|
from sympy.core import Basic |
|
from sympy.functions import adjoint, conjugate |
|
from sympy.matrices.expressions.matexpr import MatrixExpr |
|
|
|
|
|
class Adjoint(MatrixExpr): |
|
""" |
|
The Hermitian adjoint of a matrix expression. |
|
|
|
This is a symbolic object that simply stores its argument without |
|
evaluating it. To actually compute the adjoint, use the ``adjoint()`` |
|
function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import MatrixSymbol, Adjoint, adjoint |
|
>>> A = MatrixSymbol('A', 3, 5) |
|
>>> B = MatrixSymbol('B', 5, 3) |
|
>>> Adjoint(A*B) |
|
Adjoint(A*B) |
|
>>> adjoint(A*B) |
|
Adjoint(B)*Adjoint(A) |
|
>>> adjoint(A*B) == Adjoint(A*B) |
|
False |
|
>>> adjoint(A*B) == Adjoint(A*B).doit() |
|
True |
|
""" |
|
is_Adjoint = True |
|
|
|
def doit(self, **hints): |
|
arg = self.arg |
|
if hints.get('deep', True) and isinstance(arg, Basic): |
|
return adjoint(arg.doit(**hints)) |
|
else: |
|
return adjoint(self.arg) |
|
|
|
@property |
|
def arg(self): |
|
return self.args[0] |
|
|
|
@property |
|
def shape(self): |
|
return self.arg.shape[::-1] |
|
|
|
def _entry(self, i, j, **kwargs): |
|
return conjugate(self.arg._entry(j, i, **kwargs)) |
|
|
|
def _eval_adjoint(self): |
|
return self.arg |
|
|
|
def _eval_transpose(self): |
|
return self.arg.conjugate() |
|
|
|
def _eval_conjugate(self): |
|
return self.arg.transpose() |
|
|
|
def _eval_trace(self): |
|
from sympy.matrices.expressions.trace import Trace |
|
return conjugate(Trace(self.arg)) |
|
|