|
>>> m.tolist() |
|
[[0, 1, 2], [3, 4, 5], [6, 7, 8]] |
|
>>> ones(3, 0).tolist() |
|
[[], [], []] |
|
|
|
When there are no rows then it will not be possible to tell how |
|
many columns were in the original matrix: |
|
|
|
>>> ones(0, 3).tolist() |
|
[] |
|
|
|
""" |
|
if not self.rows: |
|
return [] |
|
if not self.cols: |
|
return [[] for i in range(self.rows)] |
|
return self._eval_tolist() |
|
|
|
def todod(M): |
|
"""Returns matrix as dict of dicts containing non-zero elements of the Matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[0, 1],[0, 3]]) |
|
>>> A |
|
Matrix([ |
|
[0, 1], |
|
[0, 3]]) |
|
>>> A.todod() |
|
{0: {1: 1}, 1: {1: 3}} |
|
|
|
|
|
""" |
|
rowsdict = {} |
|
Mlol = M.tolist() |
|
for i, Mi in enumerate(Mlol): |
|
row = {j: Mij for j, Mij in enumerate(Mi) if Mij} |
|
if row: |
|
rowsdict[i] = row |
|
return rowsdict |
|
|
|
def vec(self): |
|
"""Return the Matrix converted into a one column matrix by stacking columns |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m=Matrix([[1, 3], [2, 4]]) |
|
>>> m |
|
Matrix([ |
|
[1, 3], |
|
[2, 4]]) |
|
>>> m.vec() |
|
Matrix([ |
|
[1], |
|
[2], |
|
[3], |
|
[4]]) |
|
|
|
See Also |
|
======== |
|
|
|
vech |
|
""" |
|
return self._eval_vec() |
|
|
|
def vech(self, diagonal=True, check_symmetry=True): |
|
"""Reshapes the matrix into a column vector by stacking the |
|
elements in the lower triangle. |
|
|
|
Parameters |
|
========== |
|
|
|
diagonal : bool, optional |
|
If ``True``, it includes the diagonal elements. |
|
|
|
check_symmetry : bool, optional |
|
If ``True``, it checks whether the matrix is symmetric. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m=Matrix([[1, 2], [2, 3]]) |
|
>>> m |
|
Matrix([ |
|
[1, 2], |
|
[2, 3]]) |
|
>>> m.vech() |
|
Matrix([ |
|
[1], |
|
[2], |
|
[3]]) |
|
>>> m.vech(diagonal=False) |
|
Matrix([[2]]) |
|
|
|
Notes |
|
===== |
|
|
|
This should work for symmetric matrices and ``vech`` can |
|
represent symmetric matrices in vector form with less size than |
|
``vec``. |
|
|
|
See Also |
|
======== |
|
|
|
vec |
|
""" |
|
if not self.is_square: |
|
raise NonSquareMatrixError |
|
|
|
if check_symmetry and not self.is_symmetric(): |
|
raise ValueError("The matrix is not symmetric.") |
|
|
|
return self._eval_vech(diagonal) |
|
|
|
@classmethod |
|
def vstack(cls, *args): |
|
"""Return a matrix formed by joining args vertically (i.e. |
|
by repeated application of col_join). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, eye |
|
>>> Matrix.vstack(eye(2), 2*eye(2)) |
|
Matrix([ |
|
[1, 0], |
|
[0, 1], |
|
[2, 0], |
|
[0, 2]]) |
|
""" |
|
if len(args) == 0: |
|
return cls._new() |
|
|
|
kls = type(args[0]) |
|
return reduce(kls.col_join, args) |
|
|
|
@classmethod |
|
def _eval_diag(cls, rows, cols, diag_dict): |
|
"""diag_dict is a defaultdict containing |
|
all the entries of the diagonal matrix.""" |
|
def entry(i, j): |
|
return diag_dict[(i, j)] |
|
return cls._new(rows, cols, entry) |
|
|
|
@classmethod |
|
def _eval_eye(cls, rows, cols): |
|
vals = [cls.zero]*(rows*cols) |
|
vals[::cols+1] = [cls.one]*min(rows, cols) |
|
return cls._new(rows, cols, vals, copy=False) |
|
|
|
@classmethod |
|
def _eval_jordan_block(cls, size: int, eigenvalue, band='upper'): |
|
if band == 'lower': |
|
def entry(i, j): |
|
if i == j: |
|
return eigenvalue |
|
elif j + 1 == i: |
|
return cls.one |
|
return cls.zero |
|
else: |
|
def entry(i, j): |
|
if i == j: |
|
return eigenvalue |
|
elif i + 1 == j: |
|
return cls.one |
|
return cls.zero |
|
return cls._new(size, size, entry) |
|
|
|
@classmethod |
|
def _eval_ones(cls, rows, cols): |
|
def entry(i, j): |
|
return cls.one |
|
return cls._new(rows, cols, entry) |
|
|
|
@classmethod |
|
def _eval_zeros(cls, rows, cols): |
|
return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False) |
|
|
|
@classmethod |
|
def _eval_wilkinson(cls, n): |
|
def entry(i, j): |
|
return cls.one if i + 1 == j else cls.zero |
|
|
|
D = cls._new(2*n + 1, 2*n + 1, entry) |
|
|
|
wminus = cls.diag(list(range(-n, n + 1)), unpack=True) + D + D.T |
|
wplus = abs(cls.diag(list(range(-n, n + 1)), unpack=True)) + D + D.T |
|
|
|
return wminus, wplus |
|
|
|
@classmethod |
|
def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs): |
|
"""Returns a matrix with the specified diagonal. |
|
If matrices are passed, a block-diagonal matrix |
|
is created (i.e. the "direct sum" of the matrices). |
|
|
|
kwargs |
|
====== |
|
|
|
rows : rows of the resulting matrix; computed if |
|
not given. |
|
|
|
cols : columns of the resulting matrix; computed if |
|
not given. |
|
|
|
cls : class for the resulting matrix |
|
|
|
unpack : bool which, when True (default), unpacks a single |
|
sequence rather than interpreting it as a Matrix. |
|
|
|
strict : bool which, when False (default), allows Matrices to |
|
have variable-length rows. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> Matrix.diag(1, 2, 3) |
|
Matrix([ |
|
[1, 0, 0], |
|
[0, 2, 0], |
|
[0, 0, 3]]) |
|
|
|
The current default is to unpack a single sequence. If this is |
|
not desired, set `unpack=False` and it will be interpreted as |
|
a matrix. |
|
|
|
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) |
|
True |
|
|
|
When more than one element is passed, each is interpreted as |
|
something to put on the diagonal. Lists are converted to |
|
matrices. Filling of the diagonal always continues from |
|
the bottom right hand corner of the previous item: this |
|
will create a block-diagonal matrix whether the matrices |
|
are square or not. |
|
|
|
>>> col = [1, 2, 3] |
|
>>> row = [[4, 5]] |
|
>>> Matrix.diag(col, row) |
|
Matrix([ |
|
[1, 0, 0], |
|
[2, 0, 0], |
|
[3, 0, 0], |
|
[0, 4, 5]]) |
|
|
|
When `unpack` is False, elements within a list need not all be |
|
of the same length. Setting `strict` to True would raise a |
|
ValueError for the following: |
|
|
|
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False) |
|
Matrix([ |
|
[1, 2, 3], |
|
[4, 5, 0], |
|
[6, 0, 0]]) |
|
|
|
The type of the returned matrix can be set with the ``cls`` |
|
keyword. |
|
|
|
>>> from sympy import ImmutableMatrix |
|
>>> from sympy.utilities.misc import func_name |
|
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix)) |
|
'ImmutableDenseMatrix' |
|
|
|
A zero dimension matrix can be used to position the start of |
|
the filling at the start of an arbitrary row or column: |
|
|
|
>>> from sympy import ones |
|
>>> r2 = ones(0, 2) |
|
>>> Matrix.diag(r2, 1, 2) |
|
Matrix([ |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 2]]) |
|
|
|
See Also |
|
======== |
|
eye |
|
diagonal |
|
.dense.diag |
|
.expressions.blockmatrix.BlockMatrix |
|
.sparsetools.banded |
|
""" |
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.matrices.dense import Matrix |
|
from sympy.matrices import SparseMatrix |
|
klass = kwargs.get('cls', kls) |
|
if unpack and len(args) == 1 and is_sequence(args[0]) and \ |
|
not isinstance(args[0], MatrixBase): |
|
args = args[0] |
|
|
|
|
|
diag_entries = defaultdict(int) |
|
rmax = cmax = 0 |
|
for m in args: |
|
if isinstance(m, list): |
|
if strict: |
|
|
|
_ = Matrix(m) |
|
r, c = _.shape |
|
m = _.tolist() |
|
else: |
|
r, c, smat = SparseMatrix._handle_creation_inputs(m) |
|
for (i, j), _ in smat.items(): |
|
diag_entries[(i + rmax, j + cmax)] = _ |
|
m = [] |
|
elif hasattr(m, 'shape'): |
|
|
|
r, c = m.shape |
|
m = m.tolist() |
|
else: |
|
diag_entries[(rmax, cmax)] = m |
|
rmax += 1 |
|
cmax += 1 |
|
continue |
|
|
|
for i, mi in enumerate(m): |
|
for j, _ in enumerate(mi): |
|
diag_entries[(i + rmax, j + cmax)] = _ |
|
rmax += r |
|
cmax += c |
|
if rows is None: |
|
rows, cols = cols, rows |
|
if rows is None: |
|
rows, cols = rmax, cmax |
|
else: |
|
cols = rows if cols is None else cols |
|
if rows < rmax or cols < cmax: |
|
raise ValueError(filldedent(''' |
|
The constructed matrix is {} x {} but a size of {} x {} |
|
was specified.'''.format(rmax, cmax, rows, cols))) |
|
return klass._eval_diag(rows, cols, diag_entries) |
|
|
|
@classmethod |
|
def eye(kls, rows, cols=None, **kwargs): |
|
"""Returns an identity matrix. |
|
|
|
Parameters |
|
========== |
|
|
|
rows : rows of the matrix |
|
cols : cols of the matrix (if None, cols=rows) |
|
|
|
kwargs |
|
====== |
|
cls : class of the returned matrix |
|
""" |
|
if cols is None: |
|
cols = rows |
|
if rows < 0 or cols < 0: |
|
raise ValueError("Cannot create a {} x {} matrix. " |
|
"Both dimensions must be positive".format(rows, cols)) |
|
klass = kwargs.get('cls', kls) |
|
rows, cols = as_int(rows), as_int(cols) |
|
|
|
return klass._eval_eye(rows, cols) |
|
|
|
@classmethod |
|
def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs): |
|
"""Returns a Jordan block |
|
|
|
Parameters |
|
========== |
|
|
|
size : Integer, optional |
|
Specifies the shape of the Jordan block matrix. |
|
|
|
eigenvalue : Number or Symbol |
|
Specifies the value for the main diagonal of the matrix. |
|
|
|
.. note:: |
|
The keyword ``eigenval`` is also specified as an alias |
|
of this keyword, but it is not recommended to use. |
|
|
|
We may deprecate the alias in later release. |
|
|
|
band : 'upper' or 'lower', optional |
|
Specifies the position of the off-diagonal to put `1` s on. |
|
|
|
cls : Matrix, optional |
|
Specifies the matrix class of the output form. |
|
|
|
If it is not specified, the class type where the method is |
|
being executed on will be returned. |
|
|
|
Returns |
|
======= |
|
|
|
Matrix |
|
A Jordan block matrix. |
|
|
|
Raises |
|
====== |
|
|
|
ValueError |
|
If insufficient arguments are given for matrix size |
|
specification, or no eigenvalue is given. |
|
|
|
Examples |
|
======== |
|
|
|
Creating a default Jordan block: |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x |
|
>>> Matrix.jordan_block(4, x) |
|
Matrix([ |
|
[x, 1, 0, 0], |
|
[0, x, 1, 0], |
|
[0, 0, x, 1], |
|
[0, 0, 0, x]]) |
|
|
|
Creating an alternative Jordan block matrix where `1` is on |
|
lower off-diagonal: |
|
|
|
>>> Matrix.jordan_block(4, x, band='lower') |
|
Matrix([ |
|
[x, 0, 0, 0], |
|
[1, x, 0, 0], |
|
[0, 1, x, 0], |
|
[0, 0, 1, x]]) |
|
|
|
Creating a Jordan block with keyword arguments |
|
|
|
>>> Matrix.jordan_block(size=4, eigenvalue=x) |
|
Matrix([ |
|
[x, 1, 0, 0], |
|
[0, x, 1, 0], |
|
[0, 0, x, 1], |
|
[0, 0, 0, x]]) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix |
|
""" |
|
klass = kwargs.pop('cls', kls) |
|
|
|
eigenval = kwargs.get('eigenval', None) |
|
if eigenvalue is None and eigenval is None: |
|
raise ValueError("Must supply an eigenvalue") |
|
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue): |
|
raise ValueError( |
|
"Inconsistent values are given: 'eigenval'={}, " |
|
"'eigenvalue'={}".format(eigenval, eigenvalue)) |
|
else: |
|
if eigenval is not None: |
|
eigenvalue = eigenval |
|
|
|
if size is None: |
|
raise ValueError("Must supply a matrix size") |
|
|
|
size = as_int(size) |
|
return klass._eval_jordan_block(size, eigenvalue, band) |
|
|
|
@classmethod |
|
def ones(kls, rows, cols=None, **kwargs): |
|
"""Returns a matrix of ones. |
|
|
|
Parameters |
|
========== |
|
|
|
rows : rows of the matrix |
|
cols : cols of the matrix (if None, cols=rows) |
|
|
|
kwargs |
|
====== |
|
cls : class of the returned matrix |
|
""" |
|
if cols is None: |
|
cols = rows |
|
klass = kwargs.get('cls', kls) |
|
rows, cols = as_int(rows), as_int(cols) |
|
|
|
return klass._eval_ones(rows, cols) |
|
|
|
@classmethod |
|
def zeros(kls, rows, cols=None, **kwargs): |
|
"""Returns a matrix of zeros. |
|
|
|
Parameters |
|
========== |
|
|
|
rows : rows of the matrix |
|
cols : cols of the matrix (if None, cols=rows) |
|
|
|
kwargs |
|
====== |
|
cls : class of the returned matrix |
|
""" |
|
if cols is None: |
|
cols = rows |
|
if rows < 0 or cols < 0: |
|
raise ValueError("Cannot create a {} x {} matrix. " |
|
"Both dimensions must be positive".format(rows, cols)) |
|
klass = kwargs.get('cls', kls) |
|
rows, cols = as_int(rows), as_int(cols) |
|
|
|
return klass._eval_zeros(rows, cols) |
|
|
|
@classmethod |
|
def companion(kls, poly): |
|
"""Returns a companion matrix of a polynomial. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, Poly, Symbol, symbols |
|
>>> x = Symbol('x') |
|
>>> c0, c1, c2, c3, c4 = symbols('c0:5') |
|
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x) |
|
>>> Matrix.companion(p) |
|
Matrix([ |
|
[0, 0, 0, 0, -c0], |
|
[1, 0, 0, 0, -c1], |
|
[0, 1, 0, 0, -c2], |
|
[0, 0, 1, 0, -c3], |
|
[0, 0, 0, 1, -c4]]) |
|
""" |
|
poly = kls._sympify(poly) |
|
if not isinstance(poly, Poly): |
|
raise ValueError("{} must be a Poly instance.".format(poly)) |
|
if not poly.is_monic: |
|
raise ValueError("{} must be a monic polynomial.".format(poly)) |
|
if not poly.is_univariate: |
|
raise ValueError( |
|
"{} must be a univariate polynomial.".format(poly)) |
|
|
|
size = poly.degree() |
|
if not size >= 1: |
|
raise ValueError( |
|
"{} must have degree not less than 1.".format(poly)) |
|
|
|
coeffs = poly.all_coeffs() |
|
def entry(i, j): |
|
if j == size - 1: |
|
return -coeffs[-1 - i] |
|
elif i == j + 1: |
|
return kls.one |
|
return kls.zero |
|
return kls._new(size, size, entry) |
|
|
|
|
|
@classmethod |
|
def wilkinson(kls, n, **kwargs): |
|
"""Returns two square Wilkinson Matrix of size 2*n + 1 |
|
$W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> wminus, wplus = Matrix.wilkinson(3) |
|
>>> wminus |
|
Matrix([ |
|
[-3, 1, 0, 0, 0, 0, 0], |
|
[ 1, -2, 1, 0, 0, 0, 0], |
|
[ 0, 1, -1, 1, 0, 0, 0], |
|
[ 0, 0, 1, 0, 1, 0, 0], |
|
[ 0, 0, 0, 1, 1, 1, 0], |
|
[ 0, 0, 0, 0, 1, 2, 1], |
|
[ 0, 0, 0, 0, 0, 1, 3]]) |
|
>>> wplus |
|
Matrix([ |
|
[3, 1, 0, 0, 0, 0, 0], |
|
[1, 2, 1, 0, 0, 0, 0], |
|
[0, 1, 1, 1, 0, 0, 0], |
|
[0, 0, 1, 0, 1, 0, 0], |
|
[0, 0, 0, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 1, 2, 1], |
|
[0, 0, 0, 0, 0, 1, 3]]) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/ |
|
.. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp. |
|
|
|
""" |
|
klass = kwargs.get('cls', kls) |
|
n = as_int(n) |
|
return klass._eval_wilkinson(n) |
|
|
|
|
|
|
|
|
|
def _eval_iter_values(self): |
|
return (i for i in self if i is not S.Zero) |
|
|
|
def _eval_values(self): |
|
return list(self.iter_values()) |
|
|
|
def _eval_iter_items(self): |
|
for i in range(self.rows): |
|
for j in range(self.cols): |
|
if self[i, j]: |
|
yield (i, j), self[i, j] |
|
|
|
def _eval_atoms(self, *types): |
|
values = self.values() |
|
if len(values) < self.rows * self.cols and isinstance(S.Zero, types): |
|
s = {S.Zero} |
|
else: |
|
s = set() |
|
return s.union(*[v.atoms(*types) for v in values]) |
|
|
|
def _eval_free_symbols(self): |
|
return set().union(*(i.free_symbols for i in set(self.values()))) |
|
|
|
def _eval_has(self, *patterns): |
|
return any(a.has(*patterns) for a in self.iter_values()) |
|
|
|
def _eval_is_symbolic(self): |
|
return self.has(Symbol) |
|
|
|
|
|
|
|
|
|
def _eval_is_matrix_hermitian(self, simpfunc): |
|
herm = lambda i, j: simpfunc(self[i, j] - self[j, i].adjoint()).is_zero |
|
return fuzzy_and(herm(i, j) for (i, j), v in self.iter_items()) |
|
|
|
def _eval_is_zero_matrix(self): |
|
return fuzzy_and(v.is_zero for v in self.iter_values()) |
|
|
|
def _eval_is_Identity(self) -> FuzzyBool: |
|
one = self.one |
|
zero = self.zero |
|
ident = lambda i, j, v: v is one if i == j else v is zero |
|
return all(ident(i, j, v) for (i, j), v in self.iter_items()) |
|
|
|
def _eval_is_diagonal(self): |
|
return fuzzy_and(v.is_zero for (i, j), v in self.iter_items() if i != j) |
|
|
|
def _eval_is_lower(self): |
|
return all(v.is_zero for (i, j), v in self.iter_items() if i < j) |
|
|
|
def _eval_is_upper(self): |
|
return all(v.is_zero for (i, j), v in self.iter_items() if i > j) |
|
|
|
def _eval_is_lower_hessenberg(self): |
|
return all(v.is_zero for (i, j), v in self.iter_items() if i + 1 < j) |
|
|
|
def _eval_is_upper_hessenberg(self): |
|
return all(v.is_zero for (i, j), v in self.iter_items() if i > j + 1) |
|
|
|
def _eval_is_symmetric(self, simpfunc): |
|
sym = lambda i, j: simpfunc(self[i, j] - self[j, i]).is_zero |
|
return fuzzy_and(sym(i, j) for (i, j), v in self.iter_items()) |
|
|
|
def _eval_is_anti_symmetric(self, simpfunc): |
|
anti = lambda i, j: simpfunc(self[i, j] + self[j, i]).is_zero |
|
return fuzzy_and(anti(i, j) for (i, j), v in self.iter_items()) |
|
|
|
def _has_positive_diagonals(self): |
|
diagonal_entries = (self[i, i] for i in range(self.rows)) |
|
return fuzzy_and(x.is_positive for x in diagonal_entries) |
|
|
|
def _has_nonnegative_diagonals(self): |
|
diagonal_entries = (self[i, i] for i in range(self.rows)) |
|
return fuzzy_and(x.is_nonnegative for x in diagonal_entries) |
|
|
|
def atoms(self, *types): |
|
"""Returns the atoms that form the current object. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import Matrix |
|
>>> Matrix([[x]]) |
|
Matrix([[x]]) |
|
>>> _.atoms() |
|
{x} |
|
>>> Matrix([[x, y], [y, x]]) |
|
Matrix([ |
|
[x, y], |
|
[y, x]]) |
|
>>> _.atoms() |
|
{x, y} |
|
""" |
|
|
|
types = tuple(t if isinstance(t, type) else type(t) for t in types) |
|
if not types: |
|
types = (Atom,) |
|
return self._eval_atoms(*types) |
|
|
|
@property |
|
def free_symbols(self): |
|
"""Returns the free symbols within the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import Matrix |
|
>>> Matrix([[x], [1]]).free_symbols |
|
{x} |
|
""" |
|
return self._eval_free_symbols() |
|
|
|
def has(self, *patterns): |
|
"""Test whether any subexpression matches any of the patterns. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, SparseMatrix, Float |
|
>>> from sympy.abc import x, y |
|
>>> A = Matrix(((1, x), (0.2, 3))) |
|
>>> B = SparseMatrix(((1, x), (0.2, 3))) |
|
>>> A.has(x) |
|
True |
|
>>> A.has(y) |
|
False |
|
>>> A.has(Float) |
|
True |
|
>>> B.has(x) |
|
True |
|
>>> B.has(y) |
|
False |
|
>>> B.has(Float) |
|
True |
|
""" |
|
return self._eval_has(*patterns) |
|
|
|
def is_anti_symmetric(self, simplify=True): |
|
"""Check if matrix M is an antisymmetric matrix, |
|
that is, M is a square matrix with all M[i, j] == -M[j, i]. |
|
|
|
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is |
|
simplified before testing to see if it is zero. By default, |
|
the SymPy simplify function is used. To use a custom function |
|
set simplify to a function that accepts a single argument which |
|
returns a simplified expression. To skip simplification, set |
|
simplify to False but note that although this will be faster, |
|
it may induce false negatives. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, symbols |
|
>>> m = Matrix(2, 2, [0, 1, -1, 0]) |
|
>>> m |
|
Matrix([ |
|
[ 0, 1], |
|
[-1, 0]]) |
|
>>> m.is_anti_symmetric() |
|
True |
|
>>> x, y = symbols('x y') |
|
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) |
|
>>> m |
|
Matrix([ |
|
[ 0, 0, x], |
|
[-y, 0, 0]]) |
|
>>> m.is_anti_symmetric() |
|
False |
|
|
|
>>> from sympy.abc import x, y |
|
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, |
|
... -(x + 1)**2, 0, x*y, |
|
... -y, -x*y, 0]) |
|
|
|
Simplification of matrix elements is done by default so even |
|
though two elements which should be equal and opposite would not |
|
pass an equality test, the matrix is still reported as |
|
anti-symmetric: |
|
|
|
>>> m[0, 1] == -m[1, 0] |
|
False |
|
>>> m.is_anti_symmetric() |
|
True |
|
|
|
If ``simplify=False`` is used for the case when a Matrix is already |
|
simplified, this will speed things up. Here, we see that without |
|
simplification the matrix does not appear anti-symmetric: |
|
|
|
>>> print(m.is_anti_symmetric(simplify=False)) |
|
None |
|
|
|
But if the matrix were already expanded, then it would appear |
|
anti-symmetric and simplification in the is_anti_symmetric routine |
|
is not needed: |
|
|
|
>>> m = m.expand() |
|
>>> m.is_anti_symmetric(simplify=False) |
|
True |
|
""" |
|
|
|
simpfunc = simplify |
|
if not isfunction(simplify): |
|
simpfunc = _utilities_simplify if simplify else lambda x: x |
|
|
|
if not self.is_square: |
|
return False |
|
return self._eval_is_anti_symmetric(simpfunc) |
|
|
|
def is_diagonal(self): |
|
"""Check if matrix is diagonal, |
|
that is matrix in which the entries outside the main diagonal are all zero. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, diag |
|
>>> m = Matrix(2, 2, [1, 0, 0, 2]) |
|
>>> m |
|
Matrix([ |
|
[1, 0], |
|
[0, 2]]) |
|
>>> m.is_diagonal() |
|
True |
|
|
|
>>> m = Matrix(2, 2, [1, 1, 0, 2]) |
|
>>> m |
|
Matrix([ |
|
[1, 1], |
|
[0, 2]]) |
|
>>> m.is_diagonal() |
|
False |
|
|
|
>>> m = diag(1, 2, 3) |
|
>>> m |
|
Matrix([ |
|
[1, 0, 0], |
|
[0, 2, 0], |
|
[0, 0, 3]]) |
|
>>> m.is_diagonal() |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
is_lower |
|
is_upper |
|
sympy.matrices.matrixbase.MatrixBase.is_diagonalizable |
|
diagonalize |
|
""" |
|
return self._eval_is_diagonal() |
|
|
|
@property |
|
def is_weakly_diagonally_dominant(self): |
|
r"""Tests if the matrix is row weakly diagonally dominant. |
|
|
|
Explanation |
|
=========== |
|
|
|
A $n, n$ matrix $A$ is row weakly diagonally dominant if |
|
|
|
.. math:: |
|
\left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1} |
|
\left|A_{i, j}\right| \quad {\text{for all }} |
|
i \in \{ 0, ..., n-1 \} |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) |
|
>>> A.is_weakly_diagonally_dominant |
|
True |
|
|
|
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) |
|
>>> A.is_weakly_diagonally_dominant |
|
False |
|
|
|
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) |
|
>>> A.is_weakly_diagonally_dominant |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
If you want to test whether a matrix is column diagonally |
|
dominant, you can apply the test after transposing the matrix. |
|
""" |
|
if not self.is_square: |
|
return False |
|
|
|
rows, cols = self.shape |
|
|
|
def test_row(i): |
|
summation = self.zero |
|
for j in range(cols): |
|
if i != j: |
|
summation += Abs(self[i, j]) |
|
return (Abs(self[i, i]) - summation).is_nonnegative |
|
|
|
return fuzzy_and(test_row(i) for i in range(rows)) |
|
|
|
@property |
|
def is_strongly_diagonally_dominant(self): |
|
r"""Tests if the matrix is row strongly diagonally dominant. |
|
|
|
Explanation |
|
=========== |
|
|
|
A $n, n$ matrix $A$ is row strongly diagonally dominant if |
|
|
|
.. math:: |
|
\left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1} |
|
\left|A_{i, j}\right| \quad {\text{for all }} |
|
i \in \{ 0, ..., n-1 \} |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) |
|
>>> A.is_strongly_diagonally_dominant |
|
False |
|
|
|
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) |
|
>>> A.is_strongly_diagonally_dominant |
|
False |
|
|
|
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) |
|
>>> A.is_strongly_diagonally_dominant |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
If you want to test whether a matrix is column diagonally |
|
dominant, you can apply the test after transposing the matrix. |
|
""" |
|
if not self.is_square: |
|
return False |
|
|
|
rows, cols = self.shape |
|
|
|
def test_row(i): |
|
summation = self.zero |
|
for j in range(cols): |
|
if i != j: |
|
summation += Abs(self[i, j]) |
|
return (Abs(self[i, i]) - summation).is_positive |
|
|
|
return fuzzy_and(test_row(i) for i in range(rows)) |
|
|
|
@property |
|
def is_hermitian(self): |
|
"""Checks if the matrix is Hermitian. |
|
|
|
In a Hermitian matrix element i,j is the complex conjugate of |
|
element j,i. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy import I |
|
>>> from sympy.abc import x |
|
>>> a = Matrix([[1, I], [-I, 1]]) |
|
>>> a |
|
Matrix([ |
|
[ 1, I], |
|
[-I, 1]]) |
|
>>> a.is_hermitian |
|
True |
|
>>> a[0, 0] = 2*I |
|
>>> a.is_hermitian |
|
False |
|
>>> a[0, 0] = x |
|
>>> a.is_hermitian |
|
>>> a[0, 1] = a[1, 0]*I |
|
>>> a.is_hermitian |
|
False |
|
""" |
|
if not self.is_square: |
|
return False |
|
|
|
return self._eval_is_matrix_hermitian(_utilities_simplify) |
|
|
|
@property |
|
def is_Identity(self) -> FuzzyBool: |
|
if not self.is_square: |
|
return False |
|
return self._eval_is_Identity() |
|
|
|
@property |
|
def is_lower_hessenberg(self): |
|
r"""Checks if the matrix is in the lower-Hessenberg form. |
|
|
|
The lower hessenberg matrix has zero entries |
|
above the first superdiagonal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) |
|
>>> a |
|
Matrix([ |
|
[1, 2, 0, 0], |
|
[5, 2, 3, 0], |
|
[3, 4, 3, 7], |
|
[5, 6, 1, 1]]) |
|
>>> a.is_lower_hessenberg |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
is_upper_hessenberg |
|
is_lower |
|
""" |
|
return self._eval_is_lower_hessenberg() |
|
|
|
@property |
|
def is_lower(self): |
|
"""Check if matrix is a lower triangular matrix. True can be returned |
|
even if the matrix is not square. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, [1, 0, 0, 1]) |
|
>>> m |
|
Matrix([ |
|
[1, 0], |
|
[0, 1]]) |
|
>>> m.is_lower |
|
True |
|
|
|
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5]) |
|
>>> m |
|
Matrix([ |
|
[0, 0, 0], |
|
[2, 0, 0], |
|
[1, 4, 0], |
|
[6, 6, 5]]) |
|
>>> m.is_lower |
|
True |
|
|
|
>>> from sympy.abc import x, y |
|
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) |
|
>>> m |
|
Matrix([ |
|
[x**2 + y, x + y**2], |
|
[ 0, x + y]]) |
|
>>> m.is_lower |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
is_upper |
|
is_diagonal |
|
is_lower_hessenberg |
|
""" |
|
return self._eval_is_lower() |
|
|
|
@property |
|
def is_square(self): |
|
"""Checks if a matrix is square. |
|
|
|
A matrix is square if the number of rows equals the number of columns. |
|
The empty matrix is square by definition, since the number of rows and |
|
the number of columns are both zero. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[1, 2, 3], [4, 5, 6]]) |
|
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
>>> c = Matrix([]) |
|
>>> a.is_square |
|
False |
|
>>> b.is_square |
|
True |
|
>>> c.is_square |
|
True |
|
""" |
|
return self.rows == self.cols |
|
|
|
def is_symbolic(self): |
|
"""Checks if any elements contain Symbols. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x, y |
|
>>> M = Matrix([[x, y], [1, 0]]) |
|
>>> M.is_symbolic() |
|
True |
|
|
|
""" |
|
return self._eval_is_symbolic() |
|
|
|
def is_symmetric(self, simplify=True): |
|
"""Check if matrix is symmetric matrix, |
|
that is square matrix and is equal to its transpose. |
|
|
|
By default, simplifications occur before testing symmetry. |
|
They can be skipped using 'simplify=False'; while speeding things a bit, |
|
this may however induce false negatives. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, [0, 1, 1, 2]) |
|
>>> m |
|
Matrix([ |
|
[0, 1], |
|
[1, 2]]) |
|
>>> m.is_symmetric() |
|
True |
|
|
|
>>> m = Matrix(2, 2, [0, 1, 2, 0]) |
|
>>> m |
|
Matrix([ |
|
[0, 1], |
|
[2, 0]]) |
|
>>> m.is_symmetric() |
|
False |
|
|
|
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) |
|
>>> m |
|
Matrix([ |
|
[0, 0, 0], |
|
[0, 0, 0]]) |
|
>>> m.is_symmetric() |
|
False |
|
|
|
>>> from sympy.abc import x, y |
|
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) |
|
>>> m |
|
Matrix([ |
|
[ 1, x**2 + 2*x + 1, y], |
|
[(x + 1)**2, 2, 0], |
|
[ y, 0, 3]]) |
|
>>> m.is_symmetric() |
|
True |
|
|
|
If the matrix is already simplified, you may speed-up is_symmetric() |
|
test by using 'simplify=False'. |
|
|
|
>>> bool(m.is_symmetric(simplify=False)) |
|
False |
|
>>> m1 = m.expand() |
|
>>> m1.is_symmetric(simplify=False) |
|
True |
|
""" |
|
simpfunc = simplify |
|
if not isfunction(simplify): |
|
simpfunc = _utilities_simplify if simplify else lambda x: x |
|
|
|
if not self.is_square: |
|
return False |
|
|
|
return self._eval_is_symmetric(simpfunc) |
|
|
|
@property |
|
def is_upper_hessenberg(self): |
|
"""Checks if the matrix is the upper-Hessenberg form. |
|
|
|
The upper hessenberg matrix has zero entries |
|
below the first subdiagonal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) |
|
>>> a |
|
Matrix([ |
|
[1, 4, 2, 3], |
|
[3, 4, 1, 7], |
|
[0, 2, 3, 4], |
|
[0, 0, 1, 3]]) |
|
>>> a.is_upper_hessenberg |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
is_lower_hessenberg |
|
is_upper |
|
""" |
|
return self._eval_is_upper_hessenberg() |
|
|
|
@property |
|
def is_upper(self): |
|
"""Check if matrix is an upper triangular matrix. True can be returned |
|
even if the matrix is not square. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, [1, 0, 0, 1]) |
|
>>> m |
|
Matrix([ |
|
[1, 0], |
|
[0, 1]]) |
|
>>> m.is_upper |
|
True |
|
|
|
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0]) |
|
>>> m |
|
Matrix([ |
|
[5, 1, 9], |
|
[0, 4, 6], |
|
[0, 0, 5], |
|
[0, 0, 0]]) |
|
>>> m.is_upper |
|
True |
|
|
|
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) |
|
>>> m |
|
Matrix([ |
|
[4, 2, 5], |
|
[6, 1, 1]]) |
|
>>> m.is_upper |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
is_lower |
|
is_diagonal |
|
is_upper_hessenberg |
|
""" |
|
return self._eval_is_upper() |
|
|
|
@property |
|
def is_zero_matrix(self): |
|
"""Checks if a matrix is a zero matrix. |
|
|
|
A matrix is zero if every element is zero. A matrix need not be square |
|
to be considered zero. The empty matrix is zero by the principle of |
|
vacuous truth. For a matrix that may or may not be zero (e.g. |
|
contains a symbol), this will be None |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, zeros |
|
>>> from sympy.abc import x |
|
>>> a = Matrix([[0, 0], [0, 0]]) |
|
>>> b = zeros(3, 4) |
|
>>> c = Matrix([[0, 1], [0, 0]]) |
|
>>> d = Matrix([]) |
|
>>> e = Matrix([[x, 0], [0, 0]]) |
|
>>> a.is_zero_matrix |
|
True |
|
>>> b.is_zero_matrix |
|
True |
|
>>> c.is_zero_matrix |
|
False |
|
>>> d.is_zero_matrix |
|
True |
|
>>> e.is_zero_matrix |
|
""" |
|
return self._eval_is_zero_matrix() |
|
|
|
def values(self): |
|
"""Return non-zero values of self. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix([[0, 1], [2, 3]]) |
|
>>> m.values() |
|
[1, 2, 3] |
|
|
|
See Also |
|
======== |
|
|
|
iter_values |
|
tolist |
|
flat |
|
""" |
|
return self._eval_values() |
|
|
|
def iter_values(self): |
|
""" |
|
Iterate over non-zero values of self. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix([[0, 1], [2, 3]]) |
|
>>> list(m.iter_values()) |
|
[1, 2, 3] |
|
|
|
See Also |
|
======== |
|
|
|
values |
|
""" |
|
return self._eval_iter_values() |
|
|
|
def iter_items(self): |
|
"""Iterate over indices and values of nonzero items. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix([[0, 1], [2, 3]]) |
|
>>> list(m.iter_items()) |
|
[((0, 1), 1), ((1, 0), 2), ((1, 1), 3)] |
|
|
|
See Also |
|
======== |
|
|
|
iter_values |
|
todok |
|
""" |
|
return self._eval_iter_items() |
|
|
|
def _eval_adjoint(self): |
|
return self.transpose().applyfunc(lambda x: x.adjoint()) |
|
|
|
def _eval_applyfunc(self, f): |
|
cols = self.cols |
|
size = self.rows*self.cols |
|
|
|
dok = self.todok() |
|
valmap = {v: f(v) for v in dok.values()} |
|
|
|
if len(dok) < size and ((fzero := f(S.Zero)) is not S.Zero): |
|
out_flat = [fzero]*size |
|
for (i, j), v in dok.items(): |
|
out_flat[i*cols + j] = valmap[v] |
|
out = self._new(self.rows, self.cols, out_flat) |
|
else: |
|
fdok = {ij: valmap[v] for ij, v in dok.items()} |
|
out = self.from_dok(self.rows, self.cols, fdok) |
|
|
|
return out |
|
|
|
def _eval_as_real_imag(self): |
|
return (self.applyfunc(re), self.applyfunc(im)) |
|
|
|
def _eval_conjugate(self): |
|
return self.applyfunc(lambda x: x.conjugate()) |
|
|
|
def _eval_permute_cols(self, perm): |
|
|
|
mapping = list(perm) |
|
|
|
def entry(i, j): |
|
return self[i, mapping[j]] |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_permute_rows(self, perm): |
|
|
|
mapping = list(perm) |
|
|
|
def entry(i, j): |
|
return self[mapping[i], j] |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_trace(self): |
|
return sum(self[i, i] for i in range(self.rows)) |
|
|
|
def _eval_transpose(self): |
|
return self._new(self.cols, self.rows, lambda i, j: self[j, i]) |
|
|
|
def adjoint(self): |
|
"""Conjugate transpose or Hermitian conjugation.""" |
|
return self._eval_adjoint() |
|
|
|
def applyfunc(self, f): |
|
"""Apply a function to each element of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, lambda i, j: i*2+j) |
|
>>> m |
|
Matrix([ |
|
[0, 1], |
|
[2, 3]]) |
|
>>> m.applyfunc(lambda i: 2*i) |
|
Matrix([ |
|
[0, 2], |
|
[4, 6]]) |
|
|
|
""" |
|
if not callable(f): |
|
raise TypeError("`f` must be callable.") |
|
|
|
return self._eval_applyfunc(f) |
|
|
|
def as_real_imag(self, deep=True, **hints): |
|
"""Returns a tuple containing the (real, imaginary) part of matrix.""" |
|
|
|
return self._eval_as_real_imag() |
|
|
|
def conjugate(self): |
|
"""Return the by-element conjugation. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import SparseMatrix, I |
|
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) |
|
>>> a |
|
Matrix([ |
|
[1, 2 + I], |
|
[3, 4], |
|
[I, -I]]) |
|
>>> a.C |
|
Matrix([ |
|
[ 1, 2 - I], |
|
[ 3, 4], |
|
[-I, I]]) |
|
|
|
See Also |
|
======== |
|
|
|
transpose: Matrix transposition |
|
H: Hermite conjugation |
|
sympy.matrices.matrixbase.MatrixBase.D: Dirac conjugation |
|
""" |
|
return self._eval_conjugate() |
|
|
|
def doit(self, **hints): |
|
return self.applyfunc(lambda x: x.doit(**hints)) |
|
|
|
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): |
|
"""Apply evalf() to each element of self.""" |
|
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict, |
|
'quad':quad, 'verbose':verbose} |
|
return self.applyfunc(lambda i: i.evalf(n, **options)) |
|
|
|
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, |
|
mul=True, log=True, multinomial=True, basic=True, **hints): |
|
"""Apply core.function.expand to each entry of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import Matrix |
|
>>> Matrix(1, 1, [x*(x+1)]) |
|
Matrix([[x*(x + 1)]]) |
|
>>> _.expand() |
|
Matrix([[x**2 + x]]) |
|
|
|
""" |
|
return self.applyfunc(lambda x: x.expand( |
|
deep, modulus, power_base, power_exp, mul, log, multinomial, basic, |
|
**hints)) |
|
|
|
@property |
|
def H(self): |
|
"""Return Hermite conjugate. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, I |
|
>>> m = Matrix((0, 1 + I, 2, 3)) |
|
>>> m |
|
Matrix([ |
|
[ 0], |
|
[1 + I], |
|
[ 2], |
|
[ 3]]) |
|
>>> m.H |
|
Matrix([[0, 1 - I, 2, 3]]) |
|
|
|
See Also |
|
======== |
|
|
|
conjugate: By-element conjugation |
|
sympy.matrices.matrixbase.MatrixBase.D: Dirac conjugation |
|
""" |
|
return self.adjoint() |
|
|
|
def permute(self, perm, orientation='rows', direction='forward'): |
|
r"""Permute the rows or columns of a matrix by the given list of |
|
swaps. |
|
|
|
Parameters |
|
========== |
|
|
|
perm : Permutation, list, or list of lists |
|
A representation for the permutation. |
|
|
|
If it is ``Permutation``, it is used directly with some |
|
resizing with respect to the matrix size. |
|
|
|
If it is specified as list of lists, |
|
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed |
|
from applying the product of cycles. The direction how the |
|
cyclic product is applied is described in below. |
|
|
|
If it is specified as a list, the list should represent |
|
an array form of a permutation. (e.g., ``[1, 2, 0]``) which |
|
would would form the swapping function |
|
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`. |
|
|
|
orientation : 'rows', 'cols' |
|
A flag to control whether to permute the rows or the columns |
|
|
|
direction : 'forward', 'backward' |
|
A flag to control whether to apply the permutations from |
|
the start of the list first, or from the back of the list |
|
first. |
|
|
|
For example, if the permutation specification is |
|
``[[0, 1], [0, 2]]``, |
|
|
|
If the flag is set to ``'forward'``, the cycle would be |
|
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`. |
|
|
|
If the flag is set to ``'backward'``, the cycle would be |
|
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`. |
|
|
|
If the argument ``perm`` is not in a form of list of lists, |
|
this flag takes no effect. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import eye |
|
>>> M = eye(3) |
|
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') |
|
Matrix([ |
|
[0, 0, 1], |
|
[1, 0, 0], |
|
[0, 1, 0]]) |
|
|
|
>>> from sympy import eye |
|
>>> M = eye(3) |
|
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') |
|
Matrix([ |
|
[0, 1, 0], |
|
[0, 0, 1], |
|
[1, 0, 0]]) |
|
|
|
Notes |
|
===== |
|
|
|
If a bijective function |
|
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the |
|
permutation. |
|
|
|
If the matrix `A` is the matrix to permute, represented as |
|
a horizontal or a vertical stack of vectors: |
|
|
|
.. math:: |
|
A = |
|
\begin{bmatrix} |
|
a_0 \\ a_1 \\ \vdots \\ a_{n-1} |
|
\end{bmatrix} = |
|
\begin{bmatrix} |
|
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1} |
|
\end{bmatrix} |
|
|
|
If the matrix `B` is the result, the permutation of matrix rows |
|
is defined as: |
|
|
|
.. math:: |
|
B := \begin{bmatrix} |
|
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)} |
|
\end{bmatrix} |
|
|
|
And the permutation of matrix columns is defined as: |
|
|
|
.. math:: |
|
B := \begin{bmatrix} |
|
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} & |
|
\cdots & \alpha_{\sigma(n-1)} |
|
\end{bmatrix} |
|
""" |
|
from sympy.combinatorics import Permutation |
|
|
|
|
|
if direction == 'forwards': |
|
direction = 'forward' |
|
if direction == 'backwards': |
|
direction = 'backward' |
|
if orientation == 'columns': |
|
orientation = 'cols' |
|
|
|
if direction not in ('forward', 'backward'): |
|
raise TypeError("direction='{}' is an invalid kwarg. " |
|
"Try 'forward' or 'backward'".format(direction)) |
|
if orientation not in ('rows', 'cols'): |
|
raise TypeError("orientation='{}' is an invalid kwarg. " |
|
"Try 'rows' or 'cols'".format(orientation)) |
|
|
|
if not isinstance(perm, (Permutation, Iterable)): |
|
raise ValueError( |
|
"{} must be a list, a list of lists, " |
|
"or a SymPy permutation object.".format(perm)) |
|
|
|
|
|
max_index = self.rows if orientation == 'rows' else self.cols |
|
if not all(0 <= t <= max_index for t in flatten(list(perm))): |
|
raise IndexError("`swap` indices out of range.") |
|
|
|
if perm and not isinstance(perm, Permutation) and \ |
|
isinstance(perm[0], Iterable): |
|
if direction == 'forward': |
|
perm = list(reversed(perm)) |
|
perm = Permutation(perm, size=max_index+1) |
|
else: |
|
perm = Permutation(perm, size=max_index+1) |
|
|
|
if orientation == 'rows': |
|
return self._eval_permute_rows(perm) |
|
if orientation == 'cols': |
|
return self._eval_permute_cols(perm) |
|
|
|
def permute_cols(self, swaps, direction='forward'): |
|
"""Alias for |
|
``self.permute(swaps, orientation='cols', direction=direction)`` |
|
|
|
See Also |
|
======== |
|
|
|
permute |
|
""" |
|
return self.permute(swaps, orientation='cols', direction=direction) |
|
|
|
def permute_rows(self, swaps, direction='forward'): |
|
"""Alias for |
|
``self.permute(swaps, orientation='rows', direction=direction)`` |
|
|
|
See Also |
|
======== |
|
|
|
permute |
|
""" |
|
return self.permute(swaps, orientation='rows', direction=direction) |
|
|
|
def refine(self, assumptions=True): |
|
"""Apply refine to each element of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q |
|
>>> x = Symbol('x') |
|
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) |
|
Matrix([ |
|
[ Abs(x)**2, sqrt(x**2)], |
|
[sqrt(x**2), Abs(x)**2]]) |
|
>>> _.refine(Q.real(x)) |
|
Matrix([ |
|
[ x**2, Abs(x)], |
|
[Abs(x), x**2]]) |
|
|
|
""" |
|
return self.applyfunc(lambda x: refine(x, assumptions)) |
|
|
|
def replace(self, F, G, map=False, simultaneous=True, exact=None): |
|
"""Replaces Function F in Matrix entries with Function G. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import symbols, Function, Matrix |
|
>>> F, G = symbols('F, G', cls=Function) |
|
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M |
|
Matrix([ |
|
[F(0), F(1)], |
|
[F(1), F(2)]]) |
|
>>> N = M.replace(F,G) |
|
>>> N |
|
Matrix([ |
|
[G(0), G(1)], |
|
[G(1), G(2)]]) |
|
""" |
|
kwargs = {'map': map, 'simultaneous': simultaneous, 'exact': exact} |
|
|
|
if map: |
|
|
|
d = {} |
|
def func(eij): |
|
eij, dij = eij.replace(F, G, **kwargs) |
|
d.update(dij) |
|
return eij |
|
|
|
M = self.applyfunc(func) |
|
return M, d |
|
|
|
else: |
|
return self.applyfunc(lambda i: i.replace(F, G, **kwargs)) |
|
|
|
def rot90(self, k=1): |
|
"""Rotates Matrix by 90 degrees |
|
|
|
Parameters |
|
========== |
|
|
|
k : int |
|
Specifies how many times the matrix is rotated by 90 degrees |
|
(clockwise when positive, counter-clockwise when negative). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, symbols |
|
>>> A = Matrix(2, 2, symbols('a:d')) |
|
>>> A |
|
Matrix([ |
|
[a, b], |
|
[c, d]]) |
|
|
|
Rotating the matrix clockwise one time: |
|
|
|
>>> A.rot90(1) |
|
Matrix([ |
|
[c, a], |
|
[d, b]]) |
|
|
|
Rotating the matrix anticlockwise two times: |
|
|
|
>>> A.rot90(-2) |
|
Matrix([ |
|
[d, c], |
|
[b, a]]) |
|
""" |
|
|
|
mod = k%4 |
|
if mod == 0: |
|
return self |
|
if mod == 1: |
|
return self[::-1, ::].T |
|
if mod == 2: |
|
return self[::-1, ::-1] |
|
if mod == 3: |
|
return self[::, ::-1].T |
|
|
|
def simplify(self, **kwargs): |
|
"""Apply simplify to each element of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import SparseMatrix, sin, cos |
|
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) |
|
Matrix([[x*sin(y)**2 + x*cos(y)**2]]) |
|
>>> _.simplify() |
|
Matrix([[x]]) |
|
""" |
|
return self.applyfunc(lambda x: x.simplify(**kwargs)) |
|
|
|
def subs(self, *args, **kwargs): |
|
"""Return a new matrix with subs applied to each entry. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import SparseMatrix, Matrix |
|
>>> SparseMatrix(1, 1, [x]) |
|
Matrix([[x]]) |
|
>>> _.subs(x, y) |
|
Matrix([[y]]) |
|
>>> Matrix(_).subs(y, x) |
|
Matrix([[x]]) |
|
""" |
|
|
|
if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]): |
|
args = (list(args[0]),) |
|
|
|
return self.applyfunc(lambda x: x.subs(*args, **kwargs)) |
|
|
|
def trace(self): |
|
""" |
|
Returns the trace of a square matrix i.e. the sum of the |
|
diagonal elements. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix(2, 2, [1, 2, 3, 4]) |
|
>>> A.trace() |
|
5 |
|
|
|
""" |
|
if self.rows != self.cols: |
|
raise NonSquareMatrixError() |
|
return self._eval_trace() |
|
|
|
def transpose(self): |
|
""" |
|
Returns the transpose of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix(2, 2, [1, 2, 3, 4]) |
|
>>> A.transpose() |
|
Matrix([ |
|
[1, 3], |
|
[2, 4]]) |
|
|
|
>>> from sympy import Matrix, I |
|
>>> m=Matrix(((1, 2+I), (3, 4))) |
|
>>> m |
|
Matrix([ |
|
[1, 2 + I], |
|
[3, 4]]) |
|
>>> m.transpose() |
|
Matrix([ |
|
[ 1, 3], |
|
[2 + I, 4]]) |
|
>>> m.T == m.transpose() |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
conjugate: By-element conjugation |
|
|
|
""" |
|
return self._eval_transpose() |
|
|
|
@property |
|
def T(self): |
|
'''Matrix transposition''' |
|
return self.transpose() |
|
|
|
@property |
|
def C(self): |
|
'''By-element conjugation''' |
|
return self.conjugate() |
|
|
|
def n(self, *args, **kwargs): |
|
"""Apply evalf() to each element of self.""" |
|
return self.evalf(*args, **kwargs) |
|
|
|
def xreplace(self, rule): |
|
"""Return a new matrix with xreplace applied to each entry. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import SparseMatrix, Matrix |
|
>>> SparseMatrix(1, 1, [x]) |
|
Matrix([[x]]) |
|
>>> _.xreplace({x: y}) |
|
Matrix([[y]]) |
|
>>> Matrix(_).xreplace({y: x}) |
|
Matrix([[x]]) |
|
""" |
|
return self.applyfunc(lambda x: x.xreplace(rule)) |
|
|
|
def _eval_simplify(self, **kwargs): |
|
|
|
|
|
return self.applyfunc(lambda x: x.simplify(**kwargs)) |
|
|
|
def _eval_trigsimp(self, **opts): |
|
from sympy.simplify.trigsimp import trigsimp |
|
return self.applyfunc(lambda x: trigsimp(x, **opts)) |
|
|
|
def upper_triangular(self, k=0): |
|
"""Return the elements on and above the kth diagonal of a matrix. |
|
If k is not specified then simply returns upper-triangular portion |
|
of a matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ones |
|
>>> A = ones(4) |
|
>>> A.upper_triangular() |
|
Matrix([ |
|
[1, 1, 1, 1], |
|
[0, 1, 1, 1], |
|
[0, 0, 1, 1], |
|
[0, 0, 0, 1]]) |
|
|
|
>>> A.upper_triangular(2) |
|
Matrix([ |
|
[0, 0, 1, 1], |
|
[0, 0, 0, 1], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0]]) |
|
|
|
>>> A.upper_triangular(-1) |
|
Matrix([ |
|
[1, 1, 1, 1], |
|
[1, 1, 1, 1], |
|
[0, 1, 1, 1], |
|
[0, 0, 1, 1]]) |
|
|
|
""" |
|
|
|
def entry(i, j): |
|
return self[i, j] if i + k <= j else self.zero |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def lower_triangular(self, k=0): |
|
"""Return the elements on and below the kth diagonal of a matrix. |
|
If k is not specified then simply returns lower-triangular portion |
|
of a matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ones |
|
>>> A = ones(4) |
|
>>> A.lower_triangular() |
|
Matrix([ |
|
[1, 0, 0, 0], |
|
[1, 1, 0, 0], |
|
[1, 1, 1, 0], |
|
[1, 1, 1, 1]]) |
|
|
|
>>> A.lower_triangular(-2) |
|
Matrix([ |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[1, 0, 0, 0], |
|
[1, 1, 0, 0]]) |
|
|
|
>>> A.lower_triangular(1) |
|
Matrix([ |
|
[1, 1, 0, 0], |
|
[1, 1, 1, 0], |
|
[1, 1, 1, 1], |
|
[1, 1, 1, 1]]) |
|
|
|
""" |
|
|
|
def entry(i, j): |
|
return self[i, j] if i + k >= j else self.zero |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_Abs(self): |
|
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j])) |
|
|
|
def _eval_add(self, other): |
|
return self._new(self.rows, self.cols, |
|
lambda i, j: self[i, j] + other[i, j]) |
|
|
|
def _eval_matrix_mul(self, other): |
|
def entry(i, j): |
|
vec = [self[i,k]*other[k,j] for k in range(self.cols)] |
|
try: |
|
return Add(*vec) |
|
except (TypeError, SympifyError): |
|
|
|
|
|
|
|
return reduce(lambda a, b: a + b, vec) |
|
|
|
return self._new(self.rows, other.cols, entry) |
|
|
|
def _eval_matrix_mul_elementwise(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j]) |
|
|
|
def _eval_matrix_rmul(self, other): |
|
def entry(i, j): |
|
return sum(other[i,k]*self[k,j] for k in range(other.cols)) |
|
return self._new(other.rows, self.cols, entry) |
|
|
|
def _eval_pow_by_recursion(self, num): |
|
if num == 1: |
|
return self |
|
|
|
if num % 2 == 1: |
|
a, b = self, self._eval_pow_by_recursion(num - 1) |
|
else: |
|
a = b = self._eval_pow_by_recursion(num // 2) |
|
|
|
return a.multiply(b) |
|
|
|
def _eval_pow_by_cayley(self, exp): |
|
from sympy.discrete.recurrences import linrec_coeffs |
|
row = self.shape[0] |
|
p = self.charpoly() |
|
|
|
coeffs = (-p).all_coeffs()[1:] |
|
coeffs = linrec_coeffs(coeffs, exp) |
|
new_mat = self.eye(row) |
|
ans = self.zeros(row) |
|
|
|
for i in range(row): |
|
ans += coeffs[i]*new_mat |
|
new_mat *= self |
|
|
|
return ans |
|
|
|
def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None): |
|
if prevsimp is None: |
|
prevsimp = [True]*len(self) |
|
|
|
if num == 1: |
|
return self |
|
|
|
if num % 2 == 1: |
|
a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1, |
|
prevsimp=prevsimp) |
|
else: |
|
a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2, |
|
prevsimp=prevsimp) |
|
|
|
m = a.multiply(b, dotprodsimp=False) |
|
lenm = len(m) |
|
elems = [None]*lenm |
|
|
|
for i in range(lenm): |
|
if prevsimp[i]: |
|
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True) |
|
else: |
|
elems[i] = m[i] |
|
|
|
return m._new(m.rows, m.cols, elems) |
|
|
|
def _eval_scalar_mul(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other) |
|
|
|
def _eval_scalar_rmul(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j]) |
|
|
|
def _eval_Mod(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other)) |
|
|
|
|
|
def __abs__(self): |
|
"""Returns a new matrix with entry-wise absolute values.""" |
|
return self._eval_Abs() |
|
|
|
@call_highest_priority('__radd__') |
|
def __add__(self, other): |
|
"""Return self + other, raising ShapeError if shapes do not match.""" |
|
|
|
other, T = _coerce_operand(self, other) |
|
|
|
if T != "is_matrix": |
|
return NotImplemented |
|
|
|
if self.shape != other.shape: |
|
raise ShapeError(f"Matrix size mismatch: {self.shape} + {other.shape}.") |
|
|
|
|
|
a, b = self, other |
|
if a.__class__ != classof(a, b): |
|
b, a = a, b |
|
|
|
return a._eval_add(b) |
|
|
|
@call_highest_priority('__rtruediv__') |
|
def __truediv__(self, other): |
|
return self * (self.one / other) |
|
|
|
@call_highest_priority('__rmatmul__') |
|
def __matmul__(self, other): |
|
self, other, T = _unify_with_other(self, other) |
|
|
|
if T != "is_matrix": |
|
return NotImplemented |
|
|
|
return self.__mul__(other) |
|
|
|
def __mod__(self, other): |
|
return self.applyfunc(lambda x: x % other) |
|
|
|
@call_highest_priority('__rmul__') |
|
def __mul__(self, other): |
|
"""Return self*other where other is either a scalar or a matrix |
|
of compatible dimensions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[1, 2, 3], [4, 5, 6]]) |
|
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) |
|
True |
|
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
>>> A*B |
|
Matrix([ |
|
[30, 36, 42], |
|
[66, 81, 96]]) |
|
>>> B*A |
|
Traceback (most recent call last): |
|
... |
|
ShapeError: Matrices size mismatch. |
|
>>> |
|
|
|
See Also |
|
======== |
|
|
|
matrix_multiply_elementwise |
|
""" |
|
|
|
return self.multiply(other) |
|
|
|
def multiply(self, other, dotprodsimp=None): |
|
"""Same as __mul__() but with optional simplification. |
|
|
|
Parameters |
|
========== |
|
|
|
dotprodsimp : bool, optional |
|
Specifies whether intermediate term algebraic simplification is used |
|
during matrix multiplications to control expression blowup and thus |
|
speed up calculation. Default is off. |
|
""" |
|
|
|
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) |
|
|
|
self, other, T = _unify_with_other(self, other) |
|
|
|
if T == "possible_scalar": |
|
try: |
|
return self._eval_scalar_mul(other) |
|
except TypeError: |
|
return NotImplemented |
|
|
|
elif T == "is_matrix": |
|
|
|
if self.shape[1] != other.shape[0]: |
|
raise ShapeError(f"Matrix size mismatch: {self.shape} * {other.shape}.") |
|
|
|
m = self._eval_matrix_mul(other) |
|
|
|
if isimpbool: |
|
m = m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) |
|
|
|
return m |
|
|
|
else: |
|
return NotImplemented |
|
|
|
def multiply_elementwise(self, other): |
|
"""Return the Hadamard product (elementwise product) of A and B |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[0, 1, 2], [3, 4, 5]]) |
|
>>> B = Matrix([[1, 10, 100], [100, 10, 1]]) |
|
>>> A.multiply_elementwise(B) |
|
Matrix([ |
|
[ 0, 10, 200], |
|
[300, 40, 5]]) |
|
|
|
See Also |
|
======== |
|
|
|
sympy.matrices.matrixbase.MatrixBase.cross |
|
sympy.matrices.matrixbase.MatrixBase.dot |
|
multiply |
|
""" |
|
if self.shape != other.shape: |
|
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape)) |
|
|
|
return self._eval_matrix_mul_elementwise(other) |
|
|
|
def __neg__(self): |
|
return self._eval_scalar_mul(-1) |
|
|
|
@call_highest_priority('__rpow__') |
|
def __pow__(self, exp): |
|
"""Return self**exp a scalar or symbol.""" |
|
|
|
return self.pow(exp) |
|
|
|
|
|
def pow(self, exp, method=None): |
|
r"""Return self**exp a scalar or symbol. |
|
|
|
Parameters |
|
========== |
|
|
|
method : multiply, mulsimp, jordan, cayley |
|
If multiply then it returns exponentiation using recursion. |
|
If jordan then Jordan form exponentiation will be used. |
|
If cayley then the exponentiation is done using Cayley-Hamilton |
|
theorem. |
|
If mulsimp then the exponentiation is done using recursion |
|
with dotprodsimp. This specifies whether intermediate term |
|
algebraic simplification is used during naive matrix power to |
|
control expression blowup and thus speed up calculation. |
|
If None, then it heuristically decides which method to use. |
|
|
|
""" |
|
|
|
if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']: |
|
raise TypeError('No such method') |
|
if self.rows != self.cols: |
|
raise NonSquareMatrixError() |
|
a = self |
|
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None) |
|
exp = sympify(exp) |
|
|
|
if exp.is_zero: |
|
return a._new(a.rows, a.cols, lambda i, j: int(i == j)) |
|
if exp == 1: |
|
return a |
|
|
|
diagonal = getattr(a, 'is_diagonal', None) |
|
if diagonal is not None and diagonal(): |
|
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0) |
|
|
|
if exp.is_Number and exp % 1 == 0: |
|
if a.rows == 1: |
|
return a._new([[a[0]**exp]]) |
|
if exp < 0: |
|
exp = -exp |
|
a = a.inv() |
|
|
|
|
|
|
|
if method == 'jordan': |
|
try: |
|
return jordan_pow(exp) |
|
except MatrixError: |
|
if method == 'jordan': |
|
raise |
|
|
|
elif method == 'cayley': |
|
if not exp.is_Number or exp % 1 != 0: |
|
raise ValueError("cayley method is only valid for integer powers") |
|
return a._eval_pow_by_cayley(exp) |
|
|
|
elif method == "mulsimp": |
|
if not exp.is_Number or exp % 1 != 0: |
|
raise ValueError("mulsimp method is only valid for integer powers") |
|
return a._eval_pow_by_recursion_dotprodsimp(exp) |
|
|
|
elif method == "multiply": |
|
if not exp.is_Number or exp % 1 != 0: |
|
raise ValueError("multiply method is only valid for integer powers") |
|
return a._eval_pow_by_recursion(exp) |
|
|
|
elif method is None and exp.is_Number and exp % 1 == 0: |
|
if exp.is_Float: |
|
exp = Integer(exp) |
|
|
|
if a.rows == 2 and exp > 100000: |
|
return jordan_pow(exp) |
|
elif _get_intermediate_simp_bool(True, None): |
|
return a._eval_pow_by_recursion_dotprodsimp(exp) |
|
elif exp > 10000: |
|
return a._eval_pow_by_cayley(exp) |
|
else: |
|
return a._eval_pow_by_recursion(exp) |
|
|
|
if jordan_pow: |
|
try: |
|
return jordan_pow(exp) |
|
except NonInvertibleMatrixError: |
|
|
|
|
|
|
|
|
|
if exp.is_integer is False or exp.is_nonnegative is False: |
|
raise |
|
|
|
from sympy.matrices.expressions import MatPow |
|
return MatPow(a, exp) |
|
|
|
@call_highest_priority('__add__') |
|
def __radd__(self, other): |
|
return self.__add__(other) |
|
|
|
@call_highest_priority('__matmul__') |
|
def __rmatmul__(self, other): |
|
self, other, T = _unify_with_other(self, other) |
|
|
|
if T != "is_matrix": |
|
return NotImplemented |
|
|
|
return self.__rmul__(other) |
|
|
|
@call_highest_priority('__mul__') |
|
def __rmul__(self, other): |
|
return self.rmultiply(other) |
|
|
|
def rmultiply(self, other, dotprodsimp=None): |
|
"""Same as __rmul__() but with optional simplification. |
|
|
|
Parameters |
|
========== |
|
|
|
dotprodsimp : bool, optional |
|
Specifies whether intermediate term algebraic simplification is used |
|
during matrix multiplications to control expression blowup and thus |
|
speed up calculation. Default is off. |
|
""" |
|
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) |
|
self, other, T = _unify_with_other(self, other) |
|
|
|
if T == "possible_scalar": |
|
try: |
|
return self._eval_scalar_rmul(other) |
|
except TypeError: |
|
return NotImplemented |
|
|
|
elif T == "is_matrix": |
|
if self.shape[0] != other.shape[1]: |
|
raise ShapeError("Matrix size mismatch.") |
|
|
|
m = self._eval_matrix_rmul(other) |
|
|
|
if isimpbool: |
|
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) |
|
|
|
return m |
|
|
|
else: |
|
return NotImplemented |
|
|
|
@call_highest_priority('__sub__') |
|
def __rsub__(self, a): |
|
return (-self) + a |
|
|
|
@call_highest_priority('__rsub__') |
|
def __sub__(self, a): |
|
return self + (-a) |
|
|
|
def _eval_det_bareiss(self, iszerofunc=_is_zero_after_expand_mul): |
|
return _det_bareiss(self, iszerofunc=iszerofunc) |
|
|
|
def _eval_det_berkowitz(self): |
|
return _det_berkowitz(self) |
|
|
|
def _eval_det_lu(self, iszerofunc=_iszero, simpfunc=None): |
|
return _det_LU(self, iszerofunc=iszerofunc, simpfunc=simpfunc) |
|
|
|
def _eval_det_bird(self): |
|
return _det_bird(self) |
|
|
|
def _eval_det_laplace(self): |
|
return _det_laplace(self) |
|
|
|
def _eval_determinant(self): |
|
return _det(self) |
|
|
|
def adjugate(self, method="berkowitz"): |
|
return _adjugate(self, method=method) |
|
|
|
def charpoly(self, x='lambda', simplify=_utilities_simplify): |
|
return _charpoly(self, x=x, simplify=simplify) |
|
|
|
def cofactor(self, i, j, method="berkowitz"): |
|
return _cofactor(self, i, j, method=method) |
|
|
|
def cofactor_matrix(self, method="berkowitz"): |
|
return _cofactor_matrix(self, method=method) |
|
|
|
def det(self, method="bareiss", iszerofunc=None): |
|
return _det(self, method=method, iszerofunc=iszerofunc) |
|
|
|
def per(self): |
|
return _per(self) |
|
|
|
def minor(self, i, j, method="berkowitz"): |
|
return _minor(self, i, j, method=method) |
|
|
|
def minor_submatrix(self, i, j): |
|
return _minor_submatrix(self, i, j) |
|
|
|
_find_reasonable_pivot.__doc__ = _find_reasonable_pivot.__doc__ |
|
_find_reasonable_pivot_naive.__doc__ = _find_reasonable_pivot_naive.__doc__ |
|
_eval_det_bareiss.__doc__ = _det_bareiss.__doc__ |
|
_eval_det_berkowitz.__doc__ = _det_berkowitz.__doc__ |
|
_eval_det_bird.__doc__ = _det_bird.__doc__ |
|
_eval_det_laplace.__doc__ = _det_laplace.__doc__ |
|
_eval_det_lu.__doc__ = _det_LU.__doc__ |
|
_eval_determinant.__doc__ = _det.__doc__ |
|
adjugate.__doc__ = _adjugate.__doc__ |
|
charpoly.__doc__ = _charpoly.__doc__ |
|
cofactor.__doc__ = _cofactor.__doc__ |
|
cofactor_matrix.__doc__ = _cofactor_matrix.__doc__ |
|
det.__doc__ = _det.__doc__ |
|
per.__doc__ = _per.__doc__ |
|
minor.__doc__ = _minor.__doc__ |
|
minor_submatrix.__doc__ = _minor_submatrix.__doc__ |
|
|
|
def echelon_form(self, iszerofunc=_iszero, simplify=False, with_pivots=False): |
|
return _echelon_form(self, iszerofunc=iszerofunc, simplify=simplify, |
|
with_pivots=with_pivots) |
|
|
|
@property |
|
def is_echelon(self): |
|
return _is_echelon(self) |
|
|
|
def rank(self, iszerofunc=_iszero, simplify=False): |
|
return _rank(self, iszerofunc=iszerofunc, simplify=simplify) |
|
|
|
def rref_rhs(self, rhs): |
|
"""Return reduced row-echelon form of matrix, matrix showing |
|
rhs after reduction steps. ``rhs`` must have the same number |
|
of rows as ``self``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, symbols |
|
>>> r1, r2 = symbols('r1 r2') |
|
>>> Matrix([[1, 1], [2, 1]]).rref_rhs(Matrix([r1, r2])) |
|
(Matrix([ |
|
[1, 0], |
|
[0, 1]]), Matrix([ |
|
[ -r1 + r2], |
|
[2*r1 - r2]])) |
|
""" |
|
r, _ = _rref(self.hstack(self, self.eye(self.rows), rhs)) |
|
return r[:, :self.cols], r[:, -rhs.cols:] |
|
|
|
def rref(self, iszerofunc=_iszero, simplify=False, pivots=True, |
|
normalize_last=True): |
|
return _rref(self, iszerofunc=iszerofunc, simplify=simplify, |
|
pivots=pivots, normalize_last=normalize_last) |
|
|
|
echelon_form.__doc__ = _echelon_form.__doc__ |
|
is_echelon.__doc__ = _is_echelon.__doc__ |
|
rank.__doc__ = _rank.__doc__ |
|
rref.__doc__ = _rref.__doc__ |
|
|
|
def _normalize_op_args(self, op, col, k, col1, col2, error_str="col"): |
|
"""Validate the arguments for a row/column operation. ``error_str`` |
|
can be one of "row" or "col" depending on the arguments being parsed.""" |
|
if op not in ["n->kn", "n<->m", "n->n+km"]: |
|
raise ValueError("Unknown {} operation '{}'. Valid col operations " |
|
"are 'n->kn', 'n<->m', 'n->n+km'".format(error_str, op)) |
|
|
|
|
|
self_cols = self.cols if error_str == 'col' else self.rows |
|
|
|
|
|
if op == "n->kn": |
|
col = col if col is not None else col1 |
|
if col is None or k is None: |
|
raise ValueError("For a {0} operation 'n->kn' you must provide the " |
|
"kwargs `{0}` and `k`".format(error_str)) |
|
if not 0 <= col < self_cols: |
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col)) |
|
|
|
elif op == "n<->m": |
|
|
|
|
|
|
|
cols = {col, k, col1, col2}.difference([None]) |
|
if len(cols) > 2: |
|
|
|
cols = {col, col1, col2}.difference([None]) |
|
if len(cols) != 2: |
|
raise ValueError("For a {0} operation 'n<->m' you must provide the " |
|
"kwargs `{0}1` and `{0}2`".format(error_str)) |
|
col1, col2 = cols |
|
if not 0 <= col1 < self_cols: |
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col1)) |
|
if not 0 <= col2 < self_cols: |
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2)) |
|
|
|
elif op == "n->n+km": |
|
col = col1 if col is None else col |
|
col2 = col1 if col2 is None else col2 |
|
if col is None or col2 is None or k is None: |
|
raise ValueError("For a {0} operation 'n->n+km' you must provide the " |
|
"kwargs `{0}`, `k`, and `{0}2`".format(error_str)) |
|
if col == col2: |
|
raise ValueError("For a {0} operation 'n->n+km' `{0}` and `{0}2` must " |
|
"be different.".format(error_str)) |
|
if not 0 <= col < self_cols: |
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col)) |
|
if not 0 <= col2 < self_cols: |
|
raise ValueError("This matrix does not have a {} '{}'".format(error_str, col2)) |
|
|
|
else: |
|
raise ValueError('invalid operation %s' % repr(op)) |
|
|
|
return op, col, k, col1, col2 |
|
|
|
def _eval_col_op_multiply_col_by_const(self, col, k): |
|
def entry(i, j): |
|
if j == col: |
|
return k * self[i, j] |
|
return self[i, j] |
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_col_op_swap(self, col1, col2): |
|
def entry(i, j): |
|
if j == col1: |
|
return self[i, col2] |
|
elif j == col2: |
|
return self[i, col1] |
|
return self[i, j] |
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_col_op_add_multiple_to_other_col(self, col, k, col2): |
|
def entry(i, j): |
|
if j == col: |
|
return self[i, j] + k * self[i, col2] |
|
return self[i, j] |
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_row_op_swap(self, row1, row2): |
|
def entry(i, j): |
|
if i == row1: |
|
return self[row2, j] |
|
elif i == row2: |
|
return self[row1, j] |
|
return self[i, j] |
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_row_op_multiply_row_by_const(self, row, k): |
|
def entry(i, j): |
|
if i == row: |
|
return k * self[i, j] |
|
return self[i, j] |
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_row_op_add_multiple_to_other_row(self, row, k, row2): |
|
def entry(i, j): |
|
if i == row: |
|
return self[i, j] + k * self[row2, j] |
|
return self[i, j] |
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def elementary_col_op(self, op="n->kn", col=None, k=None, col1=None, col2=None): |
|
"""Performs the elementary column operation `op`. |
|
|
|
`op` may be one of |
|
|
|
* ``"n->kn"`` (column n goes to k*n) |
|
* ``"n<->m"`` (swap column n and column m) |
|
* ``"n->n+km"`` (column n goes to column n + k*column m) |
|
|
|
Parameters |
|
========== |
|
|
|
op : string; the elementary row operation |
|
col : the column to apply the column operation |
|
k : the multiple to apply in the column operation |
|
col1 : one column of a column swap |
|
col2 : second column of a column swap or column "m" in the column operation |
|
"n->n+km" |
|
""" |
|
|
|
op, col, k, col1, col2 = self._normalize_op_args(op, col, k, col1, col2, "col") |
|
|
|
|
|
if op == "n->kn": |
|
return self._eval_col_op_multiply_col_by_const(col, k) |
|
if op == "n<->m": |
|
return self._eval_col_op_swap(col1, col2) |
|
if op == "n->n+km": |
|
return self._eval_col_op_add_multiple_to_other_col(col, k, col2) |
|
|
|
def elementary_row_op(self, op="n->kn", row=None, k=None, row1=None, row2=None): |
|
"""Performs the elementary row operation `op`. |
|
|
|
`op` may be one of |
|
|
|
* ``"n->kn"`` (row n goes to k*n) |
|
* ``"n<->m"`` (swap row n and row m) |
|
* ``"n->n+km"`` (row n goes to row n + k*row m) |
|
|
|
Parameters |
|
========== |
|
|
|
op : string; the elementary row operation |
|
row : the row to apply the row operation |
|
k : the multiple to apply in the row operation |
|
row1 : one row of a row swap |
|
row2 : second row of a row swap or row "m" in the row operation |
|
"n->n+km" |
|
""" |
|
|
|
op, row, k, row1, row2 = self._normalize_op_args(op, row, k, row1, row2, "row") |
|
|
|
|
|
if op == "n->kn": |
|
return self._eval_row_op_multiply_row_by_const(row, k) |
|
if op == "n<->m": |
|
return self._eval_row_op_swap(row1, row2) |
|
if op == "n->n+km": |
|
return self._eval_row_op_add_multiple_to_other_row(row, k, row2) |
|
|
|
def columnspace(self, simplify=False): |
|
return _columnspace(self, simplify=simplify) |
|
|
|
def nullspace(self, simplify=False, iszerofunc=_iszero): |
|
return _nullspace(self, simplify=simplify, iszerofunc=iszerofunc) |
|
|
|
def rowspace(self, simplify=False): |
|
return _rowspace(self, simplify=simplify) |
|
|
|
|
|
|
|
|
|
def orthogonalize(cls, *vecs, **kwargs): |
|
return _orthogonalize(cls, *vecs, **kwargs) |
|
|
|
columnspace.__doc__ = _columnspace.__doc__ |
|
nullspace.__doc__ = _nullspace.__doc__ |
|
rowspace.__doc__ = _rowspace.__doc__ |
|
orthogonalize.__doc__ = _orthogonalize.__doc__ |
|
|
|
orthogonalize = classmethod(orthogonalize) |
|
|
|
def eigenvals(self, error_when_incomplete=True, **flags): |
|
return _eigenvals(self, error_when_incomplete=error_when_incomplete, **flags) |
|
|
|
def eigenvects(self, error_when_incomplete=True, iszerofunc=_iszero, **flags): |
|
return _eigenvects(self, error_when_incomplete=error_when_incomplete, |
|
iszerofunc=iszerofunc, **flags) |
|
|
|
def is_diagonalizable(self, reals_only=False, **kwargs): |
|
return _is_diagonalizable(self, reals_only=reals_only, **kwargs) |
|
|
|
def diagonalize(self, reals_only=False, sort=False, normalize=False): |
|
return _diagonalize(self, reals_only=reals_only, sort=sort, |
|
normalize=normalize) |
|
|
|
def bidiagonalize(self, upper=True): |
|
return _bidiagonalize(self, upper=upper) |
|
|
|
def bidiagonal_decomposition(self, upper=True): |
|
return _bidiagonal_decomposition(self, upper=upper) |
|
|
|
@property |
|
def is_positive_definite(self): |
|
return _is_positive_definite(self) |
|
|
|
@property |
|
def is_positive_semidefinite(self): |
|
return _is_positive_semidefinite(self) |
|
|
|
@property |
|
def is_negative_definite(self): |
|
return _is_negative_definite(self) |
|
|
|
@property |
|
def is_negative_semidefinite(self): |
|
return _is_negative_semidefinite(self) |
|
|
|
@property |
|
def is_indefinite(self): |
|
return _is_indefinite(self) |
|
|
|
def jordan_form(self, calc_transform=True, **kwargs): |
|
return _jordan_form(self, calc_transform=calc_transform, **kwargs) |
|
|
|
def left_eigenvects(self, **flags): |
|
return _left_eigenvects(self, **flags) |
|
|
|
def singular_values(self): |
|
return _singular_values(self) |
|
|
|
eigenvals.__doc__ = _eigenvals.__doc__ |
|
eigenvects.__doc__ = _eigenvects.__doc__ |
|
is_diagonalizable.__doc__ = _is_diagonalizable.__doc__ |
|
diagonalize.__doc__ = _diagonalize.__doc__ |
|
is_positive_definite.__doc__ = _is_positive_definite.__doc__ |
|
is_positive_semidefinite.__doc__ = _is_positive_semidefinite.__doc__ |
|
is_negative_definite.__doc__ = _is_negative_definite.__doc__ |
|
is_negative_semidefinite.__doc__ = _is_negative_semidefinite.__doc__ |
|
is_indefinite.__doc__ = _is_indefinite.__doc__ |
|
jordan_form.__doc__ = _jordan_form.__doc__ |
|
left_eigenvects.__doc__ = _left_eigenvects.__doc__ |
|
singular_values.__doc__ = _singular_values.__doc__ |
|
bidiagonalize.__doc__ = _bidiagonalize.__doc__ |
|
bidiagonal_decomposition.__doc__ = _bidiagonal_decomposition.__doc__ |
|
|
|
def diff(self, *args, evaluate=True, **kwargs): |
|
"""Calculate the derivative of each element in the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x, y |
|
>>> M = Matrix([[x, y], [1, 0]]) |
|
>>> M.diff(x) |
|
Matrix([ |
|
[1, 0], |
|
[0, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
integrate |
|
limit |
|
""" |
|
|
|
from sympy.tensor.array.array_derivatives import ArrayDerivative |
|
deriv = ArrayDerivative(self, *args, evaluate=evaluate) |
|
|
|
if not isinstance(self, Basic) and evaluate: |
|
return deriv.as_mutable() |
|
return deriv |
|
|
|
def _eval_derivative(self, arg): |
|
return self.applyfunc(lambda x: x.diff(arg)) |
|
|
|
def integrate(self, *args, **kwargs): |
|
"""Integrate each element of the matrix. ``args`` will |
|
be passed to the ``integrate`` function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x, y |
|
>>> M = Matrix([[x, y], [1, 0]]) |
|
>>> M.integrate((x, )) |
|
Matrix([ |
|
[x**2/2, x*y], |
|
[ x, 0]]) |
|
>>> M.integrate((x, 0, 2)) |
|
Matrix([ |
|
[2, 2*y], |
|
[2, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
limit |
|
diff |
|
""" |
|
return self.applyfunc(lambda x: x.integrate(*args, **kwargs)) |
|
|
|
def jacobian(self, X): |
|
"""Calculates the Jacobian matrix (derivative of a vector-valued function). |
|
|
|
Parameters |
|
========== |
|
|
|
``self`` : vector of expressions representing functions f_i(x_1, ..., x_n). |
|
X : set of x_i's in order, it can be a list or a Matrix |
|
|
|
Both ``self`` and X can be a row or a column matrix in any order |
|
(i.e., jacobian() should always work). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import sin, cos, Matrix |
|
>>> from sympy.abc import rho, phi |
|
>>> X = Matrix([rho*cos(phi), rho*sin(phi), rho**2]) |
|
>>> Y = Matrix([rho, phi]) |
|
>>> X.jacobian(Y) |
|
Matrix([ |
|
[cos(phi), -rho*sin(phi)], |
|
[sin(phi), rho*cos(phi)], |
|
[ 2*rho, 0]]) |
|
>>> X = Matrix([rho*cos(phi), rho*sin(phi)]) |
|
>>> X.jacobian(Y) |
|
Matrix([ |
|
[cos(phi), -rho*sin(phi)], |
|
[sin(phi), rho*cos(phi)]]) |
|
|
|
See Also |
|
======== |
|
|
|
hessian |
|
wronskian |
|
""" |
|
from sympy.matrices.matrixbase import MatrixBase |
|
if not isinstance(X, MatrixBase): |
|
X = self._new(X) |
|
|
|
|
|
if self.shape[0] == 1: |
|
m = self.shape[1] |
|
elif self.shape[1] == 1: |
|
m = self.shape[0] |
|
else: |
|
raise TypeError("``self`` must be a row or a column matrix") |
|
if X.shape[0] == 1: |
|
n = X.shape[1] |
|
elif X.shape[1] == 1: |
|
n = X.shape[0] |
|
else: |
|
raise TypeError("X must be a row or a column matrix") |
|
|
|
|
|
|
|
return self._new(m, n, lambda j, i: self[j].diff(X[i])) |
|
|
|
def limit(self, *args): |
|
"""Calculate the limit of each element in the matrix. |
|
``args`` will be passed to the ``limit`` function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x, y |
|
>>> M = Matrix([[x, y], [1, 0]]) |
|
>>> M.limit(x, 2) |
|
Matrix([ |
|
[2, y], |
|
[1, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
integrate |
|
diff |
|
""" |
|
return self.applyfunc(lambda x: x.limit(*args)) |
|
|
|
def berkowitz_charpoly(self, x=Dummy('lambda'), simplify=_utilities_simplify): |
|
return self.charpoly(x=x) |
|
|
|
def berkowitz_det(self): |
|
"""Computes determinant using Berkowitz method. |
|
|
|
See Also |
|
======== |
|
|
|
det |
|
""" |
|
return self.det(method='berkowitz') |
|
|
|
def berkowitz_eigenvals(self, **flags): |
|
"""Computes eigenvalues of a Matrix using Berkowitz method.""" |
|
return self.eigenvals(**flags) |
|
|
|
def berkowitz_minors(self): |
|
"""Computes principal minors using Berkowitz method.""" |
|
sign, minors = self.one, [] |
|
|
|
for poly in self.berkowitz(): |
|
minors.append(sign * poly[-1]) |
|
sign = -sign |
|
|
|
return tuple(minors) |
|
|
|
def berkowitz(self): |
|
from sympy.matrices import zeros |
|
berk = ((1,),) |
|
if not self: |
|
return berk |
|
|
|
if not self.is_square: |
|
raise NonSquareMatrixError() |
|
|
|
A, N = self, self.rows |
|
transforms = [0] * (N - 1) |
|
|
|
for n in range(N, 1, -1): |
|
T, k = zeros(n + 1, n), n - 1 |
|
|
|
R, C = -A[k, :k], A[:k, k] |
|
A, a = A[:k, :k], -A[k, k] |
|
|
|
items = [C] |
|
|
|
for i in range(0, n - 2): |
|
items.append(A * items[i]) |
|
|
|
for i, B in enumerate(items): |
|
items[i] = (R * B)[0, 0] |
|
|
|
items = [self.one, a] + items |
|
|
|
for i in range(n): |
|
T[i:, i] = items[:n - i + 1] |
|
|
|
transforms[k - 1] = T |
|
|
|
polys = [self._new([self.one, -A[0, 0]])] |
|
|
|
for i, T in enumerate(transforms): |
|
polys.append(T * polys[i]) |
|
|
|
return berk + tuple(map(tuple, polys)) |
|
|
|
def cofactorMatrix(self, method="berkowitz"): |
|
return self.cofactor_matrix(method=method) |
|
|
|
def det_bareis(self): |
|
return _det_bareiss(self) |
|
|
|
def det_LU_decomposition(self): |
|
"""Compute matrix determinant using LU decomposition. |
|
|
|
|
|
Note that this method fails if the LU decomposition itself |
|
fails. In particular, if the matrix has no inverse this method |
|
will fail. |
|
|
|
TODO: Implement algorithm for sparse matrices (SFF), |
|
http://www.eecis.udel.edu/~saunders/papers/sffge/it5.ps. |
|
|
|
See Also |
|
======== |
|
|
|
|
|
det |
|
berkowitz_det |
|
""" |
|
return self.det(method='lu') |
|
|
|
def jordan_cell(self, eigenval, n): |
|
return self.jordan_block(size=n, eigenvalue=eigenval) |
|
|
|
def jordan_cells(self, calc_transformation=True): |
|
P, J = self.jordan_form() |
|
return P, J.get_diag_blocks() |
|
|
|
def minorEntry(self, i, j, method="berkowitz"): |
|
return self.minor(i, j, method=method) |
|
|
|
def minorMatrix(self, i, j): |
|
return self.minor_submatrix(i, j) |
|
|
|
def permuteBkwd(self, perm): |
|
"""Permute the rows of the matrix with the given permutation in reverse.""" |
|
return self.permute_rows(perm, direction='backward') |
|
|
|
def permuteFwd(self, perm): |
|
"""Permute the rows of the matrix with the given permutation.""" |
|
return self.permute_rows(perm, direction='forward') |
|
|
|
@property |
|
def kind(self) -> MatrixKind: |
|
elem_kinds = {e.kind for e in self.flat()} |
|
if len(elem_kinds) == 1: |
|
elemkind, = elem_kinds |
|
else: |
|
elemkind = UndefinedKind |
|
return MatrixKind(elemkind) |
|
|
|
def flat(self): |
|
""" |
|
Returns a flat list of all elements in the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix([[0, 2], [3, 4]]) |
|
>>> m.flat() |
|
[0, 2, 3, 4] |
|
|
|
See Also |
|
======== |
|
|
|
tolist |
|
values |
|
""" |
|
return [self[i, j] for i in range(self.rows) for j in range(self.cols)] |
|
|
|
def __array__(self, dtype=object, copy=None): |
|
if copy is not None and not copy: |
|
raise TypeError("Cannot implement copy=False when converting Matrix to ndarray") |
|
from .dense import matrix2numpy |
|
return matrix2numpy(self, dtype=dtype) |
|
|
|
def __len__(self): |
|
"""Return the number of elements of ``self``. |
|
|
|
Implemented mainly so bool(Matrix()) == False. |
|
""" |
|
return self.rows * self.cols |
|
|
|
def _matrix_pow_by_jordan_blocks(self, num): |
|
from sympy.matrices import diag, MutableMatrix |
|
|
|
def jordan_cell_power(jc, n): |
|
N = jc.shape[0] |
|
l = jc[0,0] |
|
if l.is_zero: |
|
if N == 1 and n.is_nonnegative: |
|
jc[0,0] = l**n |
|
elif not (n.is_integer and n.is_nonnegative): |
|
raise NonInvertibleMatrixError("Non-invertible matrix can only be raised to a nonnegative integer") |
|
else: |
|
for i in range(N): |
|
jc[0,i] = KroneckerDelta(i, n) |
|
else: |
|
for i in range(N): |
|
bn = binomial(n, i) |
|
if isinstance(bn, binomial): |
|
bn = bn._eval_expand_func() |
|
jc[0,i] = l**(n-i)*bn |
|
for i in range(N): |
|
for j in range(1, N-i): |
|
jc[j,i+j] = jc [j-1,i+j-1] |
|
|
|
P, J = self.jordan_form() |
|
jordan_cells = J.get_diag_blocks() |
|
|
|
jordan_cells = [MutableMatrix(j) for j in jordan_cells] |
|
for j in jordan_cells: |
|
jordan_cell_power(j, num) |
|
return self._new(P.multiply(diag(*jordan_cells)) |
|
.multiply(P.inv())) |
|
|
|
def __str__(self): |
|
if S.Zero in self.shape: |
|
return 'Matrix(%s, %s, [])' % (self.rows, self.cols) |
|
return "Matrix(%s)" % str(self.tolist()) |
|
|
|
def _format_str(self, printer=None): |
|
if not printer: |
|
printer = StrPrinter() |
|
|
|
if S.Zero in self.shape: |
|
return 'Matrix(%s, %s, [])' % (self.rows, self.cols) |
|
if self.rows == 1: |
|
return "Matrix([%s])" % self.table(printer, rowsep=',\n') |
|
return "Matrix([\n%s])" % self.table(printer, rowsep=',\n') |
|
|
|
@classmethod |
|
def irregular(cls, ntop, *matrices, **kwargs): |
|
"""Return a matrix filled by the given matrices which |
|
are listed in order of appearance from left to right, top to |
|
bottom as they first appear in the matrix. They must fill the |
|
matrix completely. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ones, Matrix |
|
>>> Matrix.irregular(3, ones(2,1), ones(3,3)*2, ones(2,2)*3, |
|
... ones(1,1)*4, ones(2,2)*5, ones(1,2)*6, ones(1,2)*7) |
|
Matrix([ |
|
[1, 2, 2, 2, 3, 3], |
|
[1, 2, 2, 2, 3, 3], |
|
[4, 2, 2, 2, 5, 5], |
|
[6, 6, 7, 7, 5, 5]]) |
|
""" |
|
ntop = as_int(ntop) |
|
|
|
b = [i.as_explicit() if hasattr(i, 'as_explicit') else i |
|
for i in matrices] |
|
q = list(range(len(b))) |
|
dat = [i.rows for i in b] |
|
active = [q.pop(0) for _ in range(ntop)] |
|
cols = sum(b[i].cols for i in active) |
|
rows = [] |
|
while any(dat): |
|
r = [] |
|
for a, j in enumerate(active): |
|
r.extend(b[j][-dat[j], :]) |
|
dat[j] -= 1 |
|
if dat[j] == 0 and q: |
|
active[a] = q.pop(0) |
|
if len(r) != cols: |
|
raise ValueError(filldedent(''' |
|
Matrices provided do not appear to fill |
|
the space completely.''')) |
|
rows.append(r) |
|
return cls._new(rows) |
|
|
|
@classmethod |
|
def _handle_ndarray(cls, arg): |
|
|
|
|
|
|
|
arr = arg.__array__() |
|
if len(arr.shape) == 2: |
|
rows, cols = arr.shape[0], arr.shape[1] |
|
flat_list = [cls._sympify(i) for i in arr.ravel()] |
|
return rows, cols, flat_list |
|
elif len(arr.shape) == 1: |
|
flat_list = [cls._sympify(i) for i in arr] |
|
return arr.shape[0], 1, flat_list |
|
else: |
|
raise NotImplementedError( |
|
"SymPy supports just 1D and 2D matrices") |
|
|
|
@classmethod |
|
def _handle_creation_inputs(cls, *args, **kwargs): |
|
"""Return the number of rows, cols and flat matrix elements. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, I |
|
|
|
Matrix can be constructed as follows: |
|
|
|
* from a nested list of iterables |
|
|
|
>>> Matrix( ((1, 2+I), (3, 4)) ) |
|
Matrix([ |
|
[1, 2 + I], |
|
[3, 4]]) |
|
|
|
* from un-nested iterable (interpreted as a column) |
|
|
|
>>> Matrix( [1, 2] ) |
|
Matrix([ |
|
[1], |
|
[2]]) |
|
|
|
* from un-nested iterable with dimensions |
|
|
|
>>> Matrix(1, 2, [1, 2] ) |
|
Matrix([[1, 2]]) |
|
|
|
* from no arguments (a 0 x 0 matrix) |
|
|
|
>>> Matrix() |
|
Matrix(0, 0, []) |
|
|
|
* from a rule |
|
|
|
>>> Matrix(2, 2, lambda i, j: i/(j + 1) ) |
|
Matrix([ |
|
[0, 0], |
|
[1, 1/2]]) |
|
|
|
See Also |
|
======== |
|
irregular - filling a matrix with irregular blocks |
|
""" |
|
from sympy.matrices import SparseMatrix |
|
from sympy.matrices.expressions.matexpr import MatrixSymbol |
|
from sympy.matrices.expressions.blockmatrix import BlockMatrix |
|
|
|
flat_list = None |
|
|
|
if len(args) == 1: |
|
|
|
if isinstance(args[0], SparseMatrix): |
|
return args[0].rows, args[0].cols, flatten(args[0].tolist()) |
|
|
|
|
|
elif isinstance(args[0], MatrixBase): |
|
return args[0].rows, args[0].cols, args[0].flat() |
|
|
|
|
|
elif isinstance(args[0], Basic) and args[0].is_Matrix: |
|
return args[0].rows, args[0].cols, args[0].as_explicit().flat() |
|
|
|
elif isinstance(args[0], mp.matrix): |
|
M = args[0] |
|
flat_list = [cls._sympify(x) for x in M] |
|
return M.rows, M.cols, flat_list |
|
|
|
|
|
elif hasattr(args[0], "__array__"): |
|
return cls._handle_ndarray(args[0]) |
|
|
|
|
|
elif is_sequence(args[0]) \ |
|
and not isinstance(args[0], DeferredVector): |
|
dat = list(args[0]) |
|
ismat = lambda i: isinstance(i, MatrixBase) and ( |
|
evaluate or isinstance(i, (BlockMatrix, MatrixSymbol))) |
|
raw = lambda i: is_sequence(i) and not ismat(i) |
|
evaluate = kwargs.get('evaluate', True) |
|
|
|
|
|
if evaluate: |
|
|
|
def make_explicit(x): |
|
"""make Block and Symbol explicit""" |
|
if isinstance(x, BlockMatrix): |
|
return x.as_explicit() |
|
elif isinstance(x, MatrixSymbol) and all(_.is_Integer for _ in x.shape): |
|
return x.as_explicit() |
|
else: |
|
return x |
|
|
|
def make_explicit_row(row): |
|
|
|
if isinstance(row, (list, tuple)): |
|
return [make_explicit(x) for x in row] |
|
else: |
|
return make_explicit(row) |
|
|
|
if isinstance(dat, (list, tuple)): |
|
dat = [make_explicit_row(row) for row in dat] |
|
|
|
if len(dat) == 0: |
|
rows = cols = 0 |
|
flat_list = [] |
|
elif all(raw(i) for i in dat) and len(dat[0]) == 0: |
|
if not all(len(i) == 0 for i in dat): |
|
raise ValueError('mismatched dimensions') |
|
rows = len(dat) |
|
cols = 0 |
|
flat_list = [] |
|
elif not any(raw(i) or ismat(i) for i in dat): |
|
|
|
flat_list = [cls._sympify(i) for i in dat] |
|
rows = len(flat_list) |
|
cols = 1 if rows else 0 |
|
elif evaluate and all(ismat(i) for i in dat): |
|
|
|
ncol = {i.cols for i in dat if any(i.shape)} |
|
if ncol: |
|
if len(ncol) != 1: |
|
raise ValueError('mismatched dimensions') |
|
flat_list = [_ for i in dat for r in i.tolist() for _ in r] |
|
cols = ncol.pop() |
|
rows = len(flat_list)//cols |
|
else: |
|
rows = cols = 0 |
|
flat_list = [] |
|
elif evaluate and any(ismat(i) for i in dat): |
|
ncol = set() |
|
flat_list = [] |
|
for i in dat: |
|
if ismat(i): |
|
flat_list.extend( |
|
[k for j in i.tolist() for k in j]) |
|
if any(i.shape): |
|
ncol.add(i.cols) |
|
elif raw(i): |
|
if i: |
|
ncol.add(len(i)) |
|
flat_list.extend([cls._sympify(ij) for ij in i]) |
|
else: |
|
ncol.add(1) |
|
flat_list.append(i) |
|
if len(ncol) > 1: |
|
raise ValueError('mismatched dimensions') |
|
cols = ncol.pop() |
|
rows = len(flat_list)//cols |
|
else: |
|
|
|
|
|
|
|
flat_list = [] |
|
ncol = set() |
|
rows = cols = 0 |
|
for row in dat: |
|
if not is_sequence(row) and \ |
|
not getattr(row, 'is_Matrix', False): |
|
raise ValueError('expecting list of lists') |
|
|
|
if hasattr(row, '__array__'): |
|
if 0 in row.shape: |
|
continue |
|
|
|
if evaluate and all(ismat(i) for i in row): |
|
r, c, flatT = cls._handle_creation_inputs( |
|
[i.T for i in row]) |
|
T = reshape(flatT, [c]) |
|
flat = \ |
|
[T[i][j] for j in range(c) for i in range(r)] |
|
r, c = c, r |
|
else: |
|
r = 1 |
|
if getattr(row, 'is_Matrix', False): |
|
c = 1 |
|
flat = [row] |
|
else: |
|
c = len(row) |
|
flat = [cls._sympify(i) for i in row] |
|
ncol.add(c) |
|
if len(ncol) > 1: |
|
raise ValueError('mismatched dimensions') |
|
flat_list.extend(flat) |
|
rows += r |
|
cols = ncol.pop() if ncol else 0 |
|
|
|
elif len(args) == 3: |
|
rows = as_int(args[0]) |
|
cols = as_int(args[1]) |
|
|
|
if rows < 0 or cols < 0: |
|
raise ValueError("Cannot create a {} x {} matrix. " |
|
"Both dimensions must be positive".format(rows, cols)) |
|
|
|
|
|
if len(args) == 3 and isinstance(args[2], Callable): |
|
op = args[2] |
|
flat_list = [] |
|
for i in range(rows): |
|
flat_list.extend( |
|
[cls._sympify(op(cls._sympify(i), cls._sympify(j))) |
|
for j in range(cols)]) |
|
|
|
|
|
elif len(args) == 3 and is_sequence(args[2]): |
|
flat_list = args[2] |
|
if len(flat_list) != rows * cols: |
|
raise ValueError( |
|
'List length should be equal to rows*columns') |
|
flat_list = [cls._sympify(i) for i in flat_list] |
|
|
|
|
|
|
|
elif len(args) == 0: |
|
|
|
rows = cols = 0 |
|
flat_list = [] |
|
|
|
if flat_list is None: |
|
raise TypeError(filldedent(''' |
|
Data type not understood; expecting list of lists |
|
or lists of values.''')) |
|
|
|
return rows, cols, flat_list |
|
|
|
def _setitem(self, key, value): |
|
"""Helper to set value at location given by key. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, I, zeros, ones |
|
>>> m = Matrix(((1, 2+I), (3, 4))) |
|
>>> m |
|
Matrix([ |
|
[1, 2 + I], |
|
[3, 4]]) |
|
>>> m[1, 0] = 9 |
|
>>> m |
|
Matrix([ |
|
[1, 2 + I], |
|
[9, 4]]) |
|
>>> m[1, 0] = [[0, 1]] |
|
|
|
To replace row r you assign to position r*m where m |
|
is the number of columns: |
|
|
|
>>> M = zeros(4) |
|
>>> m = M.cols |
|
>>> M[3*m] = ones(1, m)*2; M |
|
Matrix([ |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[2, 2, 2, 2]]) |
|
|
|
And to replace column c you can assign to position c: |
|
|
|
>>> M[2] = ones(m, 1)*4; M |
|
Matrix([ |
|
[0, 0, 4, 0], |
|
[0, 0, 4, 0], |
|
[0, 0, 4, 0], |
|
[2, 2, 4, 2]]) |
|
""" |
|
from .dense import Matrix |
|
|
|
is_slice = isinstance(key, slice) |
|
i, j = key = self.key2ij(key) |
|
is_mat = isinstance(value, MatrixBase) |
|
if isinstance(i, slice) or isinstance(j, slice): |
|
if is_mat: |
|
self.copyin_matrix(key, value) |
|
return |
|
if not isinstance(value, Expr) and is_sequence(value): |
|
self.copyin_list(key, value) |
|
return |
|
raise ValueError('unexpected value: %s' % value) |
|
else: |
|
if (not is_mat and |
|
not isinstance(value, Basic) and is_sequence(value)): |
|
value = Matrix(value) |
|
is_mat = True |
|
if is_mat: |
|
if is_slice: |
|
key = (slice(*divmod(i, self.cols)), |
|
slice(*divmod(j, self.cols))) |
|
else: |
|
key = (slice(i, i + value.rows), |
|
slice(j, j + value.cols)) |
|
self.copyin_matrix(key, value) |
|
else: |
|
return i, j, self._sympify(value) |
|
return |
|
|
|
def add(self, b): |
|
"""Return self + b.""" |
|
return self + b |
|
|
|
def condition_number(self): |
|
"""Returns the condition number of a matrix. |
|
|
|
This is the maximum singular value divided by the minimum singular value |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, S |
|
>>> A = Matrix([[1, 0, 0], [0, 10, 0], [0, 0, S.One/10]]) |
|
>>> A.condition_number() |
|
100 |
|
|
|
See Also |
|
======== |
|
|
|
singular_values |
|
""" |
|
|
|
if not self: |
|
return self.zero |
|
singularvalues = self.singular_values() |
|
return Max(*singularvalues) / Min(*singularvalues) |
|
|
|
def copy(self): |
|
""" |
|
Returns the copy of a matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix(2, 2, [1, 2, 3, 4]) |
|
>>> A.copy() |
|
Matrix([ |
|
[1, 2], |
|
[3, 4]]) |
|
|
|
""" |
|
return self._new(self.rows, self.cols, self.flat()) |
|
|
|
def cross(self, b): |
|
r""" |
|
Return the cross product of ``self`` and ``b`` relaxing the condition |
|
of compatible dimensions: if each has 3 elements, a matrix of the |
|
same type and shape as ``self`` will be returned. If ``b`` has the same |
|
shape as ``self`` then common identities for the cross product (like |
|
`a \times b = - b \times a`) will hold. |
|
|
|
Parameters |
|
========== |
|
b : 3x1 or 1x3 Matrix |
|
|
|
See Also |
|
======== |
|
|
|
dot |
|
hat |
|
vee |
|
multiply |
|
multiply_elementwise |
|
""" |
|
from sympy.matrices.expressions.matexpr import MatrixExpr |
|
|
|
if not isinstance(b, (MatrixBase, MatrixExpr)): |
|
raise TypeError( |
|
"{} must be a Matrix, not {}.".format(b, type(b))) |
|
|
|
if not (self.rows * self.cols == b.rows * b.cols == 3): |
|
raise ShapeError("Dimensions incorrect for cross product: %s x %s" % |
|
((self.rows, self.cols), (b.rows, b.cols))) |
|
else: |
|
return self._new(self.rows, self.cols, ( |
|
(self[1] * b[2] - self[2] * b[1]), |
|
(self[2] * b[0] - self[0] * b[2]), |
|
(self[0] * b[1] - self[1] * b[0]))) |
|
|
|
def hat(self): |
|
r""" |
|
Return the skew-symmetric matrix representing the cross product, |
|
so that ``self.hat() * b`` is equivalent to ``self.cross(b)``. |
|
|
|
Examples |
|
======== |
|
|
|
Calling ``hat`` creates a skew-symmetric 3x3 Matrix from a 3x1 Matrix: |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([1, 2, 3]) |
|
>>> a.hat() |
|
Matrix([ |
|
[ 0, -3, 2], |
|
[ 3, 0, -1], |
|
[-2, 1, 0]]) |
|
|
|
Multiplying it with another 3x1 Matrix calculates the cross product: |
|
|
|
>>> b = Matrix([3, 2, 1]) |
|
>>> a.hat() * b |
|
Matrix([ |
|
[-4], |
|
[ 8], |
|
[-4]]) |
|
|
|
Which is equivalent to calling the ``cross`` method: |
|
|
|
>>> a.cross(b) |
|
Matrix([ |
|
[-4], |
|
[ 8], |
|
[-4]]) |
|
|
|
See Also |
|
======== |
|
|
|
dot |
|
cross |
|
vee |
|
multiply |
|
multiply_elementwise |
|
""" |
|
|
|
if self.shape != (3, 1): |
|
raise ShapeError("Dimensions incorrect, expected (3, 1), got " + |
|
str(self.shape)) |
|
else: |
|
x, y, z = self |
|
return self._new(3, 3, ( |
|
0, -z, y, |
|
z, 0, -x, |
|
-y, x, 0)) |
|
|
|
def vee(self): |
|
r""" |
|
Return a 3x1 vector from a skew-symmetric matrix representing the cross product, |
|
so that ``self * b`` is equivalent to ``self.vee().cross(b)``. |
|
|
|
Examples |
|
======== |
|
|
|
Calling ``vee`` creates a vector from a skew-symmetric Matrix: |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[0, -3, 2], [3, 0, -1], [-2, 1, 0]]) |
|
>>> a = A.vee() |
|
>>> a |
|
Matrix([ |
|
[1], |
|
[2], |
|
[3]]) |
|
|
|
Calculating the matrix product of the original matrix with a vector |
|
is equivalent to a cross product: |
|
|
|
>>> b = Matrix([3, 2, 1]) |
|
>>> A * b |
|
Matrix([ |
|
[-4], |
|
[ 8], |
|
[-4]]) |
|
|
|
>>> a.cross(b) |
|
Matrix([ |
|
[-4], |
|
[ 8], |
|
[-4]]) |
|
|
|
``vee`` can also be used to retrieve angular velocity expressions. |
|
Defining a rotation matrix: |
|
|
|
>>> from sympy import rot_ccw_axis3, trigsimp |
|
>>> from sympy.physics.mechanics import dynamicsymbols |
|
>>> theta = dynamicsymbols('theta') |
|
>>> R = rot_ccw_axis3(theta) |
|
>>> R |
|
Matrix([ |
|
[cos(theta(t)), -sin(theta(t)), 0], |
|
[sin(theta(t)), cos(theta(t)), 0], |
|
[ 0, 0, 1]]) |
|
|
|
We can retrieve the angular velocity: |
|
|
|
>>> Omega = R.T * R.diff() |
|
>>> Omega = trigsimp(Omega) |
|
>>> Omega.vee() |
|
Matrix([ |
|
[ 0], |
|
[ 0], |
|
[Derivative(theta(t), t)]]) |
|
|
|
See Also |
|
======== |
|
|
|
dot |
|
cross |
|
hat |
|
multiply |
|
multiply_elementwise |
|
""" |
|
|
|
if self.shape != (3, 3): |
|
raise ShapeError("Dimensions incorrect, expected (3, 3), got " + |
|
str(self.shape)) |
|
elif not self.is_anti_symmetric(): |
|
raise ValueError("Matrix is not skew-symmetric") |
|
else: |
|
return self._new(3, 1, ( |
|
self[2, 1], |
|
self[0, 2], |
|
self[1, 0])) |
|
|
|
@property |
|
def D(self): |
|
"""Return Dirac conjugate (if ``self.rows == 4``). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, I, eye |
|
>>> m = Matrix((0, 1 + I, 2, 3)) |
|
>>> m.D |
|
Matrix([[0, 1 - I, -2, -3]]) |
|
>>> m = (eye(4) + I*eye(4)) |
|
>>> m[0, 3] = 2 |
|
>>> m.D |
|
Matrix([ |
|
[1 - I, 0, 0, 0], |
|
[ 0, 1 - I, 0, 0], |
|
[ 0, 0, -1 + I, 0], |
|
[ 2, 0, 0, -1 + I]]) |
|
|
|
If the matrix does not have 4 rows an AttributeError will be raised |
|
because this property is only defined for matrices with 4 rows. |
|
|
|
>>> Matrix(eye(2)).D |
|
Traceback (most recent call last): |
|
... |
|
AttributeError: Matrix has no attribute D. |
|
|
|
See Also |
|
======== |
|
|
|
sympy.matrices.matrixbase.MatrixBase.conjugate: By-element conjugation |
|
sympy.matrices.matrixbase.MatrixBase.H: Hermite conjugation |
|
""" |
|
from sympy.physics.matrices import mgamma |
|
if self.rows != 4: |
|
|
|
|
|
|
|
|
|
raise AttributeError |
|
return self.H * mgamma(0) |
|
|
|
def dot(self, b, hermitian=None, conjugate_convention=None): |
|
"""Return the dot or inner product of two vectors of equal length. |
|
Here ``self`` must be a ``Matrix`` of size 1 x n or n x 1, and ``b`` |
|
must be either a matrix of size 1 x n, n x 1, or a list/tuple of length n. |
|
A scalar is returned. |
|
|
|
By default, ``dot`` does not conjugate ``self`` or ``b``, even if there are |
|
complex entries. Set ``hermitian=True`` (and optionally a ``conjugate_convention``) |
|
to compute the hermitian inner product. |
|
|
|
Possible kwargs are ``hermitian`` and ``conjugate_convention``. |
|
|
|
If ``conjugate_convention`` is ``"left"``, ``"math"`` or ``"maths"``, |
|
the conjugate of the first vector (``self``) is used. If ``"right"`` |
|
or ``"physics"`` is specified, the conjugate of the second vector ``b`` is used. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> M = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
>>> v = Matrix([1, 1, 1]) |
|
>>> M.row(0).dot(v) |
|
6 |
|
>>> M.col(0).dot(v) |
|
12 |
|
>>> v = [3, 2, 1] |
|
>>> M.row(0).dot(v) |
|
10 |
|
|
|
>>> from sympy import I |
|
>>> q = Matrix([1*I, 1*I, 1*I]) |
|
>>> q.dot(q, hermitian=False) |
|
-3 |
|
|
|
>>> q.dot(q, hermitian=True) |
|
3 |
|
|
|
>>> q1 = Matrix([1, 1, 1*I]) |
|
>>> q.dot(q1, hermitian=True, conjugate_convention="maths") |
|
1 - 2*I |
|
>>> q.dot(q1, hermitian=True, conjugate_convention="physics") |
|
1 + 2*I |
|
|
|
|
|
See Also |
|
======== |
|
|
|
cross |
|
multiply |
|
multiply_elementwise |
|
""" |
|
from .dense import Matrix |
|
|
|
if not isinstance(b, MatrixBase): |
|
if is_sequence(b): |
|
if len(b) != self.cols and len(b) != self.rows: |
|
raise ShapeError( |
|
"Dimensions incorrect for dot product: %s, %s" % ( |
|
self.shape, len(b))) |
|
return self.dot(Matrix(b)) |
|
else: |
|
raise TypeError( |
|
"`b` must be an ordered iterable or Matrix, not %s." % |
|
type(b)) |
|
|
|
if (1 not in self.shape) or (1 not in b.shape): |
|
raise ShapeError |
|
if len(self) != len(b): |
|
raise ShapeError( |
|
"Dimensions incorrect for dot product: %s, %s" % (self.shape, b.shape)) |
|
|
|
mat = self |
|
n = len(mat) |
|
if mat.shape != (1, n): |
|
mat = mat.reshape(1, n) |
|
if b.shape != (n, 1): |
|
b = b.reshape(n, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if conjugate_convention is not None and hermitian is None: |
|
hermitian = True |
|
if hermitian and conjugate_convention is None: |
|
conjugate_convention = "maths" |
|
|
|
if hermitian == True: |
|
if conjugate_convention in ("maths", "left", "math"): |
|
mat = mat.conjugate() |
|
elif conjugate_convention in ("physics", "right"): |
|
b = b.conjugate() |
|
else: |
|
raise ValueError("Unknown conjugate_convention was entered." |
|
" conjugate_convention must be one of the" |
|
" following: math, maths, left, physics or right.") |
|
return (mat * b)[0] |
|
|
|
def dual(self): |
|
"""Returns the dual of a matrix. |
|
|
|
A dual of a matrix is: |
|
|
|
``(1/2)*levicivita(i, j, k, l)*M(k, l)`` summed over indices `k` and `l` |
|
|
|
Since the levicivita method is anti_symmetric for any pairwise |
|
exchange of indices, the dual of a symmetric matrix is the zero |
|
matrix. Strictly speaking the dual defined here assumes that the |
|
'matrix' `M` is a contravariant anti_symmetric second rank tensor, |
|
so that the dual is a covariant second rank tensor. |
|
|
|
""" |
|
from sympy.matrices import zeros |
|
|
|
M, n = self[:, :], self.rows |
|
work = zeros(n) |
|
if self.is_symmetric(): |
|
return work |
|
|
|
for i in range(1, n): |
|
for j in range(1, n): |
|
acum = 0 |
|
for k in range(1, n): |
|
acum += LeviCivita(i, j, 0, k) * M[0, k] |
|
work[i, j] = acum |
|
work[j, i] = -acum |
|
|
|
for l in range(1, n): |
|
acum = 0 |
|
for a in range(1, n): |
|
for b in range(1, n): |
|
acum += LeviCivita(0, l, a, b) * M[a, b] |
|
acum /= 2 |
|
work[0, l] = -acum |
|
work[l, 0] = acum |
|
|
|
return work |
|
|
|
def _eval_matrix_exp_jblock(self): |
|
"""A helper function to compute an exponential of a Jordan block |
|
matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Symbol, Matrix |
|
>>> l = Symbol('lamda') |
|
|
|
A trivial example of 1*1 Jordan block: |
|
|
|
>>> m = Matrix.jordan_block(1, l) |
|
>>> m._eval_matrix_exp_jblock() |
|
Matrix([[exp(lamda)]]) |
|
|
|
An example of 3*3 Jordan block: |
|
|
|
>>> m = Matrix.jordan_block(3, l) |
|
>>> m._eval_matrix_exp_jblock() |
|
Matrix([ |
|
[exp(lamda), exp(lamda), exp(lamda)/2], |
|
[ 0, exp(lamda), exp(lamda)], |
|
[ 0, 0, exp(lamda)]]) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Matrix_function#Jordan_decomposition |
|
""" |
|
size = self.rows |
|
l = self[0, 0] |
|
exp_l = exp(l) |
|
|
|
bands = {i: exp_l / factorial(i) for i in range(size)} |
|
|
|
from .sparsetools import banded |
|
return self.__class__(banded(size, bands)) |
|
|
|
|
|
def analytic_func(self, f, x): |
|
""" |
|
Computes f(A) where A is a Square Matrix |
|
and f is an analytic function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Symbol, Matrix, S, log |
|
|
|
>>> x = Symbol('x') |
|
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) |
|
>>> f = log(x) |
|
>>> m.analytic_func(f, x) |
|
Matrix([ |
|
[ 0, log(2)], |
|
[log(2), 0]]) |
|
|
|
Parameters |
|
========== |
|
|
|
f : Expr |
|
Analytic Function |
|
x : Symbol |
|
parameter of f |
|
|
|
""" |
|
|
|
f, x = _sympify(f), _sympify(x) |
|
if not self.is_square: |
|
raise NonSquareMatrixError |
|
if not x.is_symbol: |
|
raise ValueError("{} must be a symbol.".format(x)) |
|
if x not in f.free_symbols: |
|
raise ValueError( |
|
"{} must be a parameter of {}.".format(x, f)) |
|
if x in self.free_symbols: |
|
raise ValueError( |
|
"{} must not be a parameter of {}.".format(x, self)) |
|
|
|
eigen = self.eigenvals() |
|
max_mul = max(eigen.values()) |
|
derivative = {} |
|
dd = f |
|
for i in range(max_mul - 1): |
|
dd = diff(dd, x) |
|
derivative[i + 1] = dd |
|
n = self.shape[0] |
|
r = self.zeros(n) |
|
f_val = self.zeros(n, 1) |
|
row = 0 |
|
|
|
for i in eigen: |
|
mul = eigen[i] |
|
f_val[row] = f.subs(x, i) |
|
if f_val[row].is_number and not f_val[row].is_complex: |
|
raise ValueError( |
|
"Cannot evaluate the function because the " |
|
"function {} is not analytic at the given " |
|
"eigenvalue {}".format(f, f_val[row])) |
|
val = 1 |
|
for a in range(n): |
|
r[row, a] = val |
|
val *= i |
|
if mul > 1: |
|
coe = [1 for ii in range(n)] |
|
deri = 1 |
|
while mul > 1: |
|
row = row + 1 |
|
mul -= 1 |
|
d_i = derivative[deri].subs(x, i) |
|
if d_i.is_number and not d_i.is_complex: |
|
raise ValueError( |
|
"Cannot evaluate the function because the " |
|
"derivative {} is not analytic at the given " |
|
"eigenvalue {}".format(derivative[deri], d_i)) |
|
f_val[row] = d_i |
|
for a in range(n): |
|
if a - deri + 1 <= 0: |
|
r[row, a] = 0 |
|
coe[a] = 0 |
|
continue |
|
coe[a] = coe[a]*(a - deri + 1) |
|
r[row, a] = coe[a]*pow(i, a - deri) |
|
deri += 1 |
|
row += 1 |
|
c = r.solve(f_val) |
|
ans = self.zeros(n) |
|
pre = self.eye(n) |
|
for i in range(n): |
|
ans = ans + c[i]*pre |
|
pre *= self |
|
return ans |
|
|
|
|
|
def exp(self): |
|
"""Return the exponential of a square matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Symbol, Matrix |
|
|
|
>>> t = Symbol('t') |
|
>>> m = Matrix([[0, 1], [-1, 0]]) * t |
|
>>> m.exp() |
|
Matrix([ |
|
[ exp(I*t)/2 + exp(-I*t)/2, -I*exp(I*t)/2 + I*exp(-I*t)/2], |
|
[I*exp(I*t)/2 - I*exp(-I*t)/2, exp(I*t)/2 + exp(-I*t)/2]]) |
|
""" |
|
if not self.is_square: |
|
raise NonSquareMatrixError( |
|
"Exponentiation is valid only for square matrices") |
|
try: |
|
P, J = self.jordan_form() |
|
cells = J.get_diag_blocks() |
|
except MatrixError: |
|
raise NotImplementedError( |
|
"Exponentiation is implemented only for matrices for which the Jordan normal form can be computed") |
|
|
|
blocks = [cell._eval_matrix_exp_jblock() for cell in cells] |
|
from sympy.matrices import diag |
|
eJ = diag(*blocks) |
|
|
|
ret = P.multiply(eJ, dotprodsimp=None).multiply(P.inv(), dotprodsimp=None) |
|
if all(value.is_real for value in self.values()): |
|
return type(self)(re(ret)) |
|
else: |
|
return type(self)(ret) |
|
|
|
def _eval_matrix_log_jblock(self): |
|
"""Helper function to compute logarithm of a jordan block. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Symbol, Matrix |
|
>>> l = Symbol('lamda') |
|
|
|
A trivial example of 1*1 Jordan block: |
|
|
|
>>> m = Matrix.jordan_block(1, l) |
|
>>> m._eval_matrix_log_jblock() |
|
Matrix([[log(lamda)]]) |
|
|
|
An example of 3*3 Jordan block: |
|
|
|
>>> m = Matrix.jordan_block(3, l) |
|
>>> m._eval_matrix_log_jblock() |
|
Matrix([ |
|
[log(lamda), 1/lamda, -1/(2*lamda**2)], |
|
[ 0, log(lamda), 1/lamda], |
|
[ 0, 0, log(lamda)]]) |
|
""" |
|
size = self.rows |
|
l = self[0, 0] |
|
|
|
if l.is_zero: |
|
raise MatrixError( |
|
'Could not take logarithm or reciprocal for the given ' |
|
'eigenvalue {}'.format(l)) |
|
|
|
bands = {0: log(l)} |
|
for i in range(1, size): |
|
bands[i] = -((-l) ** -i) / i |
|
|
|
from .sparsetools import banded |
|
return self.__class__(banded(size, bands)) |
|
|
|
def log(self, simplify=cancel): |
|
"""Return the logarithm of a square matrix. |
|
|
|
Parameters |
|
========== |
|
|
|
simplify : function, bool |
|
The function to simplify the result with. |
|
|
|
Default is ``cancel``, which is effective to reduce the |
|
expression growing for taking reciprocals and inverses for |
|
symbolic matrices. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import S, Matrix |
|
|
|
Examples for positive-definite matrices: |
|
|
|
>>> m = Matrix([[1, 1], [0, 1]]) |
|
>>> m.log() |
|
Matrix([ |
|
[0, 1], |
|
[0, 0]]) |
|
|
|
>>> m = Matrix([[S(5)/4, S(3)/4], [S(3)/4, S(5)/4]]) |
|
>>> m.log() |
|
Matrix([ |
|
[ 0, log(2)], |
|
[log(2), 0]]) |
|
|
|
Examples for non positive-definite matrices: |
|
|
|
>>> m = Matrix([[S(3)/4, S(5)/4], [S(5)/4, S(3)/4]]) |
|
>>> m.log() |
|
Matrix([ |
|
[ I*pi/2, log(2) - I*pi/2], |
|
[log(2) - I*pi/2, I*pi/2]]) |
|
|
|
>>> m = Matrix( |
|
... [[0, 0, 0, 1], |
|
... [0, 0, 1, 0], |
|
... [0, 1, 0, 0], |
|
... [1, 0, 0, 0]]) |
|
>>> m.log() |
|
Matrix([ |
|
[ I*pi/2, 0, 0, -I*pi/2], |
|
[ 0, I*pi/2, -I*pi/2, 0], |
|
[ 0, -I*pi/2, I*pi/2, 0], |
|
[-I*pi/2, 0, 0, I*pi/2]]) |
|
""" |
|
if not self.is_square: |
|
raise NonSquareMatrixError( |
|
"Logarithm is valid only for square matrices") |
|
|
|
try: |
|
if simplify: |
|
P, J = simplify(self).jordan_form() |
|
else: |
|
P, J = self.jordan_form() |
|
|
|
cells = J.get_diag_blocks() |
|
except MatrixError: |
|
raise NotImplementedError( |
|
"Logarithm is implemented only for matrices for which " |
|
"the Jordan normal form can be computed") |
|
|
|
blocks = [ |
|
cell._eval_matrix_log_jblock() |
|
for cell in cells] |
|
from sympy.matrices import diag |
|
eJ = diag(*blocks) |
|
|
|
if simplify: |
|
ret = simplify(P * eJ * simplify(P.inv())) |
|
ret = self.__class__(ret) |
|
else: |
|
ret = P * eJ * P.inv() |
|
|
|
return ret |
|
|
|
def is_nilpotent(self): |
|
"""Checks if a matrix is nilpotent. |
|
|
|
A matrix B is nilpotent if for some integer k, B**k is |
|
a zero matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[0, 0, 0], [1, 0, 0], [1, 1, 0]]) |
|
>>> a.is_nilpotent() |
|
True |
|
|
|
>>> a = Matrix([[1, 0, 1], [1, 0, 0], [1, 1, 0]]) |
|
>>> a.is_nilpotent() |
|
False |
|
""" |
|
if not self: |
|
return True |
|
if not self.is_square: |
|
raise NonSquareMatrixError( |
|
"Nilpotency is valid only for square matrices") |
|
x = uniquely_named_symbol('x', self, modify=lambda s: '_' + s) |
|
p = self.charpoly(x) |
|
if p.args[0] == x ** self.rows: |
|
return True |
|
return False |
|
|
|
def key2bounds(self, keys): |
|
"""Converts a key with potentially mixed types of keys (integer and slice) |
|
into a tuple of ranges and raises an error if any index is out of ``self``'s |
|
range. |
|
|
|
See Also |
|
======== |
|
|
|
key2ij |
|
""" |
|
islice, jslice = [isinstance(k, slice) for k in keys] |
|
if islice: |
|
if not self.rows: |
|
rlo = rhi = 0 |
|
else: |
|
rlo, rhi = keys[0].indices(self.rows)[:2] |
|
else: |
|
rlo = a2idx(keys[0], self.rows) |
|
rhi = rlo + 1 |
|
if jslice: |
|
if not self.cols: |
|
clo = chi = 0 |
|
else: |
|
clo, chi = keys[1].indices(self.cols)[:2] |
|
else: |
|
clo = a2idx(keys[1], self.cols) |
|
chi = clo + 1 |
|
return rlo, rhi, clo, chi |
|
|
|
def key2ij(self, key): |
|
"""Converts key into canonical form, converting integers or indexable |
|
items into valid integers for ``self``'s range or returning slices |
|
unchanged. |
|
|
|
See Also |
|
======== |
|
|
|
key2bounds |
|
""" |
|
if is_sequence(key): |
|
if not len(key) == 2: |
|
raise TypeError('key must be a sequence of length 2') |
|
return [a2idx(i, n) if not isinstance(i, slice) else i |
|
for i, n in zip(key, self.shape)] |
|
elif isinstance(key, slice): |
|
return key.indices(len(self))[:2] |
|
else: |
|
return divmod(a2idx(key, len(self)), self.cols) |
|
|
|
def normalized(self, iszerofunc=_iszero): |
|
"""Return the normalized version of ``self``. |
|
|
|
Parameters |
|
========== |
|
|
|
iszerofunc : Function, optional |
|
A function to determine whether ``self`` is a zero vector. |
|
The default ``_iszero`` tests to see if each element is |
|
exactly zero. |
|
|
|
Returns |
|
======= |
|
|
|
Matrix |
|
Normalized vector form of ``self``. |
|
It has the same length as a unit vector. However, a zero vector |
|
will be returned for a vector with norm 0. |
|
|
|
Raises |
|
====== |
|
|
|
ShapeError |
|
If the matrix is not in a vector form. |
|
|
|
See Also |
|
======== |
|
|
|
norm |
|
""" |
|
if self.rows != 1 and self.cols != 1: |
|
raise ShapeError("A Matrix must be a vector to normalize.") |
|
norm = self.norm() |
|
if iszerofunc(norm): |
|
out = self.zeros(self.rows, self.cols) |
|
else: |
|
out = self.applyfunc(lambda i: i / norm) |
|
return out |
|
|
|
def norm(self, ord=None): |
|
"""Return the Norm of a Matrix or Vector. |
|
|
|
In the simplest case this is the geometric size of the vector |
|
Other norms can be specified by the ord parameter |
|
|
|
|
|
===== ============================ ========================== |
|
ord norm for matrices norm for vectors |
|
===== ============================ ========================== |
|
None Frobenius norm 2-norm |
|
'fro' Frobenius norm - does not exist |
|
inf maximum row sum max(abs(x)) |
|
-inf -- min(abs(x)) |
|
1 maximum column sum as below |
|
-1 -- as below |
|
2 2-norm (largest sing. value) as below |
|
-2 smallest singular value as below |
|
other - does not exist sum(abs(x)**ord)**(1./ord) |
|
===== ============================ ========================== |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, Symbol, trigsimp, cos, sin, oo |
|
>>> x = Symbol('x', real=True) |
|
>>> v = Matrix([cos(x), sin(x)]) |
|
>>> trigsimp( v.norm() ) |
|
1 |
|
>>> v.norm(10) |
|
(sin(x)**10 + cos(x)**10)**(1/10) |
|
>>> A = Matrix([[1, 1], [1, 1]]) |
|
>>> A.norm(1) # maximum sum of absolute values of A is 2 |
|
2 |
|
>>> A.norm(2) # Spectral norm (max of |Ax|/|x| under 2-vector-norm) |
|
2 |
|
>>> A.norm(-2) # Inverse spectral norm (smallest singular value) |
|
0 |
|
>>> A.norm() # Frobenius Norm |
|
2 |
|
>>> A.norm(oo) # Infinity Norm |
|
2 |
|
>>> Matrix([1, -2]).norm(oo) |
|
2 |
|
>>> Matrix([-1, 2]).norm(-oo) |
|
1 |
|
|
|
See Also |
|
======== |
|
|
|
normalized |
|
""" |
|
|
|
vals = list(self.values()) or [0] |
|
if S.One in self.shape: |
|
if ord in (2, None): |
|
return sqrt(Add(*(abs(i) ** 2 for i in vals))) |
|
|
|
elif ord == 1: |
|
return Add(*(abs(i) for i in vals)) |
|
|
|
elif ord is S.Infinity: |
|
return Max(*[abs(i) for i in vals]) |
|
|
|
elif ord is S.NegativeInfinity: |
|
return Min(*[abs(i) for i in vals]) |
|
|
|
|
|
|
|
try: |
|
return Pow(Add(*(abs(i) ** ord for i in vals)), S.One / ord) |
|
except (NotImplementedError, TypeError): |
|
raise ValueError("Expected order to be Number, Symbol, oo") |
|
|
|
|
|
else: |
|
if ord == 1: |
|
m = self.applyfunc(abs) |
|
return Max(*[sum(m.col(i)) for i in range(m.cols)]) |
|
|
|
elif ord == 2: |
|
|
|
return Max(*self.singular_values()) |
|
|
|
elif ord == -2: |
|
|
|
return Min(*self.singular_values()) |
|
|
|
elif ord is S.Infinity: |
|
m = self.applyfunc(abs) |
|
return Max(*[sum(m.row(i)) for i in range(m.rows)]) |
|
|
|
elif (ord is None or isinstance(ord, |
|
str) and ord.lower() in |
|
['f', 'fro', 'frobenius', 'vector']): |
|
|
|
return self.vec().norm(ord=2) |
|
|
|
else: |
|
raise NotImplementedError("Matrix Norms under development") |
|
|
|
def print_nonzero(self, symb="X"): |
|
"""Shows location of non-zero entries for fast shape lookup. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, eye |
|
>>> m = Matrix(2, 3, lambda i, j: i*3+j) |
|
>>> m |
|
Matrix([ |
|
[0, 1, 2], |
|
[3, 4, 5]]) |
|
>>> m.print_nonzero() |
|
[ XX] |
|
[XXX] |
|
>>> m = eye(4) |
|
>>> m.print_nonzero("x") |
|
[x ] |
|
[ x ] |
|
[ x ] |
|
[ x] |
|
|
|
""" |
|
s = [] |
|
for i in range(self.rows): |
|
line = [] |
|
for j in range(self.cols): |
|
if self[i, j] == 0: |
|
line.append(" ") |
|
else: |
|
line.append(str(symb)) |
|
s.append("[%s]" % ''.join(line)) |
|
print('\n'.join(s)) |
|
|
|
def project(self, v): |
|
"""Return the projection of ``self`` onto the line containing ``v``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, S, sqrt |
|
>>> V = Matrix([sqrt(3)/2, S.Half]) |
|
>>> x = Matrix([[1, 0]]) |
|
>>> V.project(x) |
|
Matrix([[sqrt(3)/2, 0]]) |
|
>>> V.project(-x) |
|
Matrix([[sqrt(3)/2, 0]]) |
|
""" |
|
return v * (self.dot(v) / v.dot(v)) |
|
|
|
def table(self, printer, rowstart='[', rowend=']', rowsep='\n', |
|
colsep=', ', align='right'): |
|
r""" |
|
String form of Matrix as a table. |
|
|
|
``printer`` is the printer to use for on the elements (generally |
|
something like StrPrinter()) |
|
|
|
``rowstart`` is the string used to start each row (by default '['). |
|
|
|
``rowend`` is the string used to end each row (by default ']'). |
|
|
|
``rowsep`` is the string used to separate rows (by default a newline). |
|
|
|
``colsep`` is the string used to separate columns (by default ', '). |
|
|
|
``align`` defines how the elements are aligned. Must be one of 'left', |
|
'right', or 'center'. You can also use '<', '>', and '^' to mean the |
|
same thing, respectively. |
|
|
|
This is used by the string printer for Matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, StrPrinter |
|
>>> M = Matrix([[1, 2], [-33, 4]]) |
|
>>> printer = StrPrinter() |
|
>>> M.table(printer) |
|
'[ 1, 2]\n[-33, 4]' |
|
>>> print(M.table(printer)) |
|
[ 1, 2] |
|
[-33, 4] |
|
>>> print(M.table(printer, rowsep=',\n')) |
|
[ 1, 2], |
|
[-33, 4] |
|
>>> print('[%s]' % M.table(printer, rowsep=',\n')) |
|
[[ 1, 2], |
|
[-33, 4]] |
|
>>> print(M.table(printer, colsep=' ')) |
|
[ 1 2] |
|
[-33 4] |
|
>>> print(M.table(printer, align='center')) |
|
[ 1 , 2] |
|
[-33, 4] |
|
>>> print(M.table(printer, rowstart='{', rowend='}')) |
|
{ 1, 2} |
|
{-33, 4} |
|
""" |
|
|
|
if S.Zero in self.shape: |
|
return '[]' |
|
|
|
res = [] |
|
|
|
maxlen = [0] * self.cols |
|
for i in range(self.rows): |
|
res.append([]) |
|
for j in range(self.cols): |
|
s = printer._print(self[i, j]) |
|
res[-1].append(s) |
|
maxlen[j] = max(len(s), maxlen[j]) |
|
|
|
align = { |
|
'left': 'ljust', |
|
'right': 'rjust', |
|
'center': 'center', |
|
'<': 'ljust', |
|
'>': 'rjust', |
|
'^': 'center', |
|
}[align] |
|
for i, row in enumerate(res): |
|
for j, elem in enumerate(row): |
|
row[j] = getattr(elem, align)(maxlen[j]) |
|
res[i] = rowstart + colsep.join(row) + rowend |
|
return rowsep.join(res) |
|
|
|
def rank_decomposition(self, iszerofunc=_iszero, simplify=False): |
|
return _rank_decomposition(self, iszerofunc=iszerofunc, |
|
simplify=simplify) |
|
|
|
def cholesky(self, hermitian=True): |
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') |
|
|
|
def LDLdecomposition(self, hermitian=True): |
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') |
|
|
|
def LUdecomposition(self, iszerofunc=_iszero, simpfunc=None, |
|
rankcheck=False): |
|
return _LUdecomposition(self, iszerofunc=iszerofunc, simpfunc=simpfunc, |
|
rankcheck=rankcheck) |
|
|
|
def LUdecomposition_Simple(self, iszerofunc=_iszero, simpfunc=None, |
|
rankcheck=False): |
|
return _LUdecomposition_Simple(self, iszerofunc=iszerofunc, |
|
simpfunc=simpfunc, rankcheck=rankcheck) |
|
|
|
def LUdecompositionFF(self): |
|
return _LUdecompositionFF(self) |
|
|
|
def singular_value_decomposition(self): |
|
return _singular_value_decomposition(self) |
|
|
|
def QRdecomposition(self): |
|
return _QRdecomposition(self) |
|
|
|
def upper_hessenberg_decomposition(self): |
|
return _upper_hessenberg_decomposition(self) |
|
|
|
def diagonal_solve(self, rhs): |
|
return _diagonal_solve(self, rhs) |
|
|
|
def lower_triangular_solve(self, rhs): |
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') |
|
|
|
def upper_triangular_solve(self, rhs): |
|
raise NotImplementedError('This function is implemented in DenseMatrix or SparseMatrix') |
|
|
|
def cholesky_solve(self, rhs): |
|
return _cholesky_solve(self, rhs) |
|
|
|
def LDLsolve(self, rhs): |
|
return _LDLsolve(self, rhs) |
|
|
|
def LUsolve(self, rhs, iszerofunc=_iszero): |
|
return _LUsolve(self, rhs, iszerofunc=iszerofunc) |
|
|
|
def QRsolve(self, b): |
|
return _QRsolve(self, b) |
|
|
|
def gauss_jordan_solve(self, B, freevar=False): |
|
return _gauss_jordan_solve(self, B, freevar=freevar) |
|
|
|
def pinv_solve(self, B, arbitrary_matrix=None): |
|
return _pinv_solve(self, B, arbitrary_matrix=arbitrary_matrix) |
|
|
|
def cramer_solve(self, rhs, det_method="laplace"): |
|
return _cramer_solve(self, rhs, det_method=det_method) |
|
|
|
def solve(self, rhs, method='GJ'): |
|
return _solve(self, rhs, method=method) |
|
|
|
def solve_least_squares(self, rhs, method='CH'): |
|
return _solve_least_squares(self, rhs, method=method) |
|
|
|
def pinv(self, method='RD'): |
|
return _pinv(self, method=method) |
|
|
|
def inverse_ADJ(self, iszerofunc=_iszero): |
|
return _inv_ADJ(self, iszerofunc=iszerofunc) |
|
|
|
def inverse_BLOCK(self, iszerofunc=_iszero): |
|
return _inv_block(self, iszerofunc=iszerofunc) |
|
|
|
def inverse_GE(self, iszerofunc=_iszero): |
|
return _inv_GE(self, iszerofunc=iszerofunc) |
|
|
|
def inverse_LU(self, iszerofunc=_iszero): |
|
return _inv_LU(self, iszerofunc=iszerofunc) |
|
|
|
def inverse_CH(self, iszerofunc=_iszero): |
|
return _inv_CH(self, iszerofunc=iszerofunc) |
|
|
|
def inverse_LDL(self, iszerofunc=_iszero): |
|
return _inv_LDL(self, iszerofunc=iszerofunc) |
|
|
|
def inverse_QR(self, iszerofunc=_iszero): |
|
return _inv_QR(self, iszerofunc=iszerofunc) |
|
|
|
def inv(self, method=None, iszerofunc=_iszero, try_block_diag=False): |
|
return _inv(self, method=method, iszerofunc=iszerofunc, |
|
try_block_diag=try_block_diag) |
|
|
|
def connected_components(self): |
|
return _connected_components(self) |
|
|
|
def connected_components_decomposition(self): |
|
return _connected_components_decomposition(self) |
|
|
|
def strongly_connected_components(self): |
|
return _strongly_connected_components(self) |
|
|
|
def strongly_connected_components_decomposition(self, lower=True): |
|
return _strongly_connected_components_decomposition(self, lower=lower) |
|
|
|
_sage_ = Basic._sage_ |
|
|
|
rank_decomposition.__doc__ = _rank_decomposition.__doc__ |
|
cholesky.__doc__ = _cholesky.__doc__ |
|
LDLdecomposition.__doc__ = _LDLdecomposition.__doc__ |
|
LUdecomposition.__doc__ = _LUdecomposition.__doc__ |
|
LUdecomposition_Simple.__doc__ = _LUdecomposition_Simple.__doc__ |
|
LUdecompositionFF.__doc__ = _LUdecompositionFF.__doc__ |
|
singular_value_decomposition.__doc__ = _singular_value_decomposition.__doc__ |
|
QRdecomposition.__doc__ = _QRdecomposition.__doc__ |
|
upper_hessenberg_decomposition.__doc__ = _upper_hessenberg_decomposition.__doc__ |
|
|
|
diagonal_solve.__doc__ = _diagonal_solve.__doc__ |
|
lower_triangular_solve.__doc__ = _lower_triangular_solve.__doc__ |
|
upper_triangular_solve.__doc__ = _upper_triangular_solve.__doc__ |
|
cholesky_solve.__doc__ = _cholesky_solve.__doc__ |
|
LDLsolve.__doc__ = _LDLsolve.__doc__ |
|
LUsolve.__doc__ = _LUsolve.__doc__ |
|
QRsolve.__doc__ = _QRsolve.__doc__ |
|
gauss_jordan_solve.__doc__ = _gauss_jordan_solve.__doc__ |
|
pinv_solve.__doc__ = _pinv_solve.__doc__ |
|
cramer_solve.__doc__ = _cramer_solve.__doc__ |
|
solve.__doc__ = _solve.__doc__ |
|
solve_least_squares.__doc__ = _solve_least_squares.__doc__ |
|
|
|
pinv.__doc__ = _pinv.__doc__ |
|
inverse_ADJ.__doc__ = _inv_ADJ.__doc__ |
|
inverse_GE.__doc__ = _inv_GE.__doc__ |
|
inverse_LU.__doc__ = _inv_LU.__doc__ |
|
inverse_CH.__doc__ = _inv_CH.__doc__ |
|
inverse_LDL.__doc__ = _inv_LDL.__doc__ |
|
inverse_QR.__doc__ = _inv_QR.__doc__ |
|
inverse_BLOCK.__doc__ = _inv_block.__doc__ |
|
inv.__doc__ = _inv.__doc__ |
|
|
|
connected_components.__doc__ = _connected_components.__doc__ |
|
connected_components_decomposition.__doc__ = \ |
|
_connected_components_decomposition.__doc__ |
|
strongly_connected_components.__doc__ = \ |
|
_strongly_connected_components.__doc__ |
|
strongly_connected_components_decomposition.__doc__ = \ |
|
_strongly_connected_components_decomposition.__doc__ |
|
|
|
|
|
def _convert_matrix(typ, mat): |
|
"""Convert mat to a Matrix of type typ.""" |
|
from sympy.matrices.matrixbase import MatrixBase |
|
if getattr(mat, "is_Matrix", False) and not isinstance(mat, MatrixBase): |
|
|
|
|
|
|
|
|
|
return typ(*mat.shape, list(mat)) |
|
else: |
|
return typ(mat) |
|
|
|
|
|
def _has_matrix_shape(other): |
|
shape = getattr(other, 'shape', None) |
|
if shape is None: |
|
return False |
|
return isinstance(shape, tuple) and len(shape) == 2 |
|
|
|
|
|
def _has_rows_cols(other): |
|
return hasattr(other, 'rows') and hasattr(other, 'cols') |
|
|
|
|
|
def _coerce_operand(self, other): |
|
"""Convert other to a Matrix, or check for possible scalar.""" |
|
|
|
INVALID = None, 'invalid_type' |
|
|
|
|
|
if isinstance(other, NDimArray): |
|
return INVALID |
|
|
|
is_Matrix = getattr(other, 'is_Matrix', None) |
|
|
|
|
|
if is_Matrix: |
|
return other, 'is_matrix' |
|
|
|
|
|
if is_Matrix is None: |
|
if _has_matrix_shape(other) or _has_rows_cols(other): |
|
return _convert_matrix(type(self), other), 'is_matrix' |
|
|
|
|
|
if not isinstance(other, Iterable): |
|
return other, 'possible_scalar' |
|
|
|
return INVALID |
|
|
|
|
|
def classof(A, B): |
|
""" |
|
Get the type of the result when combining matrices of different types. |
|
|
|
Currently the strategy is that immutability is contagious. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, ImmutableMatrix |
|
>>> from sympy.matrices.matrixbase import classof |
|
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix |
|
>>> IM = ImmutableMatrix([[1, 2], [3, 4]]) |
|
>>> classof(M, IM) |
|
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'> |
|
""" |
|
priority_A = getattr(A, '_class_priority', None) |
|
priority_B = getattr(B, '_class_priority', None) |
|
if None not in (priority_A, priority_B): |
|
if A._class_priority > B._class_priority: |
|
return A.__class__ |
|
else: |
|
return B.__class__ |
|
|
|
try: |
|
import numpy |
|
except ImportError: |
|
pass |
|
else: |
|
if isinstance(A, numpy.ndarray): |
|
return B.__class__ |
|
if isinstance(B, numpy.ndarray): |
|
return A.__class__ |
|
|
|
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__)) |
|
|
|
|
|
def _unify_with_other(self, other): |
|
"""Unify self and other into a single matrix type, or check for scalar.""" |
|
other, T = _coerce_operand(self, other) |
|
|
|
if T == "is_matrix": |
|
typ = classof(self, other) |
|
if typ != self.__class__: |
|
self = _convert_matrix(typ, self) |
|
if typ != other.__class__: |
|
other = _convert_matrix(typ, other) |
|
|
|
return self, other, T |
|
|
|
|
|
def a2idx(j, n=None): |
|
"""Return integer after making positive and validating against n.""" |
|
if not isinstance(j, int): |
|
jindex = getattr(j, '__index__', None) |
|
if jindex is not None: |
|
j = jindex() |
|
else: |
|
raise IndexError("Invalid index a[%r]" % (j,)) |
|
if n is not None: |
|
if j < 0: |
|
j += n |
|
if not (j >= 0 and j < n): |
|
raise IndexError("Index out of range: a[%s]" % (j,)) |
|
return int(j) |
|
|
|
|
|
class DeferredVector(Symbol, NotIterable): |
|
"""A vector whose components are deferred (e.g. for use with lambdify). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import DeferredVector, lambdify |
|
>>> X = DeferredVector( 'X' ) |
|
>>> X |
|
X |
|
>>> expr = (X[0] + 2, X[2] + 3) |
|
>>> func = lambdify( X, expr) |
|
>>> func( [1, 2, 3] ) |
|
(3, 6) |
|
""" |
|
|
|
def __getitem__(self, i): |
|
if i == -0: |
|
i = 0 |
|
if i < 0: |
|
raise IndexError('DeferredVector index out of range') |
|
component_name = '%s[%d]' % (self.name, i) |
|
return Symbol(component_name) |
|
|
|
def __str__(self): |
|
return sstr(self) |
|
|
|
def __repr__(self): |
|
return "DeferredVector('%s')" % self.name |
|
|