|
""" |
|
A module containing deprecated matrix mixin classes. |
|
|
|
The classes in this module are deprecated and will be removed in a future |
|
release. They are kept here for backwards compatibility in case downstream |
|
code was subclassing them. |
|
|
|
Importing anything else from this module is deprecated so anything here |
|
should either not be used or should be imported from somewhere else. |
|
""" |
|
from __future__ import annotations |
|
from collections import defaultdict |
|
from collections.abc import Iterable |
|
from inspect import isfunction |
|
from functools import reduce |
|
|
|
from sympy.assumptions.refine import refine |
|
from sympy.core import SympifyError, Add |
|
from sympy.core.basic import Atom |
|
from sympy.core.decorators import call_highest_priority |
|
from sympy.core.logic import fuzzy_and, FuzzyBool |
|
from sympy.core.numbers import Integer |
|
from sympy.core.mod import Mod |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import Symbol |
|
from sympy.core.sympify import sympify |
|
from sympy.functions.elementary.complexes import Abs, re, im |
|
from sympy.utilities.exceptions import sympy_deprecation_warning |
|
from .utilities import _dotprodsimp, _simplify |
|
from sympy.polys.polytools import Poly |
|
from sympy.utilities.iterables import flatten, is_sequence |
|
from sympy.utilities.misc import as_int, filldedent |
|
from sympy.tensor.array import NDimArray |
|
|
|
from .utilities import _get_intermediate_simp_bool |
|
|
|
|
|
|
|
|
|
|
|
from .exceptions import ( |
|
MatrixError, ShapeError, NonSquareMatrixError, NonInvertibleMatrixError, |
|
NonPositiveDefiniteMatrixError |
|
) |
|
|
|
|
|
_DEPRECATED_MIXINS = ( |
|
'MatrixShaping', |
|
'MatrixSpecial', |
|
'MatrixProperties', |
|
'MatrixOperations', |
|
'MatrixArithmetic', |
|
'MatrixCommon', |
|
'MatrixDeterminant', |
|
'MatrixReductions', |
|
'MatrixSubspaces', |
|
'MatrixEigen', |
|
'MatrixCalculus', |
|
'MatrixDeprecated', |
|
) |
|
|
|
|
|
class _MatrixDeprecatedMeta(type): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __instancecheck__(cls, instance): |
|
|
|
sympy_deprecation_warning( |
|
f""" |
|
Checking whether an object is an instance of {cls.__name__} is |
|
deprecated. |
|
|
|
Use `isinstance(obj, Matrix)` instead of `isinstance(obj, {cls.__name__})`. |
|
""", |
|
deprecated_since_version="1.13", |
|
active_deprecations_target="deprecated-matrix-mixins", |
|
stacklevel=3, |
|
) |
|
|
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.matrices.matrices import ( |
|
MatrixDeterminant, |
|
MatrixReductions, |
|
MatrixSubspaces, |
|
MatrixEigen, |
|
MatrixCalculus, |
|
MatrixDeprecated |
|
) |
|
|
|
all_mixins = ( |
|
MatrixRequired, |
|
MatrixShaping, |
|
MatrixSpecial, |
|
MatrixProperties, |
|
MatrixOperations, |
|
MatrixArithmetic, |
|
MatrixCommon, |
|
MatrixDeterminant, |
|
MatrixReductions, |
|
MatrixSubspaces, |
|
MatrixEigen, |
|
MatrixCalculus, |
|
MatrixDeprecated |
|
) |
|
|
|
if cls in all_mixins and isinstance(instance, MatrixBase): |
|
return True |
|
else: |
|
return super().__instancecheck__(instance) |
|
|
|
|
|
class MatrixRequired(metaclass=_MatrixDeprecatedMeta): |
|
"""Deprecated mixin class for making matrix classes.""" |
|
|
|
rows: int |
|
cols: int |
|
_simplify = None |
|
|
|
def __init_subclass__(cls, **kwargs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if cls.__name__ not in _DEPRECATED_MIXINS: |
|
sympy_deprecation_warning( |
|
f""" |
|
Inheriting from the Matrix mixin classes is deprecated. |
|
|
|
The class {cls.__name__} is subclassing a deprecated mixin. |
|
""", |
|
deprecated_since_version="1.13", |
|
active_deprecations_target="deprecated-matrix-mixins", |
|
stacklevel=3, |
|
) |
|
|
|
super().__init_subclass__(**kwargs) |
|
|
|
@classmethod |
|
def _new(cls, *args, **kwargs): |
|
"""`_new` must, at minimum, be callable as |
|
`_new(rows, cols, mat) where mat is a flat list of the |
|
elements of the matrix.""" |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
def __eq__(self, other): |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
def __getitem__(self, key): |
|
"""Implementations of __getitem__ should accept ints, in which |
|
case the matrix is indexed as a flat list, tuples (i,j) in which |
|
case the (i,j) entry is returned, slices, or mixed tuples (a,b) |
|
where a and b are any combination of slices and integers.""" |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
def __len__(self): |
|
"""The total number of entries in the matrix.""" |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
@property |
|
def shape(self): |
|
raise NotImplementedError("Subclasses must implement this.") |
|
|
|
|
|
class MatrixShaping(MatrixRequired): |
|
"""Provides basic matrix shaping and extracting of submatrices""" |
|
|
|
def _eval_col_del(self, col): |
|
def entry(i, j): |
|
return self[i, j] if j < col else self[i, j + 1] |
|
return self._new(self.rows, self.cols - 1, entry) |
|
|
|
def _eval_col_insert(self, pos, other): |
|
|
|
def entry(i, j): |
|
if j < pos: |
|
return self[i, j] |
|
elif pos <= j < pos + other.cols: |
|
return other[i, j - pos] |
|
return self[i, j - other.cols] |
|
|
|
return self._new(self.rows, self.cols + other.cols, entry) |
|
|
|
def _eval_col_join(self, other): |
|
rows = self.rows |
|
|
|
def entry(i, j): |
|
if i < rows: |
|
return self[i, j] |
|
return other[i - rows, j] |
|
|
|
return classof(self, other)._new(self.rows + other.rows, self.cols, |
|
entry) |
|
|
|
def _eval_extract(self, rowsList, colsList): |
|
mat = list(self) |
|
cols = self.cols |
|
indices = (i * cols + j for i in rowsList for j in colsList) |
|
return self._new(len(rowsList), len(colsList), |
|
[mat[i] for i in indices]) |
|
|
|
def _eval_get_diag_blocks(self): |
|
sub_blocks = [] |
|
|
|
def recurse_sub_blocks(M): |
|
for i in range(1, M.shape[0] + 1): |
|
if i == 1: |
|
to_the_right = M[0, i:] |
|
to_the_bottom = M[i:, 0] |
|
else: |
|
to_the_right = M[:i, i:] |
|
to_the_bottom = M[i:, :i] |
|
if any(to_the_right) or any(to_the_bottom): |
|
continue |
|
sub_blocks.append(M[:i, :i]) |
|
if M.shape != M[:i, :i].shape: |
|
recurse_sub_blocks(M[i:, i:]) |
|
return |
|
|
|
recurse_sub_blocks(self) |
|
return sub_blocks |
|
|
|
def _eval_row_del(self, row): |
|
def entry(i, j): |
|
return self[i, j] if i < row else self[i + 1, j] |
|
return self._new(self.rows - 1, self.cols, entry) |
|
|
|
def _eval_row_insert(self, pos, other): |
|
entries = list(self) |
|
insert_pos = pos * self.cols |
|
entries[insert_pos:insert_pos] = list(other) |
|
return self._new(self.rows + other.rows, self.cols, entries) |
|
|
|
def _eval_row_join(self, other): |
|
cols = self.cols |
|
|
|
def entry(i, j): |
|
if j < cols: |
|
return self[i, j] |
|
return other[i, j - cols] |
|
|
|
return classof(self, other)._new(self.rows, self.cols + other.cols, |
|
entry) |
|
|
|
def _eval_tolist(self): |
|
return [list(self[i,:]) for i in range(self.rows)] |
|
|
|
def _eval_todok(self): |
|
dok = {} |
|
rows, cols = self.shape |
|
for i in range(rows): |
|
for j in range(cols): |
|
val = self[i, j] |
|
if val != self.zero: |
|
dok[i, j] = val |
|
return dok |
|
|
|
def _eval_vec(self): |
|
rows = self.rows |
|
|
|
def entry(n, _): |
|
|
|
j = n // rows |
|
i = n - j * rows |
|
return self[i, j] |
|
|
|
return self._new(len(self), 1, entry) |
|
|
|
def _eval_vech(self, diagonal): |
|
c = self.cols |
|
v = [] |
|
if diagonal: |
|
for j in range(c): |
|
for i in range(j, c): |
|
v.append(self[i, j]) |
|
else: |
|
for j in range(c): |
|
for i in range(j + 1, c): |
|
v.append(self[i, j]) |
|
return self._new(len(v), 1, v) |
|
|
|
def col_del(self, col): |
|
"""Delete the specified column.""" |
|
if col < 0: |
|
col += self.cols |
|
if not 0 <= col < self.cols: |
|
raise IndexError("Column {} is out of range.".format(col)) |
|
return self._eval_col_del(col) |
|
|
|
def col_insert(self, pos, other): |
|
"""Insert one or more columns at the given column position. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(3, 1) |
|
>>> M.col_insert(1, V) |
|
Matrix([ |
|
[0, 1, 0, 0], |
|
[0, 1, 0, 0], |
|
[0, 1, 0, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
col |
|
row_insert |
|
""" |
|
|
|
if not self: |
|
return type(self)(other) |
|
|
|
pos = as_int(pos) |
|
|
|
if pos < 0: |
|
pos = self.cols + pos |
|
if pos < 0: |
|
pos = 0 |
|
elif pos > self.cols: |
|
pos = self.cols |
|
|
|
if self.rows != other.rows: |
|
raise ShapeError( |
|
"The matrices have incompatible number of rows ({} and {})" |
|
.format(self.rows, other.rows)) |
|
|
|
return self._eval_col_insert(pos, other) |
|
|
|
def col_join(self, other): |
|
"""Concatenates two matrices along self's last and other's first row. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(1, 3) |
|
>>> M.col_join(V) |
|
Matrix([ |
|
[0, 0, 0], |
|
[0, 0, 0], |
|
[0, 0, 0], |
|
[1, 1, 1]]) |
|
|
|
See Also |
|
======== |
|
|
|
col |
|
row_join |
|
""" |
|
|
|
if self.rows == 0 and self.cols != other.cols: |
|
return self._new(0, other.cols, []).col_join(other) |
|
|
|
if self.cols != other.cols: |
|
raise ShapeError( |
|
"The matrices have incompatible number of columns ({} and {})" |
|
.format(self.cols, other.cols)) |
|
return self._eval_col_join(other) |
|
|
|
def col(self, j): |
|
"""Elementary column selector. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import eye |
|
>>> eye(2).col(0) |
|
Matrix([ |
|
[1], |
|
[0]]) |
|
|
|
See Also |
|
======== |
|
|
|
row |
|
col_del |
|
col_join |
|
col_insert |
|
""" |
|
return self[:, j] |
|
|
|
def extract(self, rowsList, colsList): |
|
r"""Return a submatrix by specifying a list of rows and columns. |
|
Negative indices can be given. All indices must be in the range |
|
$-n \le i < n$ where $n$ is the number of rows or columns. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(4, 3, range(12)) |
|
>>> m |
|
Matrix([ |
|
[0, 1, 2], |
|
[3, 4, 5], |
|
[6, 7, 8], |
|
[9, 10, 11]]) |
|
>>> m.extract([0, 1, 3], [0, 1]) |
|
Matrix([ |
|
[0, 1], |
|
[3, 4], |
|
[9, 10]]) |
|
|
|
Rows or columns can be repeated: |
|
|
|
>>> m.extract([0, 0, 1], [-1]) |
|
Matrix([ |
|
[2], |
|
[2], |
|
[5]]) |
|
|
|
Every other row can be taken by using range to provide the indices: |
|
|
|
>>> m.extract(range(0, m.rows, 2), [-1]) |
|
Matrix([ |
|
[2], |
|
[8]]) |
|
|
|
RowsList or colsList can also be a list of booleans, in which case |
|
the rows or columns corresponding to the True values will be selected: |
|
|
|
>>> m.extract([0, 1, 2, 3], [True, False, True]) |
|
Matrix([ |
|
[0, 2], |
|
[3, 5], |
|
[6, 8], |
|
[9, 11]]) |
|
""" |
|
|
|
if not is_sequence(rowsList) or not is_sequence(colsList): |
|
raise TypeError("rowsList and colsList must be iterable") |
|
|
|
if rowsList and all(isinstance(i, bool) for i in rowsList): |
|
rowsList = [index for index, item in enumerate(rowsList) if item] |
|
if colsList and all(isinstance(i, bool) for i in colsList): |
|
colsList = [index for index, item in enumerate(colsList) if item] |
|
|
|
|
|
rowsList = [a2idx(k, self.rows) for k in rowsList] |
|
colsList = [a2idx(k, self.cols) for k in colsList] |
|
|
|
return self._eval_extract(rowsList, colsList) |
|
|
|
def get_diag_blocks(self): |
|
"""Obtains the square sub-matrices on the main diagonal of a square matrix. |
|
|
|
Useful for inverting symbolic matrices or solving systems of |
|
linear equations which may be decoupled by having a block diagonal |
|
structure. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x, y, z |
|
>>> A = Matrix([[1, 3, 0, 0], [y, z*z, 0, 0], [0, 0, x, 0], [0, 0, 0, 0]]) |
|
>>> a1, a2, a3 = A.get_diag_blocks() |
|
>>> a1 |
|
Matrix([ |
|
[1, 3], |
|
[y, z**2]]) |
|
>>> a2 |
|
Matrix([[x]]) |
|
>>> a3 |
|
Matrix([[0]]) |
|
|
|
""" |
|
return self._eval_get_diag_blocks() |
|
|
|
@classmethod |
|
def hstack(cls, *args): |
|
"""Return a matrix formed by joining args horizontally (i.e. |
|
by repeated application of row_join). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, eye |
|
>>> Matrix.hstack(eye(2), 2*eye(2)) |
|
Matrix([ |
|
[1, 0, 2, 0], |
|
[0, 1, 0, 2]]) |
|
""" |
|
if len(args) == 0: |
|
return cls._new() |
|
|
|
kls = type(args[0]) |
|
return reduce(kls.row_join, args) |
|
|
|
def reshape(self, rows, cols): |
|
"""Reshape the matrix. Total number of elements must remain the same. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 3, lambda i, j: 1) |
|
>>> m |
|
Matrix([ |
|
[1, 1, 1], |
|
[1, 1, 1]]) |
|
>>> m.reshape(1, 6) |
|
Matrix([[1, 1, 1, 1, 1, 1]]) |
|
>>> m.reshape(3, 2) |
|
Matrix([ |
|
[1, 1], |
|
[1, 1], |
|
[1, 1]]) |
|
|
|
""" |
|
if self.rows * self.cols != rows * cols: |
|
raise ValueError("Invalid reshape parameters %d %d" % (rows, cols)) |
|
return self._new(rows, cols, lambda i, j: self[i * cols + j]) |
|
|
|
def row_del(self, row): |
|
"""Delete the specified row.""" |
|
if row < 0: |
|
row += self.rows |
|
if not 0 <= row < self.rows: |
|
raise IndexError("Row {} is out of range.".format(row)) |
|
|
|
return self._eval_row_del(row) |
|
|
|
def row_insert(self, pos, other): |
|
"""Insert one or more rows at the given row position. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(1, 3) |
|
>>> M.row_insert(1, V) |
|
Matrix([ |
|
[0, 0, 0], |
|
[1, 1, 1], |
|
[0, 0, 0], |
|
[0, 0, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
row |
|
col_insert |
|
""" |
|
|
|
if not self: |
|
return self._new(other) |
|
|
|
pos = as_int(pos) |
|
|
|
if pos < 0: |
|
pos = self.rows + pos |
|
if pos < 0: |
|
pos = 0 |
|
elif pos > self.rows: |
|
pos = self.rows |
|
|
|
if self.cols != other.cols: |
|
raise ShapeError( |
|
"The matrices have incompatible number of columns ({} and {})" |
|
.format(self.cols, other.cols)) |
|
|
|
return self._eval_row_insert(pos, other) |
|
|
|
def row_join(self, other): |
|
"""Concatenates two matrices along self's last and rhs's first column |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros, ones |
|
>>> M = zeros(3) |
|
>>> V = ones(3, 1) |
|
>>> M.row_join(V) |
|
Matrix([ |
|
[0, 0, 0, 1], |
|
[0, 0, 0, 1], |
|
[0, 0, 0, 1]]) |
|
|
|
See Also |
|
======== |
|
|
|
row |
|
col_join |
|
""" |
|
|
|
if self.cols == 0 and self.rows != other.rows: |
|
return self._new(other.rows, 0, []).row_join(other) |
|
|
|
if self.rows != other.rows: |
|
raise ShapeError( |
|
"The matrices have incompatible number of rows ({} and {})" |
|
.format(self.rows, other.rows)) |
|
return self._eval_row_join(other) |
|
|
|
def diagonal(self, k=0): |
|
"""Returns the kth diagonal of self. The main diagonal |
|
corresponds to `k=0`; diagonals above and below correspond to |
|
`k > 0` and `k < 0`, respectively. The values of `self[i, j]` |
|
for which `j - i = k`, are returned in order of increasing |
|
`i + j`, starting with `i + j = |k|`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(3, 3, lambda i, j: j - i); m |
|
Matrix([ |
|
[ 0, 1, 2], |
|
[-1, 0, 1], |
|
[-2, -1, 0]]) |
|
>>> _.diagonal() |
|
Matrix([[0, 0, 0]]) |
|
>>> m.diagonal(1) |
|
Matrix([[1, 1]]) |
|
>>> m.diagonal(-2) |
|
Matrix([[-2]]) |
|
|
|
Even though the diagonal is returned as a Matrix, the element |
|
retrieval can be done with a single index: |
|
|
|
>>> Matrix.diag(1, 2, 3).diagonal()[1] # instead of [0, 1] |
|
2 |
|
|
|
See Also |
|
======== |
|
|
|
diag |
|
""" |
|
rv = [] |
|
k = as_int(k) |
|
r = 0 if k > 0 else -k |
|
c = 0 if r else k |
|
while True: |
|
if r == self.rows or c == self.cols: |
|
break |
|
rv.append(self[r, c]) |
|
r += 1 |
|
c += 1 |
|
if not rv: |
|
raise ValueError(filldedent(''' |
|
The %s diagonal is out of range [%s, %s]''' % ( |
|
k, 1 - self.rows, self.cols - 1))) |
|
return self._new(1, len(rv), rv) |
|
|
|
def row(self, i): |
|
"""Elementary row selector. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import eye |
|
>>> eye(2).row(0) |
|
Matrix([[1, 0]]) |
|
|
|
See Also |
|
======== |
|
|
|
col |
|
row_del |
|
row_join |
|
row_insert |
|
""" |
|
return self[i, :] |
|
|
|
@property |
|
def shape(self): |
|
"""The shape (dimensions) of the matrix as the 2-tuple (rows, cols). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import zeros |
|
>>> M = zeros(2, 3) |
|
>>> M.shape |
|
(2, 3) |
|
>>> M.rows |
|
2 |
|
>>> M.cols |
|
3 |
|
""" |
|
return (self.rows, self.cols) |
|
|
|
def todok(self): |
|
"""Return the matrix as dictionary of keys. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> M = Matrix.eye(3) |
|
>>> M.todok() |
|
{(0, 0): 1, (1, 1): 1, (2, 2): 1} |
|
""" |
|
return self._eval_todok() |
|
|
|
def tolist(self): |
|
"""Return the Matrix as a nested Python list. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, ones |
|
>>> m = Matrix(3, 3, range(9)) |
|
>>> m |
|
Matrix([ |
|
[0, 1, 2], |
|
[3, 4, 5], |
|
[6, 7, 8]]) |
|
>>> m.tolist() |
|
[[0, 1, 2], [3, 4, 5], [6, 7, 8]] |
|
>>> ones(3, 0).tolist() |
|
[[], [], []] |
|
|
|
When there are no rows then it will not be possible to tell how |
|
many columns were in the original matrix: |
|
|
|
>>> ones(0, 3).tolist() |
|
[] |
|
|
|
""" |
|
if not self.rows: |
|
return [] |
|
if not self.cols: |
|
return [[] for i in range(self.rows)] |
|
return self._eval_tolist() |
|
|
|
def todod(M): |
|
"""Returns matrix as dict of dicts containing non-zero elements of the Matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[0, 1],[0, 3]]) |
|
>>> A |
|
Matrix([ |
|
[0, 1], |
|
[0, 3]]) |
|
>>> A.todod() |
|
{0: {1: 1}, 1: {1: 3}} |
|
|
|
|
|
""" |
|
rowsdict = {} |
|
Mlol = M.tolist() |
|
for i, Mi in enumerate(Mlol): |
|
row = {j: Mij for j, Mij in enumerate(Mi) if Mij} |
|
if row: |
|
rowsdict[i] = row |
|
return rowsdict |
|
|
|
def vec(self): |
|
"""Return the Matrix converted into a one column matrix by stacking columns |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m=Matrix([[1, 3], [2, 4]]) |
|
>>> m |
|
Matrix([ |
|
[1, 3], |
|
[2, 4]]) |
|
>>> m.vec() |
|
Matrix([ |
|
[1], |
|
[2], |
|
[3], |
|
[4]]) |
|
|
|
See Also |
|
======== |
|
|
|
vech |
|
""" |
|
return self._eval_vec() |
|
|
|
def vech(self, diagonal=True, check_symmetry=True): |
|
"""Reshapes the matrix into a column vector by stacking the |
|
elements in the lower triangle. |
|
|
|
Parameters |
|
========== |
|
|
|
diagonal : bool, optional |
|
If ``True``, it includes the diagonal elements. |
|
|
|
check_symmetry : bool, optional |
|
If ``True``, it checks whether the matrix is symmetric. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m=Matrix([[1, 2], [2, 3]]) |
|
>>> m |
|
Matrix([ |
|
[1, 2], |
|
[2, 3]]) |
|
>>> m.vech() |
|
Matrix([ |
|
[1], |
|
[2], |
|
[3]]) |
|
>>> m.vech(diagonal=False) |
|
Matrix([[2]]) |
|
|
|
Notes |
|
===== |
|
|
|
This should work for symmetric matrices and ``vech`` can |
|
represent symmetric matrices in vector form with less size than |
|
``vec``. |
|
|
|
See Also |
|
======== |
|
|
|
vec |
|
""" |
|
if not self.is_square: |
|
raise NonSquareMatrixError |
|
|
|
if check_symmetry and not self.is_symmetric(): |
|
raise ValueError("The matrix is not symmetric.") |
|
|
|
return self._eval_vech(diagonal) |
|
|
|
@classmethod |
|
def vstack(cls, *args): |
|
"""Return a matrix formed by joining args vertically (i.e. |
|
by repeated application of col_join). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, eye |
|
>>> Matrix.vstack(eye(2), 2*eye(2)) |
|
Matrix([ |
|
[1, 0], |
|
[0, 1], |
|
[2, 0], |
|
[0, 2]]) |
|
""" |
|
if len(args) == 0: |
|
return cls._new() |
|
|
|
kls = type(args[0]) |
|
return reduce(kls.col_join, args) |
|
|
|
|
|
class MatrixSpecial(MatrixRequired): |
|
"""Construction of special matrices""" |
|
|
|
@classmethod |
|
def _eval_diag(cls, rows, cols, diag_dict): |
|
"""diag_dict is a defaultdict containing |
|
all the entries of the diagonal matrix.""" |
|
def entry(i, j): |
|
return diag_dict[(i, j)] |
|
return cls._new(rows, cols, entry) |
|
|
|
@classmethod |
|
def _eval_eye(cls, rows, cols): |
|
vals = [cls.zero]*(rows*cols) |
|
vals[::cols+1] = [cls.one]*min(rows, cols) |
|
return cls._new(rows, cols, vals, copy=False) |
|
|
|
@classmethod |
|
def _eval_jordan_block(cls, size: int, eigenvalue, band='upper'): |
|
if band == 'lower': |
|
def entry(i, j): |
|
if i == j: |
|
return eigenvalue |
|
elif j + 1 == i: |
|
return cls.one |
|
return cls.zero |
|
else: |
|
def entry(i, j): |
|
if i == j: |
|
return eigenvalue |
|
elif i + 1 == j: |
|
return cls.one |
|
return cls.zero |
|
return cls._new(size, size, entry) |
|
|
|
@classmethod |
|
def _eval_ones(cls, rows, cols): |
|
def entry(i, j): |
|
return cls.one |
|
return cls._new(rows, cols, entry) |
|
|
|
@classmethod |
|
def _eval_zeros(cls, rows, cols): |
|
return cls._new(rows, cols, [cls.zero]*(rows*cols), copy=False) |
|
|
|
@classmethod |
|
def _eval_wilkinson(cls, n): |
|
def entry(i, j): |
|
return cls.one if i + 1 == j else cls.zero |
|
|
|
D = cls._new(2*n + 1, 2*n + 1, entry) |
|
|
|
wminus = cls.diag(list(range(-n, n + 1)), unpack=True) + D + D.T |
|
wplus = abs(cls.diag(list(range(-n, n + 1)), unpack=True)) + D + D.T |
|
|
|
return wminus, wplus |
|
|
|
@classmethod |
|
def diag(kls, *args, strict=False, unpack=True, rows=None, cols=None, **kwargs): |
|
"""Returns a matrix with the specified diagonal. |
|
If matrices are passed, a block-diagonal matrix |
|
is created (i.e. the "direct sum" of the matrices). |
|
|
|
kwargs |
|
====== |
|
|
|
rows : rows of the resulting matrix; computed if |
|
not given. |
|
|
|
cols : columns of the resulting matrix; computed if |
|
not given. |
|
|
|
cls : class for the resulting matrix |
|
|
|
unpack : bool which, when True (default), unpacks a single |
|
sequence rather than interpreting it as a Matrix. |
|
|
|
strict : bool which, when False (default), allows Matrices to |
|
have variable-length rows. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> Matrix.diag(1, 2, 3) |
|
Matrix([ |
|
[1, 0, 0], |
|
[0, 2, 0], |
|
[0, 0, 3]]) |
|
|
|
The current default is to unpack a single sequence. If this is |
|
not desired, set `unpack=False` and it will be interpreted as |
|
a matrix. |
|
|
|
>>> Matrix.diag([1, 2, 3]) == Matrix.diag(1, 2, 3) |
|
True |
|
|
|
When more than one element is passed, each is interpreted as |
|
something to put on the diagonal. Lists are converted to |
|
matrices. Filling of the diagonal always continues from |
|
the bottom right hand corner of the previous item: this |
|
will create a block-diagonal matrix whether the matrices |
|
are square or not. |
|
|
|
>>> col = [1, 2, 3] |
|
>>> row = [[4, 5]] |
|
>>> Matrix.diag(col, row) |
|
Matrix([ |
|
[1, 0, 0], |
|
[2, 0, 0], |
|
[3, 0, 0], |
|
[0, 4, 5]]) |
|
|
|
When `unpack` is False, elements within a list need not all be |
|
of the same length. Setting `strict` to True would raise a |
|
ValueError for the following: |
|
|
|
>>> Matrix.diag([[1, 2, 3], [4, 5], [6]], unpack=False) |
|
Matrix([ |
|
[1, 2, 3], |
|
[4, 5, 0], |
|
[6, 0, 0]]) |
|
|
|
The type of the returned matrix can be set with the ``cls`` |
|
keyword. |
|
|
|
>>> from sympy import ImmutableMatrix |
|
>>> from sympy.utilities.misc import func_name |
|
>>> func_name(Matrix.diag(1, cls=ImmutableMatrix)) |
|
'ImmutableDenseMatrix' |
|
|
|
A zero dimension matrix can be used to position the start of |
|
the filling at the start of an arbitrary row or column: |
|
|
|
>>> from sympy import ones |
|
>>> r2 = ones(0, 2) |
|
>>> Matrix.diag(r2, 1, 2) |
|
Matrix([ |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 2]]) |
|
|
|
See Also |
|
======== |
|
eye |
|
diagonal |
|
.dense.diag |
|
.expressions.blockmatrix.BlockMatrix |
|
.sparsetools.banded |
|
""" |
|
from sympy.matrices.matrixbase import MatrixBase |
|
from sympy.matrices.dense import Matrix |
|
from sympy.matrices import SparseMatrix |
|
klass = kwargs.get('cls', kls) |
|
if unpack and len(args) == 1 and is_sequence(args[0]) and \ |
|
not isinstance(args[0], MatrixBase): |
|
args = args[0] |
|
|
|
|
|
diag_entries = defaultdict(int) |
|
rmax = cmax = 0 |
|
for m in args: |
|
if isinstance(m, list): |
|
if strict: |
|
|
|
_ = Matrix(m) |
|
r, c = _.shape |
|
m = _.tolist() |
|
else: |
|
r, c, smat = SparseMatrix._handle_creation_inputs(m) |
|
for (i, j), _ in smat.items(): |
|
diag_entries[(i + rmax, j + cmax)] = _ |
|
m = [] |
|
elif hasattr(m, 'shape'): |
|
|
|
r, c = m.shape |
|
m = m.tolist() |
|
else: |
|
diag_entries[(rmax, cmax)] = m |
|
rmax += 1 |
|
cmax += 1 |
|
continue |
|
|
|
for i, mi in enumerate(m): |
|
for j, _ in enumerate(mi): |
|
diag_entries[(i + rmax, j + cmax)] = _ |
|
rmax += r |
|
cmax += c |
|
if rows is None: |
|
rows, cols = cols, rows |
|
if rows is None: |
|
rows, cols = rmax, cmax |
|
else: |
|
cols = rows if cols is None else cols |
|
if rows < rmax or cols < cmax: |
|
raise ValueError(filldedent(''' |
|
The constructed matrix is {} x {} but a size of {} x {} |
|
was specified.'''.format(rmax, cmax, rows, cols))) |
|
return klass._eval_diag(rows, cols, diag_entries) |
|
|
|
@classmethod |
|
def eye(kls, rows, cols=None, **kwargs): |
|
"""Returns an identity matrix. |
|
|
|
Parameters |
|
========== |
|
|
|
rows : rows of the matrix |
|
cols : cols of the matrix (if None, cols=rows) |
|
|
|
kwargs |
|
====== |
|
cls : class of the returned matrix |
|
""" |
|
if cols is None: |
|
cols = rows |
|
if rows < 0 or cols < 0: |
|
raise ValueError("Cannot create a {} x {} matrix. " |
|
"Both dimensions must be positive".format(rows, cols)) |
|
klass = kwargs.get('cls', kls) |
|
rows, cols = as_int(rows), as_int(cols) |
|
|
|
return klass._eval_eye(rows, cols) |
|
|
|
@classmethod |
|
def jordan_block(kls, size=None, eigenvalue=None, *, band='upper', **kwargs): |
|
"""Returns a Jordan block |
|
|
|
Parameters |
|
========== |
|
|
|
size : Integer, optional |
|
Specifies the shape of the Jordan block matrix. |
|
|
|
eigenvalue : Number or Symbol |
|
Specifies the value for the main diagonal of the matrix. |
|
|
|
.. note:: |
|
The keyword ``eigenval`` is also specified as an alias |
|
of this keyword, but it is not recommended to use. |
|
|
|
We may deprecate the alias in later release. |
|
|
|
band : 'upper' or 'lower', optional |
|
Specifies the position of the off-diagonal to put `1` s on. |
|
|
|
cls : Matrix, optional |
|
Specifies the matrix class of the output form. |
|
|
|
If it is not specified, the class type where the method is |
|
being executed on will be returned. |
|
|
|
Returns |
|
======= |
|
|
|
Matrix |
|
A Jordan block matrix. |
|
|
|
Raises |
|
====== |
|
|
|
ValueError |
|
If insufficient arguments are given for matrix size |
|
specification, or no eigenvalue is given. |
|
|
|
Examples |
|
======== |
|
|
|
Creating a default Jordan block: |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x |
|
>>> Matrix.jordan_block(4, x) |
|
Matrix([ |
|
[x, 1, 0, 0], |
|
[0, x, 1, 0], |
|
[0, 0, x, 1], |
|
[0, 0, 0, x]]) |
|
|
|
Creating an alternative Jordan block matrix where `1` is on |
|
lower off-diagonal: |
|
|
|
>>> Matrix.jordan_block(4, x, band='lower') |
|
Matrix([ |
|
[x, 0, 0, 0], |
|
[1, x, 0, 0], |
|
[0, 1, x, 0], |
|
[0, 0, 1, x]]) |
|
|
|
Creating a Jordan block with keyword arguments |
|
|
|
>>> Matrix.jordan_block(size=4, eigenvalue=x) |
|
Matrix([ |
|
[x, 1, 0, 0], |
|
[0, x, 1, 0], |
|
[0, 0, x, 1], |
|
[0, 0, 0, x]]) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Jordan_matrix |
|
""" |
|
klass = kwargs.pop('cls', kls) |
|
|
|
eigenval = kwargs.get('eigenval', None) |
|
if eigenvalue is None and eigenval is None: |
|
raise ValueError("Must supply an eigenvalue") |
|
elif eigenvalue != eigenval and None not in (eigenval, eigenvalue): |
|
raise ValueError( |
|
"Inconsistent values are given: 'eigenval'={}, " |
|
"'eigenvalue'={}".format(eigenval, eigenvalue)) |
|
else: |
|
if eigenval is not None: |
|
eigenvalue = eigenval |
|
|
|
if size is None: |
|
raise ValueError("Must supply a matrix size") |
|
|
|
size = as_int(size) |
|
return klass._eval_jordan_block(size, eigenvalue, band) |
|
|
|
@classmethod |
|
def ones(kls, rows, cols=None, **kwargs): |
|
"""Returns a matrix of ones. |
|
|
|
Parameters |
|
========== |
|
|
|
rows : rows of the matrix |
|
cols : cols of the matrix (if None, cols=rows) |
|
|
|
kwargs |
|
====== |
|
cls : class of the returned matrix |
|
""" |
|
if cols is None: |
|
cols = rows |
|
klass = kwargs.get('cls', kls) |
|
rows, cols = as_int(rows), as_int(cols) |
|
|
|
return klass._eval_ones(rows, cols) |
|
|
|
@classmethod |
|
def zeros(kls, rows, cols=None, **kwargs): |
|
"""Returns a matrix of zeros. |
|
|
|
Parameters |
|
========== |
|
|
|
rows : rows of the matrix |
|
cols : cols of the matrix (if None, cols=rows) |
|
|
|
kwargs |
|
====== |
|
cls : class of the returned matrix |
|
""" |
|
if cols is None: |
|
cols = rows |
|
if rows < 0 or cols < 0: |
|
raise ValueError("Cannot create a {} x {} matrix. " |
|
"Both dimensions must be positive".format(rows, cols)) |
|
klass = kwargs.get('cls', kls) |
|
rows, cols = as_int(rows), as_int(cols) |
|
|
|
return klass._eval_zeros(rows, cols) |
|
|
|
@classmethod |
|
def companion(kls, poly): |
|
"""Returns a companion matrix of a polynomial. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, Poly, Symbol, symbols |
|
>>> x = Symbol('x') |
|
>>> c0, c1, c2, c3, c4 = symbols('c0:5') |
|
>>> p = Poly(c0 + c1*x + c2*x**2 + c3*x**3 + c4*x**4 + x**5, x) |
|
>>> Matrix.companion(p) |
|
Matrix([ |
|
[0, 0, 0, 0, -c0], |
|
[1, 0, 0, 0, -c1], |
|
[0, 1, 0, 0, -c2], |
|
[0, 0, 1, 0, -c3], |
|
[0, 0, 0, 1, -c4]]) |
|
""" |
|
poly = kls._sympify(poly) |
|
if not isinstance(poly, Poly): |
|
raise ValueError("{} must be a Poly instance.".format(poly)) |
|
if not poly.is_monic: |
|
raise ValueError("{} must be a monic polynomial.".format(poly)) |
|
if not poly.is_univariate: |
|
raise ValueError( |
|
"{} must be a univariate polynomial.".format(poly)) |
|
|
|
size = poly.degree() |
|
if not size >= 1: |
|
raise ValueError( |
|
"{} must have degree not less than 1.".format(poly)) |
|
|
|
coeffs = poly.all_coeffs() |
|
def entry(i, j): |
|
if j == size - 1: |
|
return -coeffs[-1 - i] |
|
elif i == j + 1: |
|
return kls.one |
|
return kls.zero |
|
return kls._new(size, size, entry) |
|
|
|
|
|
@classmethod |
|
def wilkinson(kls, n, **kwargs): |
|
"""Returns two square Wilkinson Matrix of size 2*n + 1 |
|
$W_{2n + 1}^-, W_{2n + 1}^+ =$ Wilkinson(n) |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> wminus, wplus = Matrix.wilkinson(3) |
|
>>> wminus |
|
Matrix([ |
|
[-3, 1, 0, 0, 0, 0, 0], |
|
[ 1, -2, 1, 0, 0, 0, 0], |
|
[ 0, 1, -1, 1, 0, 0, 0], |
|
[ 0, 0, 1, 0, 1, 0, 0], |
|
[ 0, 0, 0, 1, 1, 1, 0], |
|
[ 0, 0, 0, 0, 1, 2, 1], |
|
[ 0, 0, 0, 0, 0, 1, 3]]) |
|
>>> wplus |
|
Matrix([ |
|
[3, 1, 0, 0, 0, 0, 0], |
|
[1, 2, 1, 0, 0, 0, 0], |
|
[0, 1, 1, 1, 0, 0, 0], |
|
[0, 0, 1, 0, 1, 0, 0], |
|
[0, 0, 0, 1, 1, 1, 0], |
|
[0, 0, 0, 0, 1, 2, 1], |
|
[0, 0, 0, 0, 0, 1, 3]]) |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://blogs.mathworks.com/cleve/2013/04/15/wilkinsons-matrices-2/ |
|
.. [2] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Claredon Press, Oxford, 1965, 662 pp. |
|
|
|
""" |
|
klass = kwargs.get('cls', kls) |
|
n = as_int(n) |
|
return klass._eval_wilkinson(n) |
|
|
|
class MatrixProperties(MatrixRequired): |
|
"""Provides basic properties of a matrix.""" |
|
|
|
def _eval_atoms(self, *types): |
|
result = set() |
|
for i in self: |
|
result.update(i.atoms(*types)) |
|
return result |
|
|
|
def _eval_free_symbols(self): |
|
return set().union(*(i.free_symbols for i in self if i)) |
|
|
|
def _eval_has(self, *patterns): |
|
return any(a.has(*patterns) for a in self) |
|
|
|
def _eval_is_anti_symmetric(self, simpfunc): |
|
if not all(simpfunc(self[i, j] + self[j, i]).is_zero for i in range(self.rows) for j in range(self.cols)): |
|
return False |
|
return True |
|
|
|
def _eval_is_diagonal(self): |
|
for i in range(self.rows): |
|
for j in range(self.cols): |
|
if i != j and self[i, j]: |
|
return False |
|
return True |
|
|
|
|
|
|
|
|
|
def _eval_is_matrix_hermitian(self, simpfunc): |
|
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i].conjugate())) |
|
return mat.is_zero_matrix |
|
|
|
def _eval_is_Identity(self) -> FuzzyBool: |
|
def dirac(i, j): |
|
if i == j: |
|
return 1 |
|
return 0 |
|
|
|
return all(self[i, j] == dirac(i, j) |
|
for i in range(self.rows) |
|
for j in range(self.cols)) |
|
|
|
def _eval_is_lower_hessenberg(self): |
|
return all(self[i, j].is_zero |
|
for i in range(self.rows) |
|
for j in range(i + 2, self.cols)) |
|
|
|
def _eval_is_lower(self): |
|
return all(self[i, j].is_zero |
|
for i in range(self.rows) |
|
for j in range(i + 1, self.cols)) |
|
|
|
def _eval_is_symbolic(self): |
|
return self.has(Symbol) |
|
|
|
def _eval_is_symmetric(self, simpfunc): |
|
mat = self._new(self.rows, self.cols, lambda i, j: simpfunc(self[i, j] - self[j, i])) |
|
return mat.is_zero_matrix |
|
|
|
def _eval_is_zero_matrix(self): |
|
if any(i.is_zero == False for i in self): |
|
return False |
|
if any(i.is_zero is None for i in self): |
|
return None |
|
return True |
|
|
|
def _eval_is_upper_hessenberg(self): |
|
return all(self[i, j].is_zero |
|
for i in range(2, self.rows) |
|
for j in range(min(self.cols, (i - 1)))) |
|
|
|
def _eval_values(self): |
|
return [i for i in self if not i.is_zero] |
|
|
|
def _has_positive_diagonals(self): |
|
diagonal_entries = (self[i, i] for i in range(self.rows)) |
|
return fuzzy_and(x.is_positive for x in diagonal_entries) |
|
|
|
def _has_nonnegative_diagonals(self): |
|
diagonal_entries = (self[i, i] for i in range(self.rows)) |
|
return fuzzy_and(x.is_nonnegative for x in diagonal_entries) |
|
|
|
def atoms(self, *types): |
|
"""Returns the atoms that form the current object. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import Matrix |
|
>>> Matrix([[x]]) |
|
Matrix([[x]]) |
|
>>> _.atoms() |
|
{x} |
|
>>> Matrix([[x, y], [y, x]]) |
|
Matrix([ |
|
[x, y], |
|
[y, x]]) |
|
>>> _.atoms() |
|
{x, y} |
|
""" |
|
|
|
types = tuple(t if isinstance(t, type) else type(t) for t in types) |
|
if not types: |
|
types = (Atom,) |
|
return self._eval_atoms(*types) |
|
|
|
@property |
|
def free_symbols(self): |
|
"""Returns the free symbols within the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import Matrix |
|
>>> Matrix([[x], [1]]).free_symbols |
|
{x} |
|
""" |
|
return self._eval_free_symbols() |
|
|
|
def has(self, *patterns): |
|
"""Test whether any subexpression matches any of the patterns. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, SparseMatrix, Float |
|
>>> from sympy.abc import x, y |
|
>>> A = Matrix(((1, x), (0.2, 3))) |
|
>>> B = SparseMatrix(((1, x), (0.2, 3))) |
|
>>> A.has(x) |
|
True |
|
>>> A.has(y) |
|
False |
|
>>> A.has(Float) |
|
True |
|
>>> B.has(x) |
|
True |
|
>>> B.has(y) |
|
False |
|
>>> B.has(Float) |
|
True |
|
""" |
|
return self._eval_has(*patterns) |
|
|
|
def is_anti_symmetric(self, simplify=True): |
|
"""Check if matrix M is an antisymmetric matrix, |
|
that is, M is a square matrix with all M[i, j] == -M[j, i]. |
|
|
|
When ``simplify=True`` (default), the sum M[i, j] + M[j, i] is |
|
simplified before testing to see if it is zero. By default, |
|
the SymPy simplify function is used. To use a custom function |
|
set simplify to a function that accepts a single argument which |
|
returns a simplified expression. To skip simplification, set |
|
simplify to False but note that although this will be faster, |
|
it may induce false negatives. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, symbols |
|
>>> m = Matrix(2, 2, [0, 1, -1, 0]) |
|
>>> m |
|
Matrix([ |
|
[ 0, 1], |
|
[-1, 0]]) |
|
>>> m.is_anti_symmetric() |
|
True |
|
>>> x, y = symbols('x y') |
|
>>> m = Matrix(2, 3, [0, 0, x, -y, 0, 0]) |
|
>>> m |
|
Matrix([ |
|
[ 0, 0, x], |
|
[-y, 0, 0]]) |
|
>>> m.is_anti_symmetric() |
|
False |
|
|
|
>>> from sympy.abc import x, y |
|
>>> m = Matrix(3, 3, [0, x**2 + 2*x + 1, y, |
|
... -(x + 1)**2, 0, x*y, |
|
... -y, -x*y, 0]) |
|
|
|
Simplification of matrix elements is done by default so even |
|
though two elements which should be equal and opposite would not |
|
pass an equality test, the matrix is still reported as |
|
anti-symmetric: |
|
|
|
>>> m[0, 1] == -m[1, 0] |
|
False |
|
>>> m.is_anti_symmetric() |
|
True |
|
|
|
If ``simplify=False`` is used for the case when a Matrix is already |
|
simplified, this will speed things up. Here, we see that without |
|
simplification the matrix does not appear anti-symmetric: |
|
|
|
>>> print(m.is_anti_symmetric(simplify=False)) |
|
None |
|
|
|
But if the matrix were already expanded, then it would appear |
|
anti-symmetric and simplification in the is_anti_symmetric routine |
|
is not needed: |
|
|
|
>>> m = m.expand() |
|
>>> m.is_anti_symmetric(simplify=False) |
|
True |
|
""" |
|
|
|
simpfunc = simplify |
|
if not isfunction(simplify): |
|
simpfunc = _simplify if simplify else lambda x: x |
|
|
|
if not self.is_square: |
|
return False |
|
return self._eval_is_anti_symmetric(simpfunc) |
|
|
|
def is_diagonal(self): |
|
"""Check if matrix is diagonal, |
|
that is matrix in which the entries outside the main diagonal are all zero. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, diag |
|
>>> m = Matrix(2, 2, [1, 0, 0, 2]) |
|
>>> m |
|
Matrix([ |
|
[1, 0], |
|
[0, 2]]) |
|
>>> m.is_diagonal() |
|
True |
|
|
|
>>> m = Matrix(2, 2, [1, 1, 0, 2]) |
|
>>> m |
|
Matrix([ |
|
[1, 1], |
|
[0, 2]]) |
|
>>> m.is_diagonal() |
|
False |
|
|
|
>>> m = diag(1, 2, 3) |
|
>>> m |
|
Matrix([ |
|
[1, 0, 0], |
|
[0, 2, 0], |
|
[0, 0, 3]]) |
|
>>> m.is_diagonal() |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
is_lower |
|
is_upper |
|
sympy.matrices.matrixbase.MatrixCommon.is_diagonalizable |
|
diagonalize |
|
""" |
|
return self._eval_is_diagonal() |
|
|
|
@property |
|
def is_weakly_diagonally_dominant(self): |
|
r"""Tests if the matrix is row weakly diagonally dominant. |
|
|
|
Explanation |
|
=========== |
|
|
|
A $n, n$ matrix $A$ is row weakly diagonally dominant if |
|
|
|
.. math:: |
|
\left|A_{i, i}\right| \ge \sum_{j = 0, j \neq i}^{n-1} |
|
\left|A_{i, j}\right| \quad {\text{for all }} |
|
i \in \{ 0, ..., n-1 \} |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) |
|
>>> A.is_weakly_diagonally_dominant |
|
True |
|
|
|
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) |
|
>>> A.is_weakly_diagonally_dominant |
|
False |
|
|
|
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) |
|
>>> A.is_weakly_diagonally_dominant |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
If you want to test whether a matrix is column diagonally |
|
dominant, you can apply the test after transposing the matrix. |
|
""" |
|
if not self.is_square: |
|
return False |
|
|
|
rows, cols = self.shape |
|
|
|
def test_row(i): |
|
summation = self.zero |
|
for j in range(cols): |
|
if i != j: |
|
summation += Abs(self[i, j]) |
|
return (Abs(self[i, i]) - summation).is_nonnegative |
|
|
|
return fuzzy_and(test_row(i) for i in range(rows)) |
|
|
|
@property |
|
def is_strongly_diagonally_dominant(self): |
|
r"""Tests if the matrix is row strongly diagonally dominant. |
|
|
|
Explanation |
|
=========== |
|
|
|
A $n, n$ matrix $A$ is row strongly diagonally dominant if |
|
|
|
.. math:: |
|
\left|A_{i, i}\right| > \sum_{j = 0, j \neq i}^{n-1} |
|
\left|A_{i, j}\right| \quad {\text{for all }} |
|
i \in \{ 0, ..., n-1 \} |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[3, -2, 1], [1, -3, 2], [-1, 2, 4]]) |
|
>>> A.is_strongly_diagonally_dominant |
|
False |
|
|
|
>>> A = Matrix([[-2, 2, 1], [1, 3, 2], [1, -2, 0]]) |
|
>>> A.is_strongly_diagonally_dominant |
|
False |
|
|
|
>>> A = Matrix([[-4, 2, 1], [1, 6, 2], [1, -2, 5]]) |
|
>>> A.is_strongly_diagonally_dominant |
|
True |
|
|
|
Notes |
|
===== |
|
|
|
If you want to test whether a matrix is column diagonally |
|
dominant, you can apply the test after transposing the matrix. |
|
""" |
|
if not self.is_square: |
|
return False |
|
|
|
rows, cols = self.shape |
|
|
|
def test_row(i): |
|
summation = self.zero |
|
for j in range(cols): |
|
if i != j: |
|
summation += Abs(self[i, j]) |
|
return (Abs(self[i, i]) - summation).is_positive |
|
|
|
return fuzzy_and(test_row(i) for i in range(rows)) |
|
|
|
@property |
|
def is_hermitian(self): |
|
"""Checks if the matrix is Hermitian. |
|
|
|
In a Hermitian matrix element i,j is the complex conjugate of |
|
element j,i. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy import I |
|
>>> from sympy.abc import x |
|
>>> a = Matrix([[1, I], [-I, 1]]) |
|
>>> a |
|
Matrix([ |
|
[ 1, I], |
|
[-I, 1]]) |
|
>>> a.is_hermitian |
|
True |
|
>>> a[0, 0] = 2*I |
|
>>> a.is_hermitian |
|
False |
|
>>> a[0, 0] = x |
|
>>> a.is_hermitian |
|
>>> a[0, 1] = a[1, 0]*I |
|
>>> a.is_hermitian |
|
False |
|
""" |
|
if not self.is_square: |
|
return False |
|
|
|
return self._eval_is_matrix_hermitian(_simplify) |
|
|
|
@property |
|
def is_Identity(self) -> FuzzyBool: |
|
if not self.is_square: |
|
return False |
|
return self._eval_is_Identity() |
|
|
|
@property |
|
def is_lower_hessenberg(self): |
|
r"""Checks if the matrix is in the lower-Hessenberg form. |
|
|
|
The lower hessenberg matrix has zero entries |
|
above the first superdiagonal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[1, 2, 0, 0], [5, 2, 3, 0], [3, 4, 3, 7], [5, 6, 1, 1]]) |
|
>>> a |
|
Matrix([ |
|
[1, 2, 0, 0], |
|
[5, 2, 3, 0], |
|
[3, 4, 3, 7], |
|
[5, 6, 1, 1]]) |
|
>>> a.is_lower_hessenberg |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
is_upper_hessenberg |
|
is_lower |
|
""" |
|
return self._eval_is_lower_hessenberg() |
|
|
|
@property |
|
def is_lower(self): |
|
"""Check if matrix is a lower triangular matrix. True can be returned |
|
even if the matrix is not square. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, [1, 0, 0, 1]) |
|
>>> m |
|
Matrix([ |
|
[1, 0], |
|
[0, 1]]) |
|
>>> m.is_lower |
|
True |
|
|
|
>>> m = Matrix(4, 3, [0, 0, 0, 2, 0, 0, 1, 4, 0, 6, 6, 5]) |
|
>>> m |
|
Matrix([ |
|
[0, 0, 0], |
|
[2, 0, 0], |
|
[1, 4, 0], |
|
[6, 6, 5]]) |
|
>>> m.is_lower |
|
True |
|
|
|
>>> from sympy.abc import x, y |
|
>>> m = Matrix(2, 2, [x**2 + y, y**2 + x, 0, x + y]) |
|
>>> m |
|
Matrix([ |
|
[x**2 + y, x + y**2], |
|
[ 0, x + y]]) |
|
>>> m.is_lower |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
is_upper |
|
is_diagonal |
|
is_lower_hessenberg |
|
""" |
|
return self._eval_is_lower() |
|
|
|
@property |
|
def is_square(self): |
|
"""Checks if a matrix is square. |
|
|
|
A matrix is square if the number of rows equals the number of columns. |
|
The empty matrix is square by definition, since the number of rows and |
|
the number of columns are both zero. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[1, 2, 3], [4, 5, 6]]) |
|
>>> b = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
>>> c = Matrix([]) |
|
>>> a.is_square |
|
False |
|
>>> b.is_square |
|
True |
|
>>> c.is_square |
|
True |
|
""" |
|
return self.rows == self.cols |
|
|
|
def is_symbolic(self): |
|
"""Checks if any elements contain Symbols. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> from sympy.abc import x, y |
|
>>> M = Matrix([[x, y], [1, 0]]) |
|
>>> M.is_symbolic() |
|
True |
|
|
|
""" |
|
return self._eval_is_symbolic() |
|
|
|
def is_symmetric(self, simplify=True): |
|
"""Check if matrix is symmetric matrix, |
|
that is square matrix and is equal to its transpose. |
|
|
|
By default, simplifications occur before testing symmetry. |
|
They can be skipped using 'simplify=False'; while speeding things a bit, |
|
this may however induce false negatives. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, [0, 1, 1, 2]) |
|
>>> m |
|
Matrix([ |
|
[0, 1], |
|
[1, 2]]) |
|
>>> m.is_symmetric() |
|
True |
|
|
|
>>> m = Matrix(2, 2, [0, 1, 2, 0]) |
|
>>> m |
|
Matrix([ |
|
[0, 1], |
|
[2, 0]]) |
|
>>> m.is_symmetric() |
|
False |
|
|
|
>>> m = Matrix(2, 3, [0, 0, 0, 0, 0, 0]) |
|
>>> m |
|
Matrix([ |
|
[0, 0, 0], |
|
[0, 0, 0]]) |
|
>>> m.is_symmetric() |
|
False |
|
|
|
>>> from sympy.abc import x, y |
|
>>> m = Matrix(3, 3, [1, x**2 + 2*x + 1, y, (x + 1)**2, 2, 0, y, 0, 3]) |
|
>>> m |
|
Matrix([ |
|
[ 1, x**2 + 2*x + 1, y], |
|
[(x + 1)**2, 2, 0], |
|
[ y, 0, 3]]) |
|
>>> m.is_symmetric() |
|
True |
|
|
|
If the matrix is already simplified, you may speed-up is_symmetric() |
|
test by using 'simplify=False'. |
|
|
|
>>> bool(m.is_symmetric(simplify=False)) |
|
False |
|
>>> m1 = m.expand() |
|
>>> m1.is_symmetric(simplify=False) |
|
True |
|
""" |
|
simpfunc = simplify |
|
if not isfunction(simplify): |
|
simpfunc = _simplify if simplify else lambda x: x |
|
|
|
if not self.is_square: |
|
return False |
|
|
|
return self._eval_is_symmetric(simpfunc) |
|
|
|
@property |
|
def is_upper_hessenberg(self): |
|
"""Checks if the matrix is the upper-Hessenberg form. |
|
|
|
The upper hessenberg matrix has zero entries |
|
below the first subdiagonal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> a = Matrix([[1, 4, 2, 3], [3, 4, 1, 7], [0, 2, 3, 4], [0, 0, 1, 3]]) |
|
>>> a |
|
Matrix([ |
|
[1, 4, 2, 3], |
|
[3, 4, 1, 7], |
|
[0, 2, 3, 4], |
|
[0, 0, 1, 3]]) |
|
>>> a.is_upper_hessenberg |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
is_lower_hessenberg |
|
is_upper |
|
""" |
|
return self._eval_is_upper_hessenberg() |
|
|
|
@property |
|
def is_upper(self): |
|
"""Check if matrix is an upper triangular matrix. True can be returned |
|
even if the matrix is not square. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, [1, 0, 0, 1]) |
|
>>> m |
|
Matrix([ |
|
[1, 0], |
|
[0, 1]]) |
|
>>> m.is_upper |
|
True |
|
|
|
>>> m = Matrix(4, 3, [5, 1, 9, 0, 4, 6, 0, 0, 5, 0, 0, 0]) |
|
>>> m |
|
Matrix([ |
|
[5, 1, 9], |
|
[0, 4, 6], |
|
[0, 0, 5], |
|
[0, 0, 0]]) |
|
>>> m.is_upper |
|
True |
|
|
|
>>> m = Matrix(2, 3, [4, 2, 5, 6, 1, 1]) |
|
>>> m |
|
Matrix([ |
|
[4, 2, 5], |
|
[6, 1, 1]]) |
|
>>> m.is_upper |
|
False |
|
|
|
See Also |
|
======== |
|
|
|
is_lower |
|
is_diagonal |
|
is_upper_hessenberg |
|
""" |
|
return all(self[i, j].is_zero |
|
for i in range(1, self.rows) |
|
for j in range(min(i, self.cols))) |
|
|
|
@property |
|
def is_zero_matrix(self): |
|
"""Checks if a matrix is a zero matrix. |
|
|
|
A matrix is zero if every element is zero. A matrix need not be square |
|
to be considered zero. The empty matrix is zero by the principle of |
|
vacuous truth. For a matrix that may or may not be zero (e.g. |
|
contains a symbol), this will be None |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, zeros |
|
>>> from sympy.abc import x |
|
>>> a = Matrix([[0, 0], [0, 0]]) |
|
>>> b = zeros(3, 4) |
|
>>> c = Matrix([[0, 1], [0, 0]]) |
|
>>> d = Matrix([]) |
|
>>> e = Matrix([[x, 0], [0, 0]]) |
|
>>> a.is_zero_matrix |
|
True |
|
>>> b.is_zero_matrix |
|
True |
|
>>> c.is_zero_matrix |
|
False |
|
>>> d.is_zero_matrix |
|
True |
|
>>> e.is_zero_matrix |
|
""" |
|
return self._eval_is_zero_matrix() |
|
|
|
def values(self): |
|
"""Return non-zero values of self.""" |
|
return self._eval_values() |
|
|
|
|
|
class MatrixOperations(MatrixRequired): |
|
"""Provides basic matrix shape and elementwise |
|
operations. Should not be instantiated directly.""" |
|
|
|
def _eval_adjoint(self): |
|
return self.transpose().conjugate() |
|
|
|
def _eval_applyfunc(self, f): |
|
out = self._new(self.rows, self.cols, [f(x) for x in self]) |
|
return out |
|
|
|
def _eval_as_real_imag(self): |
|
return (self.applyfunc(re), self.applyfunc(im)) |
|
|
|
def _eval_conjugate(self): |
|
return self.applyfunc(lambda x: x.conjugate()) |
|
|
|
def _eval_permute_cols(self, perm): |
|
|
|
mapping = list(perm) |
|
|
|
def entry(i, j): |
|
return self[i, mapping[j]] |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_permute_rows(self, perm): |
|
|
|
mapping = list(perm) |
|
|
|
def entry(i, j): |
|
return self[mapping[i], j] |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
def _eval_trace(self): |
|
return sum(self[i, i] for i in range(self.rows)) |
|
|
|
def _eval_transpose(self): |
|
return self._new(self.cols, self.rows, lambda i, j: self[j, i]) |
|
|
|
def adjoint(self): |
|
"""Conjugate transpose or Hermitian conjugation.""" |
|
return self._eval_adjoint() |
|
|
|
def applyfunc(self, f): |
|
"""Apply a function to each element of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> m = Matrix(2, 2, lambda i, j: i*2+j) |
|
>>> m |
|
Matrix([ |
|
[0, 1], |
|
[2, 3]]) |
|
>>> m.applyfunc(lambda i: 2*i) |
|
Matrix([ |
|
[0, 2], |
|
[4, 6]]) |
|
|
|
""" |
|
if not callable(f): |
|
raise TypeError("`f` must be callable.") |
|
|
|
return self._eval_applyfunc(f) |
|
|
|
def as_real_imag(self, deep=True, **hints): |
|
"""Returns a tuple containing the (real, imaginary) part of matrix.""" |
|
|
|
return self._eval_as_real_imag() |
|
|
|
def conjugate(self): |
|
"""Return the by-element conjugation. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import SparseMatrix, I |
|
>>> a = SparseMatrix(((1, 2 + I), (3, 4), (I, -I))) |
|
>>> a |
|
Matrix([ |
|
[1, 2 + I], |
|
[3, 4], |
|
[I, -I]]) |
|
>>> a.C |
|
Matrix([ |
|
[ 1, 2 - I], |
|
[ 3, 4], |
|
[-I, I]]) |
|
|
|
See Also |
|
======== |
|
|
|
transpose: Matrix transposition |
|
H: Hermite conjugation |
|
sympy.matrices.matrixbase.MatrixBase.D: Dirac conjugation |
|
""" |
|
return self._eval_conjugate() |
|
|
|
def doit(self, **hints): |
|
return self.applyfunc(lambda x: x.doit(**hints)) |
|
|
|
def evalf(self, n=15, subs=None, maxn=100, chop=False, strict=False, quad=None, verbose=False): |
|
"""Apply evalf() to each element of self.""" |
|
options = {'subs':subs, 'maxn':maxn, 'chop':chop, 'strict':strict, |
|
'quad':quad, 'verbose':verbose} |
|
return self.applyfunc(lambda i: i.evalf(n, **options)) |
|
|
|
def expand(self, deep=True, modulus=None, power_base=True, power_exp=True, |
|
mul=True, log=True, multinomial=True, basic=True, **hints): |
|
"""Apply core.function.expand to each entry of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x |
|
>>> from sympy import Matrix |
|
>>> Matrix(1, 1, [x*(x+1)]) |
|
Matrix([[x*(x + 1)]]) |
|
>>> _.expand() |
|
Matrix([[x**2 + x]]) |
|
|
|
""" |
|
return self.applyfunc(lambda x: x.expand( |
|
deep, modulus, power_base, power_exp, mul, log, multinomial, basic, |
|
**hints)) |
|
|
|
@property |
|
def H(self): |
|
"""Return Hermite conjugate. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, I |
|
>>> m = Matrix((0, 1 + I, 2, 3)) |
|
>>> m |
|
Matrix([ |
|
[ 0], |
|
[1 + I], |
|
[ 2], |
|
[ 3]]) |
|
>>> m.H |
|
Matrix([[0, 1 - I, 2, 3]]) |
|
|
|
See Also |
|
======== |
|
|
|
conjugate: By-element conjugation |
|
sympy.matrices.matrixbase.MatrixBase.D: Dirac conjugation |
|
""" |
|
return self.T.C |
|
|
|
def permute(self, perm, orientation='rows', direction='forward'): |
|
r"""Permute the rows or columns of a matrix by the given list of |
|
swaps. |
|
|
|
Parameters |
|
========== |
|
|
|
perm : Permutation, list, or list of lists |
|
A representation for the permutation. |
|
|
|
If it is ``Permutation``, it is used directly with some |
|
resizing with respect to the matrix size. |
|
|
|
If it is specified as list of lists, |
|
(e.g., ``[[0, 1], [0, 2]]``), then the permutation is formed |
|
from applying the product of cycles. The direction how the |
|
cyclic product is applied is described in below. |
|
|
|
If it is specified as a list, the list should represent |
|
an array form of a permutation. (e.g., ``[1, 2, 0]``) which |
|
would would form the swapping function |
|
`0 \mapsto 1, 1 \mapsto 2, 2\mapsto 0`. |
|
|
|
orientation : 'rows', 'cols' |
|
A flag to control whether to permute the rows or the columns |
|
|
|
direction : 'forward', 'backward' |
|
A flag to control whether to apply the permutations from |
|
the start of the list first, or from the back of the list |
|
first. |
|
|
|
For example, if the permutation specification is |
|
``[[0, 1], [0, 2]]``, |
|
|
|
If the flag is set to ``'forward'``, the cycle would be |
|
formed as `0 \mapsto 2, 2 \mapsto 1, 1 \mapsto 0`. |
|
|
|
If the flag is set to ``'backward'``, the cycle would be |
|
formed as `0 \mapsto 1, 1 \mapsto 2, 2 \mapsto 0`. |
|
|
|
If the argument ``perm`` is not in a form of list of lists, |
|
this flag takes no effect. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import eye |
|
>>> M = eye(3) |
|
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='forward') |
|
Matrix([ |
|
[0, 0, 1], |
|
[1, 0, 0], |
|
[0, 1, 0]]) |
|
|
|
>>> from sympy import eye |
|
>>> M = eye(3) |
|
>>> M.permute([[0, 1], [0, 2]], orientation='rows', direction='backward') |
|
Matrix([ |
|
[0, 1, 0], |
|
[0, 0, 1], |
|
[1, 0, 0]]) |
|
|
|
Notes |
|
===== |
|
|
|
If a bijective function |
|
`\sigma : \mathbb{N}_0 \rightarrow \mathbb{N}_0` denotes the |
|
permutation. |
|
|
|
If the matrix `A` is the matrix to permute, represented as |
|
a horizontal or a vertical stack of vectors: |
|
|
|
.. math:: |
|
A = |
|
\begin{bmatrix} |
|
a_0 \\ a_1 \\ \vdots \\ a_{n-1} |
|
\end{bmatrix} = |
|
\begin{bmatrix} |
|
\alpha_0 & \alpha_1 & \cdots & \alpha_{n-1} |
|
\end{bmatrix} |
|
|
|
If the matrix `B` is the result, the permutation of matrix rows |
|
is defined as: |
|
|
|
.. math:: |
|
B := \begin{bmatrix} |
|
a_{\sigma(0)} \\ a_{\sigma(1)} \\ \vdots \\ a_{\sigma(n-1)} |
|
\end{bmatrix} |
|
|
|
And the permutation of matrix columns is defined as: |
|
|
|
.. math:: |
|
B := \begin{bmatrix} |
|
\alpha_{\sigma(0)} & \alpha_{\sigma(1)} & |
|
\cdots & \alpha_{\sigma(n-1)} |
|
\end{bmatrix} |
|
""" |
|
from sympy.combinatorics import Permutation |
|
|
|
|
|
if direction == 'forwards': |
|
direction = 'forward' |
|
if direction == 'backwards': |
|
direction = 'backward' |
|
if orientation == 'columns': |
|
orientation = 'cols' |
|
|
|
if direction not in ('forward', 'backward'): |
|
raise TypeError("direction='{}' is an invalid kwarg. " |
|
"Try 'forward' or 'backward'".format(direction)) |
|
if orientation not in ('rows', 'cols'): |
|
raise TypeError("orientation='{}' is an invalid kwarg. " |
|
"Try 'rows' or 'cols'".format(orientation)) |
|
|
|
if not isinstance(perm, (Permutation, Iterable)): |
|
raise ValueError( |
|
"{} must be a list, a list of lists, " |
|
"or a SymPy permutation object.".format(perm)) |
|
|
|
|
|
max_index = self.rows if orientation == 'rows' else self.cols |
|
if not all(0 <= t <= max_index for t in flatten(list(perm))): |
|
raise IndexError("`swap` indices out of range.") |
|
|
|
if perm and not isinstance(perm, Permutation) and \ |
|
isinstance(perm[0], Iterable): |
|
if direction == 'forward': |
|
perm = list(reversed(perm)) |
|
perm = Permutation(perm, size=max_index+1) |
|
else: |
|
perm = Permutation(perm, size=max_index+1) |
|
|
|
if orientation == 'rows': |
|
return self._eval_permute_rows(perm) |
|
if orientation == 'cols': |
|
return self._eval_permute_cols(perm) |
|
|
|
def permute_cols(self, swaps, direction='forward'): |
|
"""Alias for |
|
``self.permute(swaps, orientation='cols', direction=direction)`` |
|
|
|
See Also |
|
======== |
|
|
|
permute |
|
""" |
|
return self.permute(swaps, orientation='cols', direction=direction) |
|
|
|
def permute_rows(self, swaps, direction='forward'): |
|
"""Alias for |
|
``self.permute(swaps, orientation='rows', direction=direction)`` |
|
|
|
See Also |
|
======== |
|
|
|
permute |
|
""" |
|
return self.permute(swaps, orientation='rows', direction=direction) |
|
|
|
def refine(self, assumptions=True): |
|
"""Apply refine to each element of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Symbol, Matrix, Abs, sqrt, Q |
|
>>> x = Symbol('x') |
|
>>> Matrix([[Abs(x)**2, sqrt(x**2)],[sqrt(x**2), Abs(x)**2]]) |
|
Matrix([ |
|
[ Abs(x)**2, sqrt(x**2)], |
|
[sqrt(x**2), Abs(x)**2]]) |
|
>>> _.refine(Q.real(x)) |
|
Matrix([ |
|
[ x**2, Abs(x)], |
|
[Abs(x), x**2]]) |
|
|
|
""" |
|
return self.applyfunc(lambda x: refine(x, assumptions)) |
|
|
|
def replace(self, F, G, map=False, simultaneous=True, exact=None): |
|
"""Replaces Function F in Matrix entries with Function G. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import symbols, Function, Matrix |
|
>>> F, G = symbols('F, G', cls=Function) |
|
>>> M = Matrix(2, 2, lambda i, j: F(i+j)) ; M |
|
Matrix([ |
|
[F(0), F(1)], |
|
[F(1), F(2)]]) |
|
>>> N = M.replace(F,G) |
|
>>> N |
|
Matrix([ |
|
[G(0), G(1)], |
|
[G(1), G(2)]]) |
|
""" |
|
return self.applyfunc( |
|
lambda x: x.replace(F, G, map=map, simultaneous=simultaneous, exact=exact)) |
|
|
|
def rot90(self, k=1): |
|
"""Rotates Matrix by 90 degrees |
|
|
|
Parameters |
|
========== |
|
|
|
k : int |
|
Specifies how many times the matrix is rotated by 90 degrees |
|
(clockwise when positive, counter-clockwise when negative). |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, symbols |
|
>>> A = Matrix(2, 2, symbols('a:d')) |
|
>>> A |
|
Matrix([ |
|
[a, b], |
|
[c, d]]) |
|
|
|
Rotating the matrix clockwise one time: |
|
|
|
>>> A.rot90(1) |
|
Matrix([ |
|
[c, a], |
|
[d, b]]) |
|
|
|
Rotating the matrix anticlockwise two times: |
|
|
|
>>> A.rot90(-2) |
|
Matrix([ |
|
[d, c], |
|
[b, a]]) |
|
""" |
|
|
|
mod = k%4 |
|
if mod == 0: |
|
return self |
|
if mod == 1: |
|
return self[::-1, ::].T |
|
if mod == 2: |
|
return self[::-1, ::-1] |
|
if mod == 3: |
|
return self[::, ::-1].T |
|
|
|
def simplify(self, **kwargs): |
|
"""Apply simplify to each element of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import SparseMatrix, sin, cos |
|
>>> SparseMatrix(1, 1, [x*sin(y)**2 + x*cos(y)**2]) |
|
Matrix([[x*sin(y)**2 + x*cos(y)**2]]) |
|
>>> _.simplify() |
|
Matrix([[x]]) |
|
""" |
|
return self.applyfunc(lambda x: x.simplify(**kwargs)) |
|
|
|
def subs(self, *args, **kwargs): |
|
"""Return a new matrix with subs applied to each entry. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import SparseMatrix, Matrix |
|
>>> SparseMatrix(1, 1, [x]) |
|
Matrix([[x]]) |
|
>>> _.subs(x, y) |
|
Matrix([[y]]) |
|
>>> Matrix(_).subs(y, x) |
|
Matrix([[x]]) |
|
""" |
|
|
|
if len(args) == 1 and not isinstance(args[0], (dict, set)) and iter(args[0]) and not is_sequence(args[0]): |
|
args = (list(args[0]),) |
|
|
|
return self.applyfunc(lambda x: x.subs(*args, **kwargs)) |
|
|
|
def trace(self): |
|
""" |
|
Returns the trace of a square matrix i.e. the sum of the |
|
diagonal elements. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix(2, 2, [1, 2, 3, 4]) |
|
>>> A.trace() |
|
5 |
|
|
|
""" |
|
if self.rows != self.cols: |
|
raise NonSquareMatrixError() |
|
return self._eval_trace() |
|
|
|
def transpose(self): |
|
""" |
|
Returns the transpose of the matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix(2, 2, [1, 2, 3, 4]) |
|
>>> A.transpose() |
|
Matrix([ |
|
[1, 3], |
|
[2, 4]]) |
|
|
|
>>> from sympy import Matrix, I |
|
>>> m=Matrix(((1, 2+I), (3, 4))) |
|
>>> m |
|
Matrix([ |
|
[1, 2 + I], |
|
[3, 4]]) |
|
>>> m.transpose() |
|
Matrix([ |
|
[ 1, 3], |
|
[2 + I, 4]]) |
|
>>> m.T == m.transpose() |
|
True |
|
|
|
See Also |
|
======== |
|
|
|
conjugate: By-element conjugation |
|
|
|
""" |
|
return self._eval_transpose() |
|
|
|
@property |
|
def T(self): |
|
'''Matrix transposition''' |
|
return self.transpose() |
|
|
|
@property |
|
def C(self): |
|
'''By-element conjugation''' |
|
return self.conjugate() |
|
|
|
def n(self, *args, **kwargs): |
|
"""Apply evalf() to each element of self.""" |
|
return self.evalf(*args, **kwargs) |
|
|
|
def xreplace(self, rule): |
|
"""Return a new matrix with xreplace applied to each entry. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.abc import x, y |
|
>>> from sympy import SparseMatrix, Matrix |
|
>>> SparseMatrix(1, 1, [x]) |
|
Matrix([[x]]) |
|
>>> _.xreplace({x: y}) |
|
Matrix([[y]]) |
|
>>> Matrix(_).xreplace({y: x}) |
|
Matrix([[x]]) |
|
""" |
|
return self.applyfunc(lambda x: x.xreplace(rule)) |
|
|
|
def _eval_simplify(self, **kwargs): |
|
|
|
|
|
return MatrixOperations.simplify(self, **kwargs) |
|
|
|
def _eval_trigsimp(self, **opts): |
|
from sympy.simplify.trigsimp import trigsimp |
|
return self.applyfunc(lambda x: trigsimp(x, **opts)) |
|
|
|
def upper_triangular(self, k=0): |
|
"""Return the elements on and above the kth diagonal of a matrix. |
|
If k is not specified then simply returns upper-triangular portion |
|
of a matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ones |
|
>>> A = ones(4) |
|
>>> A.upper_triangular() |
|
Matrix([ |
|
[1, 1, 1, 1], |
|
[0, 1, 1, 1], |
|
[0, 0, 1, 1], |
|
[0, 0, 0, 1]]) |
|
|
|
>>> A.upper_triangular(2) |
|
Matrix([ |
|
[0, 0, 1, 1], |
|
[0, 0, 0, 1], |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0]]) |
|
|
|
>>> A.upper_triangular(-1) |
|
Matrix([ |
|
[1, 1, 1, 1], |
|
[1, 1, 1, 1], |
|
[0, 1, 1, 1], |
|
[0, 0, 1, 1]]) |
|
|
|
""" |
|
|
|
def entry(i, j): |
|
return self[i, j] if i + k <= j else self.zero |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
|
|
def lower_triangular(self, k=0): |
|
"""Return the elements on and below the kth diagonal of a matrix. |
|
If k is not specified then simply returns lower-triangular portion |
|
of a matrix |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ones |
|
>>> A = ones(4) |
|
>>> A.lower_triangular() |
|
Matrix([ |
|
[1, 0, 0, 0], |
|
[1, 1, 0, 0], |
|
[1, 1, 1, 0], |
|
[1, 1, 1, 1]]) |
|
|
|
>>> A.lower_triangular(-2) |
|
Matrix([ |
|
[0, 0, 0, 0], |
|
[0, 0, 0, 0], |
|
[1, 0, 0, 0], |
|
[1, 1, 0, 0]]) |
|
|
|
>>> A.lower_triangular(1) |
|
Matrix([ |
|
[1, 1, 0, 0], |
|
[1, 1, 1, 0], |
|
[1, 1, 1, 1], |
|
[1, 1, 1, 1]]) |
|
|
|
""" |
|
|
|
def entry(i, j): |
|
return self[i, j] if i + k >= j else self.zero |
|
|
|
return self._new(self.rows, self.cols, entry) |
|
|
|
|
|
|
|
class MatrixArithmetic(MatrixRequired): |
|
"""Provides basic matrix arithmetic operations. |
|
Should not be instantiated directly.""" |
|
|
|
_op_priority = 10.01 |
|
|
|
def _eval_Abs(self): |
|
return self._new(self.rows, self.cols, lambda i, j: Abs(self[i, j])) |
|
|
|
def _eval_add(self, other): |
|
return self._new(self.rows, self.cols, |
|
lambda i, j: self[i, j] + other[i, j]) |
|
|
|
def _eval_matrix_mul(self, other): |
|
def entry(i, j): |
|
vec = [self[i,k]*other[k,j] for k in range(self.cols)] |
|
try: |
|
return Add(*vec) |
|
except (TypeError, SympifyError): |
|
|
|
|
|
|
|
return reduce(lambda a, b: a + b, vec) |
|
|
|
return self._new(self.rows, other.cols, entry) |
|
|
|
def _eval_matrix_mul_elementwise(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other[i,j]) |
|
|
|
def _eval_matrix_rmul(self, other): |
|
def entry(i, j): |
|
return sum(other[i,k]*self[k,j] for k in range(other.cols)) |
|
return self._new(other.rows, self.cols, entry) |
|
|
|
def _eval_pow_by_recursion(self, num): |
|
if num == 1: |
|
return self |
|
|
|
if num % 2 == 1: |
|
a, b = self, self._eval_pow_by_recursion(num - 1) |
|
else: |
|
a = b = self._eval_pow_by_recursion(num // 2) |
|
|
|
return a.multiply(b) |
|
|
|
def _eval_pow_by_cayley(self, exp): |
|
from sympy.discrete.recurrences import linrec_coeffs |
|
row = self.shape[0] |
|
p = self.charpoly() |
|
|
|
coeffs = (-p).all_coeffs()[1:] |
|
coeffs = linrec_coeffs(coeffs, exp) |
|
new_mat = self.eye(row) |
|
ans = self.zeros(row) |
|
|
|
for i in range(row): |
|
ans += coeffs[i]*new_mat |
|
new_mat *= self |
|
|
|
return ans |
|
|
|
def _eval_pow_by_recursion_dotprodsimp(self, num, prevsimp=None): |
|
if prevsimp is None: |
|
prevsimp = [True]*len(self) |
|
|
|
if num == 1: |
|
return self |
|
|
|
if num % 2 == 1: |
|
a, b = self, self._eval_pow_by_recursion_dotprodsimp(num - 1, |
|
prevsimp=prevsimp) |
|
else: |
|
a = b = self._eval_pow_by_recursion_dotprodsimp(num // 2, |
|
prevsimp=prevsimp) |
|
|
|
m = a.multiply(b, dotprodsimp=False) |
|
lenm = len(m) |
|
elems = [None]*lenm |
|
|
|
for i in range(lenm): |
|
if prevsimp[i]: |
|
elems[i], prevsimp[i] = _dotprodsimp(m[i], withsimp=True) |
|
else: |
|
elems[i] = m[i] |
|
|
|
return m._new(m.rows, m.cols, elems) |
|
|
|
def _eval_scalar_mul(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: self[i,j]*other) |
|
|
|
def _eval_scalar_rmul(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: other*self[i,j]) |
|
|
|
def _eval_Mod(self, other): |
|
return self._new(self.rows, self.cols, lambda i, j: Mod(self[i, j], other)) |
|
|
|
|
|
def __abs__(self): |
|
"""Returns a new matrix with entry-wise absolute values.""" |
|
return self._eval_Abs() |
|
|
|
@call_highest_priority('__radd__') |
|
def __add__(self, other): |
|
"""Return self + other, raising ShapeError if shapes do not match.""" |
|
if isinstance(other, NDimArray): |
|
return NotImplemented |
|
other = _matrixify(other) |
|
|
|
|
|
if hasattr(other, 'shape'): |
|
if self.shape != other.shape: |
|
raise ShapeError("Matrix size mismatch: %s + %s" % ( |
|
self.shape, other.shape)) |
|
|
|
|
|
if getattr(other, 'is_Matrix', False): |
|
|
|
a, b = self, other |
|
if a.__class__ != classof(a, b): |
|
b, a = a, b |
|
return a._eval_add(b) |
|
|
|
if getattr(other, 'is_MatrixLike', False): |
|
return MatrixArithmetic._eval_add(self, other) |
|
|
|
raise TypeError('cannot add %s and %s' % (type(self), type(other))) |
|
|
|
@call_highest_priority('__rtruediv__') |
|
def __truediv__(self, other): |
|
return self * (self.one / other) |
|
|
|
@call_highest_priority('__rmatmul__') |
|
def __matmul__(self, other): |
|
other = _matrixify(other) |
|
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): |
|
return NotImplemented |
|
|
|
return self.__mul__(other) |
|
|
|
def __mod__(self, other): |
|
return self.applyfunc(lambda x: x % other) |
|
|
|
@call_highest_priority('__rmul__') |
|
def __mul__(self, other): |
|
"""Return self*other where other is either a scalar or a matrix |
|
of compatible dimensions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[1, 2, 3], [4, 5, 6]]) |
|
>>> 2*A == A*2 == Matrix([[2, 4, 6], [8, 10, 12]]) |
|
True |
|
>>> B = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
|
>>> A*B |
|
Matrix([ |
|
[30, 36, 42], |
|
[66, 81, 96]]) |
|
>>> B*A |
|
Traceback (most recent call last): |
|
... |
|
ShapeError: Matrices size mismatch. |
|
>>> |
|
|
|
See Also |
|
======== |
|
|
|
matrix_multiply_elementwise |
|
""" |
|
|
|
return self.multiply(other) |
|
|
|
def multiply(self, other, dotprodsimp=None): |
|
"""Same as __mul__() but with optional simplification. |
|
|
|
Parameters |
|
========== |
|
|
|
dotprodsimp : bool, optional |
|
Specifies whether intermediate term algebraic simplification is used |
|
during matrix multiplications to control expression blowup and thus |
|
speed up calculation. Default is off. |
|
""" |
|
|
|
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) |
|
other = _matrixify(other) |
|
|
|
|
|
if (hasattr(other, 'shape') and len(other.shape) == 2 and |
|
(getattr(other, 'is_Matrix', True) or |
|
getattr(other, 'is_MatrixLike', True))): |
|
if self.shape[1] != other.shape[0]: |
|
raise ShapeError("Matrix size mismatch: %s * %s." % ( |
|
self.shape, other.shape)) |
|
|
|
|
|
if getattr(other, 'is_Matrix', False): |
|
m = self._eval_matrix_mul(other) |
|
if isimpbool: |
|
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) |
|
return m |
|
|
|
|
|
if getattr(other, 'is_MatrixLike', False): |
|
return MatrixArithmetic._eval_matrix_mul(self, other) |
|
|
|
|
|
if not isinstance(other, Iterable): |
|
try: |
|
return self._eval_scalar_mul(other) |
|
except TypeError: |
|
pass |
|
|
|
return NotImplemented |
|
|
|
def multiply_elementwise(self, other): |
|
"""Return the Hadamard product (elementwise product) of A and B |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix |
|
>>> A = Matrix([[0, 1, 2], [3, 4, 5]]) |
|
>>> B = Matrix([[1, 10, 100], [100, 10, 1]]) |
|
>>> A.multiply_elementwise(B) |
|
Matrix([ |
|
[ 0, 10, 200], |
|
[300, 40, 5]]) |
|
|
|
See Also |
|
======== |
|
|
|
sympy.matrices.matrixbase.MatrixBase.cross |
|
sympy.matrices.matrixbase.MatrixBase.dot |
|
multiply |
|
""" |
|
if self.shape != other.shape: |
|
raise ShapeError("Matrix shapes must agree {} != {}".format(self.shape, other.shape)) |
|
|
|
return self._eval_matrix_mul_elementwise(other) |
|
|
|
def __neg__(self): |
|
return self._eval_scalar_mul(-1) |
|
|
|
@call_highest_priority('__rpow__') |
|
def __pow__(self, exp): |
|
"""Return self**exp a scalar or symbol.""" |
|
|
|
return self.pow(exp) |
|
|
|
|
|
def pow(self, exp, method=None): |
|
r"""Return self**exp a scalar or symbol. |
|
|
|
Parameters |
|
========== |
|
|
|
method : multiply, mulsimp, jordan, cayley |
|
If multiply then it returns exponentiation using recursion. |
|
If jordan then Jordan form exponentiation will be used. |
|
If cayley then the exponentiation is done using Cayley-Hamilton |
|
theorem. |
|
If mulsimp then the exponentiation is done using recursion |
|
with dotprodsimp. This specifies whether intermediate term |
|
algebraic simplification is used during naive matrix power to |
|
control expression blowup and thus speed up calculation. |
|
If None, then it heuristically decides which method to use. |
|
|
|
""" |
|
|
|
if method is not None and method not in ['multiply', 'mulsimp', 'jordan', 'cayley']: |
|
raise TypeError('No such method') |
|
if self.rows != self.cols: |
|
raise NonSquareMatrixError() |
|
a = self |
|
jordan_pow = getattr(a, '_matrix_pow_by_jordan_blocks', None) |
|
exp = sympify(exp) |
|
|
|
if exp.is_zero: |
|
return a._new(a.rows, a.cols, lambda i, j: int(i == j)) |
|
if exp == 1: |
|
return a |
|
|
|
diagonal = getattr(a, 'is_diagonal', None) |
|
if diagonal is not None and diagonal(): |
|
return a._new(a.rows, a.cols, lambda i, j: a[i,j]**exp if i == j else 0) |
|
|
|
if exp.is_Number and exp % 1 == 0: |
|
if a.rows == 1: |
|
return a._new([[a[0]**exp]]) |
|
if exp < 0: |
|
exp = -exp |
|
a = a.inv() |
|
|
|
|
|
|
|
if method == 'jordan': |
|
try: |
|
return jordan_pow(exp) |
|
except MatrixError: |
|
if method == 'jordan': |
|
raise |
|
|
|
elif method == 'cayley': |
|
if not exp.is_Number or exp % 1 != 0: |
|
raise ValueError("cayley method is only valid for integer powers") |
|
return a._eval_pow_by_cayley(exp) |
|
|
|
elif method == "mulsimp": |
|
if not exp.is_Number or exp % 1 != 0: |
|
raise ValueError("mulsimp method is only valid for integer powers") |
|
return a._eval_pow_by_recursion_dotprodsimp(exp) |
|
|
|
elif method == "multiply": |
|
if not exp.is_Number or exp % 1 != 0: |
|
raise ValueError("multiply method is only valid for integer powers") |
|
return a._eval_pow_by_recursion(exp) |
|
|
|
elif method is None and exp.is_Number and exp % 1 == 0: |
|
if exp.is_Float: |
|
exp = Integer(exp) |
|
|
|
if a.rows == 2 and exp > 100000: |
|
return jordan_pow(exp) |
|
elif _get_intermediate_simp_bool(True, None): |
|
return a._eval_pow_by_recursion_dotprodsimp(exp) |
|
elif exp > 10000: |
|
return a._eval_pow_by_cayley(exp) |
|
else: |
|
return a._eval_pow_by_recursion(exp) |
|
|
|
if jordan_pow: |
|
try: |
|
return jordan_pow(exp) |
|
except NonInvertibleMatrixError: |
|
|
|
|
|
|
|
|
|
if exp.is_integer is False or exp.is_nonnegative is False: |
|
raise |
|
|
|
from sympy.matrices.expressions import MatPow |
|
return MatPow(a, exp) |
|
|
|
@call_highest_priority('__add__') |
|
def __radd__(self, other): |
|
return self + other |
|
|
|
@call_highest_priority('__matmul__') |
|
def __rmatmul__(self, other): |
|
other = _matrixify(other) |
|
if not getattr(other, 'is_Matrix', False) and not getattr(other, 'is_MatrixLike', False): |
|
return NotImplemented |
|
|
|
return self.__rmul__(other) |
|
|
|
@call_highest_priority('__mul__') |
|
def __rmul__(self, other): |
|
return self.rmultiply(other) |
|
|
|
def rmultiply(self, other, dotprodsimp=None): |
|
"""Same as __rmul__() but with optional simplification. |
|
|
|
Parameters |
|
========== |
|
|
|
dotprodsimp : bool, optional |
|
Specifies whether intermediate term algebraic simplification is used |
|
during matrix multiplications to control expression blowup and thus |
|
speed up calculation. Default is off. |
|
""" |
|
isimpbool = _get_intermediate_simp_bool(False, dotprodsimp) |
|
other = _matrixify(other) |
|
|
|
|
|
if (hasattr(other, 'shape') and len(other.shape) == 2 and |
|
(getattr(other, 'is_Matrix', True) or |
|
getattr(other, 'is_MatrixLike', True))): |
|
if self.shape[0] != other.shape[1]: |
|
raise ShapeError("Matrix size mismatch.") |
|
|
|
|
|
if getattr(other, 'is_Matrix', False): |
|
m = self._eval_matrix_rmul(other) |
|
if isimpbool: |
|
return m._new(m.rows, m.cols, [_dotprodsimp(e) for e in m]) |
|
return m |
|
|
|
if getattr(other, 'is_MatrixLike', False): |
|
return MatrixArithmetic._eval_matrix_rmul(self, other) |
|
|
|
|
|
if not isinstance(other, Iterable): |
|
try: |
|
return self._eval_scalar_rmul(other) |
|
except TypeError: |
|
pass |
|
|
|
return NotImplemented |
|
|
|
@call_highest_priority('__sub__') |
|
def __rsub__(self, a): |
|
return (-self) + a |
|
|
|
@call_highest_priority('__rsub__') |
|
def __sub__(self, a): |
|
return self + (-a) |
|
|
|
|
|
class MatrixCommon(MatrixArithmetic, MatrixOperations, MatrixProperties, |
|
MatrixSpecial, MatrixShaping): |
|
"""All common matrix operations including basic arithmetic, shaping, |
|
and special matrices like `zeros`, and `eye`.""" |
|
_diff_wrt: bool = True |
|
|
|
|
|
class _MinimalMatrix: |
|
"""Class providing the minimum functionality |
|
for a matrix-like object and implementing every method |
|
required for a `MatrixRequired`. This class does not have everything |
|
needed to become a full-fledged SymPy object, but it will satisfy the |
|
requirements of anything inheriting from `MatrixRequired`. If you wish |
|
to make a specialized matrix type, make sure to implement these |
|
methods and properties with the exception of `__init__` and `__repr__` |
|
which are included for convenience.""" |
|
|
|
is_MatrixLike = True |
|
_sympify = staticmethod(sympify) |
|
_class_priority = 3 |
|
zero = S.Zero |
|
one = S.One |
|
|
|
is_Matrix = True |
|
is_MatrixExpr = False |
|
|
|
@classmethod |
|
def _new(cls, *args, **kwargs): |
|
return cls(*args, **kwargs) |
|
|
|
def __init__(self, rows, cols=None, mat=None, copy=False): |
|
if isfunction(mat): |
|
|
|
mat = [mat(i, j) for i in range(rows) for j in range(cols)] |
|
if cols is None and mat is None: |
|
mat = rows |
|
rows, cols = getattr(mat, 'shape', (rows, cols)) |
|
try: |
|
|
|
if cols is None and mat is None: |
|
mat = rows |
|
cols = len(mat[0]) |
|
rows = len(mat) |
|
mat = [x for l in mat for x in l] |
|
except (IndexError, TypeError): |
|
pass |
|
self.mat = tuple(self._sympify(x) for x in mat) |
|
self.rows, self.cols = rows, cols |
|
if self.rows is None or self.cols is None: |
|
raise NotImplementedError("Cannot initialize matrix with given parameters") |
|
|
|
def __getitem__(self, key): |
|
def _normalize_slices(row_slice, col_slice): |
|
"""Ensure that row_slice and col_slice do not have |
|
`None` in their arguments. Any integers are converted |
|
to slices of length 1""" |
|
if not isinstance(row_slice, slice): |
|
row_slice = slice(row_slice, row_slice + 1, None) |
|
row_slice = slice(*row_slice.indices(self.rows)) |
|
|
|
if not isinstance(col_slice, slice): |
|
col_slice = slice(col_slice, col_slice + 1, None) |
|
col_slice = slice(*col_slice.indices(self.cols)) |
|
|
|
return (row_slice, col_slice) |
|
|
|
def _coord_to_index(i, j): |
|
"""Return the index in _mat corresponding |
|
to the (i,j) position in the matrix. """ |
|
return i * self.cols + j |
|
|
|
if isinstance(key, tuple): |
|
i, j = key |
|
if isinstance(i, slice) or isinstance(j, slice): |
|
|
|
|
|
i, j = _normalize_slices(i, j) |
|
|
|
rowsList, colsList = list(range(self.rows))[i], \ |
|
list(range(self.cols))[j] |
|
indices = (i * self.cols + j for i in rowsList for j in |
|
colsList) |
|
return self._new(len(rowsList), len(colsList), |
|
[self.mat[i] for i in indices]) |
|
|
|
|
|
|
|
key = _coord_to_index(i, j) |
|
return self.mat[key] |
|
|
|
def __eq__(self, other): |
|
try: |
|
classof(self, other) |
|
except TypeError: |
|
return False |
|
return ( |
|
self.shape == other.shape and list(self) == list(other)) |
|
|
|
def __len__(self): |
|
return self.rows*self.cols |
|
|
|
def __repr__(self): |
|
return "_MinimalMatrix({}, {}, {})".format(self.rows, self.cols, |
|
self.mat) |
|
|
|
@property |
|
def shape(self): |
|
return (self.rows, self.cols) |
|
|
|
|
|
class _CastableMatrix: |
|
def as_mutable(self): |
|
return self |
|
|
|
def as_immutable(self): |
|
return self |
|
|
|
|
|
class _MatrixWrapper: |
|
"""Wrapper class providing the minimum functionality for a matrix-like |
|
object: .rows, .cols, .shape, indexability, and iterability. CommonMatrix |
|
math operations should work on matrix-like objects. This one is intended for |
|
matrix-like objects which use the same indexing format as SymPy with respect |
|
to returning matrix elements instead of rows for non-tuple indexes. |
|
""" |
|
|
|
is_Matrix = False |
|
is_MatrixLike = True |
|
|
|
def __init__(self, mat, shape): |
|
self.mat = mat |
|
self.shape = shape |
|
self.rows, self.cols = shape |
|
|
|
def __getitem__(self, key): |
|
if isinstance(key, tuple): |
|
return sympify(self.mat.__getitem__(key)) |
|
|
|
return sympify(self.mat.__getitem__((key // self.rows, key % self.cols))) |
|
|
|
def __iter__(self): |
|
mat = self.mat |
|
cols = self.cols |
|
|
|
return iter(sympify(mat[r, c]) for r in range(self.rows) for c in range(cols)) |
|
|
|
|
|
def _matrixify(mat): |
|
"""If `mat` is a Matrix or is matrix-like, |
|
return a Matrix or MatrixWrapper object. Otherwise |
|
`mat` is passed through without modification.""" |
|
|
|
if getattr(mat, 'is_Matrix', False) or getattr(mat, 'is_MatrixLike', False): |
|
return mat |
|
|
|
if not(getattr(mat, 'is_Matrix', True) or getattr(mat, 'is_MatrixLike', True)): |
|
return mat |
|
|
|
shape = None |
|
|
|
if hasattr(mat, 'shape'): |
|
if len(mat.shape) == 2: |
|
shape = mat.shape |
|
elif hasattr(mat, 'rows') and hasattr(mat, 'cols'): |
|
shape = (mat.rows, mat.cols) |
|
|
|
if shape: |
|
return _MatrixWrapper(mat, shape) |
|
|
|
return mat |
|
|
|
|
|
def a2idx(j, n=None): |
|
"""Return integer after making positive and validating against n.""" |
|
if not isinstance(j, int): |
|
jindex = getattr(j, '__index__', None) |
|
if jindex is not None: |
|
j = jindex() |
|
else: |
|
raise IndexError("Invalid index a[%r]" % (j,)) |
|
if n is not None: |
|
if j < 0: |
|
j += n |
|
if not (j >= 0 and j < n): |
|
raise IndexError("Index out of range: a[%s]" % (j,)) |
|
return int(j) |
|
|
|
|
|
def classof(A, B): |
|
""" |
|
Get the type of the result when combining matrices of different types. |
|
|
|
Currently the strategy is that immutability is contagious. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Matrix, ImmutableMatrix |
|
>>> from sympy.matrices.matrixbase import classof |
|
>>> M = Matrix([[1, 2], [3, 4]]) # a Mutable Matrix |
|
>>> IM = ImmutableMatrix([[1, 2], [3, 4]]) |
|
>>> classof(M, IM) |
|
<class 'sympy.matrices.immutable.ImmutableDenseMatrix'> |
|
""" |
|
priority_A = getattr(A, '_class_priority', None) |
|
priority_B = getattr(B, '_class_priority', None) |
|
if None not in (priority_A, priority_B): |
|
if A._class_priority > B._class_priority: |
|
return A.__class__ |
|
else: |
|
return B.__class__ |
|
|
|
try: |
|
import numpy |
|
except ImportError: |
|
pass |
|
else: |
|
if isinstance(A, numpy.ndarray): |
|
return B.__class__ |
|
if isinstance(B, numpy.ndarray): |
|
return A.__class__ |
|
|
|
raise TypeError("Incompatible classes %s, %s" % (A.__class__, B.__class__)) |
|
|