|
from sympy.core.numbers import (I, Rational) |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import (Dummy, symbols) |
|
from sympy.functions.elementary.exponential import log |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.functions.elementary.trigonometric import atan |
|
from sympy.integrals.integrals import integrate |
|
from sympy.polys.polytools import Poly |
|
from sympy.simplify.simplify import simplify |
|
|
|
from sympy.integrals.rationaltools import ratint, ratint_logpart, log_to_atan |
|
|
|
from sympy.abc import a, b, x, t |
|
|
|
half = S.Half |
|
|
|
|
|
def test_ratint(): |
|
assert ratint(S.Zero, x) == 0 |
|
assert ratint(S(7), x) == 7*x |
|
|
|
assert ratint(x, x) == x**2/2 |
|
assert ratint(2*x, x) == x**2 |
|
assert ratint(-2*x, x) == -x**2 |
|
|
|
assert ratint(8*x**7 + 2*x + 1, x) == x**8 + x**2 + x |
|
|
|
f = S.One |
|
g = x + 1 |
|
|
|
assert ratint(f / g, x) == log(x + 1) |
|
assert ratint((f, g), x) == log(x + 1) |
|
|
|
f = x**3 - x |
|
g = x - 1 |
|
|
|
assert ratint(f/g, x) == x**3/3 + x**2/2 |
|
|
|
f = x |
|
g = (x - a)*(x + a) |
|
|
|
assert ratint(f/g, x) == log(x**2 - a**2)/2 |
|
|
|
f = S.One |
|
g = x**2 + 1 |
|
|
|
assert ratint(f/g, x, real=None) == atan(x) |
|
assert ratint(f/g, x, real=True) == atan(x) |
|
|
|
assert ratint(f/g, x, real=False) == I*log(x + I)/2 - I*log(x - I)/2 |
|
|
|
f = S(36) |
|
g = x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2 |
|
|
|
assert ratint(f/g, x) == \ |
|
-4*log(x + 1) + 4*log(x - 2) + (12*x + 6)/(x**2 - 1) |
|
|
|
f = x**4 - 3*x**2 + 6 |
|
g = x**6 - 5*x**4 + 5*x**2 + 4 |
|
|
|
assert ratint(f/g, x) == \ |
|
atan(x) + atan(x**3) + atan(x/2 - Rational(3, 2)*x**3 + S.Half*x**5) |
|
|
|
f = x**7 - 24*x**4 - 4*x**2 + 8*x - 8 |
|
g = x**8 + 6*x**6 + 12*x**4 + 8*x**2 |
|
|
|
assert ratint(f/g, x) == \ |
|
(4 + 6*x + 8*x**2 + 3*x**3)/(4*x + 4*x**3 + x**5) + log(x) |
|
|
|
assert ratint((x**3*f)/(x*g), x) == \ |
|
-(12 - 16*x + 6*x**2 - 14*x**3)/(4 + 4*x**2 + x**4) - \ |
|
5*sqrt(2)*atan(x*sqrt(2)/2) + S.Half*x**2 - 3*log(2 + x**2) |
|
|
|
f = x**5 - x**4 + 4*x**3 + x**2 - x + 5 |
|
g = x**4 - 2*x**3 + 5*x**2 - 4*x + 4 |
|
|
|
assert ratint(f/g, x) == \ |
|
x + S.Half*x**2 + S.Half*log(2 - x + x**2) + (9 - 4*x)/(7*x**2 - 7*x + 14) + \ |
|
13*sqrt(7)*atan(Rational(-1, 7)*sqrt(7) + 2*x*sqrt(7)/7)/49 |
|
|
|
assert ratint(1/(x**2 + x + 1), x) == \ |
|
2*sqrt(3)*atan(sqrt(3)/3 + 2*x*sqrt(3)/3)/3 |
|
|
|
assert ratint(1/(x**3 + 1), x) == \ |
|
-log(1 - x + x**2)/6 + log(1 + x)/3 + sqrt(3)*atan(-sqrt(3) |
|
/3 + 2*x*sqrt(3)/3)/3 |
|
|
|
assert ratint(1/(x**2 + x + 1), x, real=False) == \ |
|
-I*3**half*log(half + x - half*I*3**half)/3 + \ |
|
I*3**half*log(half + x + half*I*3**half)/3 |
|
|
|
assert ratint(1/(x**3 + 1), x, real=False) == log(1 + x)/3 + \ |
|
(Rational(-1, 6) + I*3**half/6)*log(-half + x + I*3**half/2) + \ |
|
(Rational(-1, 6) - I*3**half/6)*log(-half + x - I*3**half/2) |
|
|
|
|
|
assert ratint(1/(x*(a + b*x)**3), x) == \ |
|
(3*a + 2*b*x)/(2*a**4 + 4*a**3*b*x + 2*a**2*b**2*x**2) + ( |
|
log(x) - log(a/b + x))/a**3 |
|
|
|
assert ratint(x/(1 - x**2), x) == -log(x**2 - 1)/2 |
|
assert ratint(-x/(1 - x**2), x) == log(x**2 - 1)/2 |
|
|
|
assert ratint((x/4 - 4/(1 - x)).diff(x), x) == x/4 + 4/(x - 1) |
|
|
|
ans = atan(x) |
|
assert ratint(1/(x**2 + 1), x, symbol=x) == ans |
|
assert ratint(1/(x**2 + 1), x, symbol='x') == ans |
|
assert ratint(1/(x**2 + 1), x, symbol=a) == ans |
|
|
|
|
|
d = Dummy() |
|
assert ratint(1/(d**2 + 1), d, symbol=d) == atan(d) |
|
|
|
|
|
def test_ratint_logpart(): |
|
assert ratint_logpart(x, x**2 - 9, x, t) == \ |
|
[(Poly(x**2 - 9, x), Poly(-2*t + 1, t))] |
|
assert ratint_logpart(x**2, x**3 - 5, x, t) == \ |
|
[(Poly(x**3 - 5, x), Poly(-3*t + 1, t))] |
|
|
|
|
|
def test_issue_5414(): |
|
assert ratint(1/(x**2 + 16), x) == atan(x/4)/4 |
|
|
|
|
|
def test_issue_5249(): |
|
assert ratint( |
|
1/(x**2 + a**2), x) == (-I*log(-I*a + x)/2 + I*log(I*a + x)/2)/a |
|
|
|
|
|
def test_issue_5817(): |
|
a, b, c = symbols('a,b,c', positive=True) |
|
|
|
assert simplify(ratint(a/(b*c*x**2 + a**2 + b*a), x)) == \ |
|
sqrt(a)*atan(sqrt( |
|
b)*sqrt(c)*x/(sqrt(a)*sqrt(a + b)))/(sqrt(b)*sqrt(c)*sqrt(a + b)) |
|
|
|
|
|
def test_issue_5981(): |
|
u = symbols('u') |
|
assert integrate(1/(u**2 + 1)) == atan(u) |
|
|
|
def test_issue_10488(): |
|
a,b,c,x = symbols('a b c x', positive=True) |
|
assert integrate(x/(a*x+b),x) == x/a - b*log(a*x + b)/a**2 |
|
|
|
|
|
def test_issues_8246_12050_13501_14080(): |
|
a = symbols('a', nonzero=True) |
|
assert integrate(a/(x**2 + a**2), x) == atan(x/a) |
|
assert integrate(1/(x**2 + a**2), x) == atan(x/a)/a |
|
assert integrate(1/(1 + a**2*x**2), x) == atan(a*x)/a |
|
|
|
|
|
def test_issue_6308(): |
|
k, a0 = symbols('k a0', real=True) |
|
assert integrate((x**2 + 1 - k**2)/(x**2 + 1 + a0**2), x) == \ |
|
x - (a0**2 + k**2)*atan(x/sqrt(a0**2 + 1))/sqrt(a0**2 + 1) |
|
|
|
|
|
def test_issue_5907(): |
|
a = symbols('a', nonzero=True) |
|
assert integrate(1/(x**2 + a**2)**2, x) == \ |
|
x/(2*a**4 + 2*a**2*x**2) + atan(x/a)/(2*a**3) |
|
|
|
|
|
def test_log_to_atan(): |
|
f, g = (Poly(x + S.Half, x, domain='QQ'), Poly(sqrt(3)/2, x, domain='EX')) |
|
fg_ans = 2*atan(2*sqrt(3)*x/3 + sqrt(3)/3) |
|
assert log_to_atan(f, g) == fg_ans |
|
assert log_to_atan(g, f) == -fg_ans |
|
|
|
|
|
def test_issue_25896(): |
|
|
|
|
|
e = (2*x + 1)/(x**2 + x + 1) + 1/x |
|
assert ratint(e, x) == log(x**3 + x**2 + x) |
|
|
|
assert ratint((4*x + 7)/(x**2 + 4*x + 6) + 2/x, x) == ( |
|
2*log(x) + 2*log(x**2 + 4*x + 6) - sqrt(2)*atan( |
|
sqrt(2)*x/2 + sqrt(2))/2) |
|
|