|
"""This module implements tools for integrating rational functions. """ |
|
|
|
from sympy.core.function import Lambda |
|
from sympy.core.numbers import I |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import (Dummy, Symbol, symbols) |
|
from sympy.functions.elementary.exponential import log |
|
from sympy.functions.elementary.trigonometric import atan |
|
from sympy.polys.polyerrors import DomainError |
|
from sympy.polys.polyroots import roots |
|
from sympy.polys.polytools import cancel |
|
from sympy.polys.rootoftools import RootSum |
|
from sympy.polys import Poly, resultant, ZZ |
|
|
|
|
|
def ratint(f, x, **flags): |
|
""" |
|
Performs indefinite integration of rational functions. |
|
|
|
Explanation |
|
=========== |
|
|
|
Given a field :math:`K` and a rational function :math:`f = p/q`, |
|
where :math:`p` and :math:`q` are polynomials in :math:`K[x]`, |
|
returns a function :math:`g` such that :math:`f = g'`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.integrals.rationaltools import ratint |
|
>>> from sympy.abc import x |
|
|
|
>>> ratint(36/(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2), x) |
|
(12*x + 6)/(x**2 - 1) + 4*log(x - 2) - 4*log(x + 1) |
|
|
|
References |
|
========== |
|
|
|
.. [1] M. Bronstein, Symbolic Integration I: Transcendental |
|
Functions, Second Edition, Springer-Verlag, 2005, pp. 35-70 |
|
|
|
See Also |
|
======== |
|
|
|
sympy.integrals.integrals.Integral.doit |
|
sympy.integrals.rationaltools.ratint_logpart |
|
sympy.integrals.rationaltools.ratint_ratpart |
|
|
|
""" |
|
if isinstance(f, tuple): |
|
p, q = f |
|
else: |
|
p, q = f.as_numer_denom() |
|
|
|
p, q = Poly(p, x, composite=False, field=True), Poly(q, x, composite=False, field=True) |
|
|
|
coeff, p, q = p.cancel(q) |
|
poly, p = p.div(q) |
|
|
|
result = poly.integrate(x).as_expr() |
|
|
|
if p.is_zero: |
|
return coeff*result |
|
|
|
g, h = ratint_ratpart(p, q, x) |
|
|
|
P, Q = h.as_numer_denom() |
|
|
|
P = Poly(P, x) |
|
Q = Poly(Q, x) |
|
|
|
q, r = P.div(Q) |
|
|
|
result += g + q.integrate(x).as_expr() |
|
|
|
if not r.is_zero: |
|
symbol = flags.get('symbol', 't') |
|
|
|
if not isinstance(symbol, Symbol): |
|
t = Dummy(symbol) |
|
else: |
|
t = symbol.as_dummy() |
|
|
|
L = ratint_logpart(r, Q, x, t) |
|
|
|
real = flags.get('real') |
|
|
|
if real is None: |
|
if isinstance(f, tuple): |
|
p, q = f |
|
atoms = p.atoms() | q.atoms() |
|
else: |
|
atoms = f.atoms() |
|
|
|
for elt in atoms - {x}: |
|
if not elt.is_extended_real: |
|
real = False |
|
break |
|
else: |
|
real = True |
|
|
|
eps = S.Zero |
|
|
|
if not real: |
|
for h, q in L: |
|
_, h = h.primitive() |
|
eps += RootSum( |
|
q, Lambda(t, t*log(h.as_expr())), quadratic=True) |
|
else: |
|
for h, q in L: |
|
_, h = h.primitive() |
|
R = log_to_real(h, q, x, t) |
|
|
|
if R is not None: |
|
eps += R |
|
else: |
|
eps += RootSum( |
|
q, Lambda(t, t*log(h.as_expr())), quadratic=True) |
|
|
|
result += eps |
|
|
|
return coeff*result |
|
|
|
|
|
def ratint_ratpart(f, g, x): |
|
""" |
|
Horowitz-Ostrogradsky algorithm. |
|
|
|
Explanation |
|
=========== |
|
|
|
Given a field K and polynomials f and g in K[x], such that f and g |
|
are coprime and deg(f) < deg(g), returns fractions A and B in K(x), |
|
such that f/g = A' + B and B has square-free denominator. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.integrals.rationaltools import ratint_ratpart |
|
>>> from sympy.abc import x, y |
|
>>> from sympy import Poly |
|
>>> ratint_ratpart(Poly(1, x, domain='ZZ'), |
|
... Poly(x + 1, x, domain='ZZ'), x) |
|
(0, 1/(x + 1)) |
|
>>> ratint_ratpart(Poly(1, x, domain='EX'), |
|
... Poly(x**2 + y**2, x, domain='EX'), x) |
|
(0, 1/(x**2 + y**2)) |
|
>>> ratint_ratpart(Poly(36, x, domain='ZZ'), |
|
... Poly(x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2, x, domain='ZZ'), x) |
|
((12*x + 6)/(x**2 - 1), 12/(x**2 - x - 2)) |
|
|
|
See Also |
|
======== |
|
|
|
ratint, ratint_logpart |
|
""" |
|
from sympy.solvers.solvers import solve |
|
|
|
f = Poly(f, x) |
|
g = Poly(g, x) |
|
|
|
u, v, _ = g.cofactors(g.diff()) |
|
|
|
n = u.degree() |
|
m = v.degree() |
|
|
|
A_coeffs = [ Dummy('a' + str(n - i)) for i in range(0, n) ] |
|
B_coeffs = [ Dummy('b' + str(m - i)) for i in range(0, m) ] |
|
|
|
C_coeffs = A_coeffs + B_coeffs |
|
|
|
A = Poly(A_coeffs, x, domain=ZZ[C_coeffs]) |
|
B = Poly(B_coeffs, x, domain=ZZ[C_coeffs]) |
|
|
|
H = f - A.diff()*v + A*(u.diff()*v).quo(u) - B*u |
|
|
|
result = solve(H.coeffs(), C_coeffs) |
|
|
|
A = A.as_expr().subs(result) |
|
B = B.as_expr().subs(result) |
|
|
|
rat_part = cancel(A/u.as_expr(), x) |
|
log_part = cancel(B/v.as_expr(), x) |
|
|
|
return rat_part, log_part |
|
|
|
|
|
def ratint_logpart(f, g, x, t=None): |
|
r""" |
|
Lazard-Rioboo-Trager algorithm. |
|
|
|
Explanation |
|
=========== |
|
|
|
Given a field K and polynomials f and g in K[x], such that f and g |
|
are coprime, deg(f) < deg(g) and g is square-free, returns a list |
|
of tuples (s_i, q_i) of polynomials, for i = 1..n, such that s_i |
|
in K[t, x] and q_i in K[t], and:: |
|
|
|
___ ___ |
|
d f d \ ` \ ` |
|
-- - = -- ) ) a log(s_i(a, x)) |
|
dx g dx /__, /__, |
|
i=1..n a | q_i(a) = 0 |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.integrals.rationaltools import ratint_logpart |
|
>>> from sympy.abc import x |
|
>>> from sympy import Poly |
|
>>> ratint_logpart(Poly(1, x, domain='ZZ'), |
|
... Poly(x**2 + x + 1, x, domain='ZZ'), x) |
|
[(Poly(x + 3*_t/2 + 1/2, x, domain='QQ[_t]'), |
|
...Poly(3*_t**2 + 1, _t, domain='ZZ'))] |
|
>>> ratint_logpart(Poly(12, x, domain='ZZ'), |
|
... Poly(x**2 - x - 2, x, domain='ZZ'), x) |
|
[(Poly(x - 3*_t/8 - 1/2, x, domain='QQ[_t]'), |
|
...Poly(-_t**2 + 16, _t, domain='ZZ'))] |
|
|
|
See Also |
|
======== |
|
|
|
ratint, ratint_ratpart |
|
""" |
|
f, g = Poly(f, x), Poly(g, x) |
|
|
|
t = t or Dummy('t') |
|
a, b = g, f - g.diff()*Poly(t, x) |
|
|
|
res, R = resultant(a, b, includePRS=True) |
|
res = Poly(res, t, composite=False) |
|
|
|
assert res, "BUG: resultant(%s, %s) cannot be zero" % (a, b) |
|
|
|
R_map, H = {}, [] |
|
|
|
for r in R: |
|
R_map[r.degree()] = r |
|
|
|
def _include_sign(c, sqf): |
|
if c.is_extended_real and (c < 0) == True: |
|
h, k = sqf[0] |
|
c_poly = c.as_poly(h.gens) |
|
sqf[0] = h*c_poly, k |
|
|
|
C, res_sqf = res.sqf_list() |
|
_include_sign(C, res_sqf) |
|
|
|
for q, i in res_sqf: |
|
_, q = q.primitive() |
|
|
|
if g.degree() == i: |
|
H.append((g, q)) |
|
else: |
|
h = R_map[i] |
|
h_lc = Poly(h.LC(), t, field=True) |
|
|
|
c, h_lc_sqf = h_lc.sqf_list(all=True) |
|
_include_sign(c, h_lc_sqf) |
|
|
|
for a, j in h_lc_sqf: |
|
h = h.quo(Poly(a.gcd(q)**j, x)) |
|
|
|
inv, coeffs = h_lc.invert(q), [S.One] |
|
|
|
for coeff in h.coeffs()[1:]: |
|
coeff = coeff.as_poly(inv.gens) |
|
T = (inv*coeff).rem(q) |
|
coeffs.append(T.as_expr()) |
|
|
|
h = Poly(dict(list(zip(h.monoms(), coeffs))), x) |
|
|
|
H.append((h, q)) |
|
|
|
return H |
|
|
|
|
|
def log_to_atan(f, g): |
|
""" |
|
Convert complex logarithms to real arctangents. |
|
|
|
Explanation |
|
=========== |
|
|
|
Given a real field K and polynomials f and g in K[x], with g != 0, |
|
returns a sum h of arctangents of polynomials in K[x], such that: |
|
|
|
dh d f + I g |
|
-- = -- I log( ------- ) |
|
dx dx f - I g |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.integrals.rationaltools import log_to_atan |
|
>>> from sympy.abc import x |
|
>>> from sympy import Poly, sqrt, S |
|
>>> log_to_atan(Poly(x, x, domain='ZZ'), Poly(1, x, domain='ZZ')) |
|
2*atan(x) |
|
>>> log_to_atan(Poly(x + S(1)/2, x, domain='QQ'), |
|
... Poly(sqrt(3)/2, x, domain='EX')) |
|
2*atan(2*sqrt(3)*x/3 + sqrt(3)/3) |
|
|
|
See Also |
|
======== |
|
|
|
log_to_real |
|
""" |
|
if f.degree() < g.degree(): |
|
f, g = -g, f |
|
|
|
f = f.to_field() |
|
g = g.to_field() |
|
|
|
p, q = f.div(g) |
|
|
|
if q.is_zero: |
|
return 2*atan(p.as_expr()) |
|
else: |
|
s, t, h = g.gcdex(-f) |
|
u = (f*s + g*t).quo(h) |
|
A = 2*atan(u.as_expr()) |
|
|
|
return A + log_to_atan(s, t) |
|
|
|
|
|
def _get_real_roots(f, x): |
|
"""get real roots of f if possible""" |
|
rs = roots(f, filter='R') |
|
|
|
try: |
|
num_roots = f.count_roots() |
|
except DomainError: |
|
return rs |
|
else: |
|
if len(rs) == num_roots: |
|
return rs |
|
else: |
|
return None |
|
|
|
|
|
def log_to_real(h, q, x, t): |
|
r""" |
|
Convert complex logarithms to real functions. |
|
|
|
Explanation |
|
=========== |
|
|
|
Given real field K and polynomials h in K[t,x] and q in K[t], |
|
returns real function f such that: |
|
___ |
|
df d \ ` |
|
-- = -- ) a log(h(a, x)) |
|
dx dx /__, |
|
a | q(a) = 0 |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.integrals.rationaltools import log_to_real |
|
>>> from sympy.abc import x, y |
|
>>> from sympy import Poly, S |
|
>>> log_to_real(Poly(x + 3*y/2 + S(1)/2, x, domain='QQ[y]'), |
|
... Poly(3*y**2 + 1, y, domain='ZZ'), x, y) |
|
2*sqrt(3)*atan(2*sqrt(3)*x/3 + sqrt(3)/3)/3 |
|
>>> log_to_real(Poly(x**2 - 1, x, domain='ZZ'), |
|
... Poly(-2*y + 1, y, domain='ZZ'), x, y) |
|
log(x**2 - 1)/2 |
|
|
|
See Also |
|
======== |
|
|
|
log_to_atan |
|
""" |
|
from sympy.simplify.radsimp import collect |
|
u, v = symbols('u,v', cls=Dummy) |
|
|
|
H = h.as_expr().xreplace({t: u + I*v}).expand() |
|
Q = q.as_expr().xreplace({t: u + I*v}).expand() |
|
|
|
H_map = collect(H, I, evaluate=False) |
|
Q_map = collect(Q, I, evaluate=False) |
|
|
|
a, b = H_map.get(S.One, S.Zero), H_map.get(I, S.Zero) |
|
c, d = Q_map.get(S.One, S.Zero), Q_map.get(I, S.Zero) |
|
|
|
R = Poly(resultant(c, d, v), u) |
|
|
|
R_u = _get_real_roots(R, u) |
|
|
|
if R_u is None: |
|
return None |
|
|
|
result = S.Zero |
|
|
|
for r_u in R_u.keys(): |
|
C = Poly(c.xreplace({u: r_u}), v) |
|
if not C: |
|
|
|
|
|
|
|
C = Poly(d.xreplace({u: r_u}), v) |
|
|
|
|
|
|
|
|
|
d = S.Zero |
|
|
|
R_v = _get_real_roots(C, v) |
|
|
|
if R_v is None: |
|
return None |
|
|
|
R_v_paired = [] |
|
for r_v in R_v: |
|
if r_v not in R_v_paired and -r_v not in R_v_paired: |
|
if r_v.is_negative or r_v.could_extract_minus_sign(): |
|
R_v_paired.append(-r_v) |
|
elif not r_v.is_zero: |
|
R_v_paired.append(r_v) |
|
|
|
for r_v in R_v_paired: |
|
|
|
D = d.xreplace({u: r_u, v: r_v}) |
|
|
|
if D.evalf(chop=True) != 0: |
|
continue |
|
|
|
A = Poly(a.xreplace({u: r_u, v: r_v}), x) |
|
B = Poly(b.xreplace({u: r_u, v: r_v}), x) |
|
|
|
AB = (A**2 + B**2).as_expr() |
|
|
|
result += r_u*log(AB) + r_v*log_to_atan(A, B) |
|
|
|
R_q = _get_real_roots(q, t) |
|
|
|
if R_q is None: |
|
return None |
|
|
|
for r in R_q.keys(): |
|
result += r*log(h.as_expr().subs(t, r)) |
|
|
|
return result |
|
|