|
""" |
|
This module implements Holonomic Functions and |
|
various operations on them. |
|
""" |
|
|
|
from sympy.core import Add, Mul, Pow |
|
from sympy.core.numbers import (NaN, Infinity, NegativeInfinity, Float, I, pi, |
|
equal_valued, int_valued) |
|
from sympy.core.singleton import S |
|
from sympy.core.sorting import ordered |
|
from sympy.core.symbol import Dummy, Symbol |
|
from sympy.core.sympify import sympify |
|
from sympy.functions.combinatorial.factorials import binomial, factorial, rf |
|
from sympy.functions.elementary.exponential import exp_polar, exp, log |
|
from sympy.functions.elementary.hyperbolic import (cosh, sinh) |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.functions.elementary.trigonometric import (cos, sin, sinc) |
|
from sympy.functions.special.error_functions import (Ci, Shi, Si, erf, erfc, erfi) |
|
from sympy.functions.special.gamma_functions import gamma |
|
from sympy.functions.special.hyper import hyper, meijerg |
|
from sympy.integrals import meijerint |
|
from sympy.matrices import Matrix |
|
from sympy.polys.rings import PolyElement |
|
from sympy.polys.fields import FracElement |
|
from sympy.polys.domains import QQ, RR |
|
from sympy.polys.polyclasses import DMF |
|
from sympy.polys.polyroots import roots |
|
from sympy.polys.polytools import Poly |
|
from sympy.polys.matrices import DomainMatrix |
|
from sympy.printing import sstr |
|
from sympy.series.limits import limit |
|
from sympy.series.order import Order |
|
from sympy.simplify.hyperexpand import hyperexpand |
|
from sympy.simplify.simplify import nsimplify |
|
from sympy.solvers.solvers import solve |
|
|
|
from .recurrence import HolonomicSequence, RecurrenceOperator, RecurrenceOperators |
|
from .holonomicerrors import (NotPowerSeriesError, NotHyperSeriesError, |
|
SingularityError, NotHolonomicError) |
|
|
|
|
|
def _find_nonzero_solution(r, homosys): |
|
ones = lambda shape: DomainMatrix.ones(shape, r.domain) |
|
particular, nullspace = r._solve(homosys) |
|
nullity = nullspace.shape[0] |
|
nullpart = ones((1, nullity)) * nullspace |
|
sol = (particular + nullpart).transpose() |
|
return sol |
|
|
|
|
|
|
|
def DifferentialOperators(base, generator): |
|
r""" |
|
This function is used to create annihilators using ``Dx``. |
|
|
|
Explanation |
|
=========== |
|
|
|
Returns an Algebra of Differential Operators also called Weyl Algebra |
|
and the operator for differentiation i.e. the ``Dx`` operator. |
|
|
|
Parameters |
|
========== |
|
|
|
base: |
|
Base polynomial ring for the algebra. |
|
The base polynomial ring is the ring of polynomials in :math:`x` that |
|
will appear as coefficients in the operators. |
|
generator: |
|
Generator of the algebra which can |
|
be either a noncommutative ``Symbol`` or a string. e.g. "Dx" or "D". |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy.abc import x |
|
>>> from sympy.holonomic.holonomic import DifferentialOperators |
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') |
|
>>> R |
|
Univariate Differential Operator Algebra in intermediate Dx over the base ring ZZ[x] |
|
>>> Dx*x |
|
(1) + (x)*Dx |
|
""" |
|
|
|
ring = DifferentialOperatorAlgebra(base, generator) |
|
return (ring, ring.derivative_operator) |
|
|
|
|
|
class DifferentialOperatorAlgebra: |
|
r""" |
|
An Ore Algebra is a set of noncommutative polynomials in the |
|
intermediate ``Dx`` and coefficients in a base polynomial ring :math:`A`. |
|
It follows the commutation rule: |
|
|
|
.. math :: |
|
Dxa = \sigma(a)Dx + \delta(a) |
|
|
|
for :math:`a \subset A`. |
|
|
|
Where :math:`\sigma: A \Rightarrow A` is an endomorphism and :math:`\delta: A \rightarrow A` |
|
is a skew-derivation i.e. :math:`\delta(ab) = \delta(a) b + \sigma(a) \delta(b)`. |
|
|
|
If one takes the sigma as identity map and delta as the standard derivation |
|
then it becomes the algebra of Differential Operators also called |
|
a Weyl Algebra i.e. an algebra whose elements are Differential Operators. |
|
|
|
This class represents a Weyl Algebra and serves as the parent ring for |
|
Differential Operators. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import ZZ |
|
>>> from sympy import symbols |
|
>>> from sympy.holonomic.holonomic import DifferentialOperators |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') |
|
>>> R |
|
Univariate Differential Operator Algebra in intermediate Dx over the base ring |
|
ZZ[x] |
|
|
|
See Also |
|
======== |
|
|
|
DifferentialOperator |
|
""" |
|
|
|
def __init__(self, base, generator): |
|
|
|
self.base = base |
|
|
|
self.derivative_operator = DifferentialOperator( |
|
[base.zero, base.one], self) |
|
|
|
if generator is None: |
|
self.gen_symbol = Symbol('Dx', commutative=False) |
|
else: |
|
if isinstance(generator, str): |
|
self.gen_symbol = Symbol(generator, commutative=False) |
|
elif isinstance(generator, Symbol): |
|
self.gen_symbol = generator |
|
|
|
def __str__(self): |
|
string = 'Univariate Differential Operator Algebra in intermediate '\ |
|
+ sstr(self.gen_symbol) + ' over the base ring ' + \ |
|
(self.base).__str__() |
|
|
|
return string |
|
|
|
__repr__ = __str__ |
|
|
|
def __eq__(self, other): |
|
return self.base == other.base and \ |
|
self.gen_symbol == other.gen_symbol |
|
|
|
|
|
class DifferentialOperator: |
|
""" |
|
Differential Operators are elements of Weyl Algebra. The Operators |
|
are defined by a list of polynomials in the base ring and the |
|
parent ring of the Operator i.e. the algebra it belongs to. |
|
|
|
Explanation |
|
=========== |
|
|
|
Takes a list of polynomials for each power of ``Dx`` and the |
|
parent ring which must be an instance of DifferentialOperatorAlgebra. |
|
|
|
A Differential Operator can be created easily using |
|
the operator ``Dx``. See examples below. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import DifferentialOperator, DifferentialOperators |
|
>>> from sympy import ZZ |
|
>>> from sympy import symbols |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') |
|
|
|
>>> DifferentialOperator([0, 1, x**2], R) |
|
(1)*Dx + (x**2)*Dx**2 |
|
|
|
>>> (x*Dx*x + 1 - Dx**2)**2 |
|
(2*x**2 + 2*x + 1) + (4*x**3 + 2*x**2 - 4)*Dx + (x**4 - 6*x - 2)*Dx**2 + (-2*x**2)*Dx**3 + (1)*Dx**4 |
|
|
|
See Also |
|
======== |
|
|
|
DifferentialOperatorAlgebra |
|
""" |
|
|
|
_op_priority = 20 |
|
|
|
def __init__(self, list_of_poly, parent): |
|
""" |
|
Parameters |
|
========== |
|
|
|
list_of_poly: |
|
List of polynomials belonging to the base ring of the algebra. |
|
parent: |
|
Parent algebra of the operator. |
|
""" |
|
|
|
|
|
|
|
self.parent = parent |
|
base = self.parent.base |
|
self.x = base.gens[0] if isinstance(base.gens[0], Symbol) else base.gens[0][0] |
|
|
|
|
|
|
|
|
|
for i, j in enumerate(list_of_poly): |
|
if not isinstance(j, base.dtype): |
|
list_of_poly[i] = base.from_sympy(sympify(j)) |
|
else: |
|
list_of_poly[i] = base.from_sympy(base.to_sympy(j)) |
|
|
|
self.listofpoly = list_of_poly |
|
|
|
self.order = len(self.listofpoly) - 1 |
|
|
|
def __mul__(self, other): |
|
""" |
|
Multiplies two DifferentialOperator and returns another |
|
DifferentialOperator instance using the commutation rule |
|
Dx*a = a*Dx + a' |
|
""" |
|
|
|
listofself = self.listofpoly |
|
if isinstance(other, DifferentialOperator): |
|
listofother = other.listofpoly |
|
elif isinstance(other, self.parent.base.dtype): |
|
listofother = [other] |
|
else: |
|
listofother = [self.parent.base.from_sympy(sympify(other))] |
|
|
|
|
|
def _mul_dmp_diffop(b, listofother): |
|
if isinstance(listofother, list): |
|
return [i * b for i in listofother] |
|
return [b * listofother] |
|
|
|
sol = _mul_dmp_diffop(listofself[0], listofother) |
|
|
|
|
|
def _mul_Dxi_b(b): |
|
sol1 = [self.parent.base.zero] |
|
sol2 = [] |
|
|
|
if isinstance(b, list): |
|
for i in b: |
|
sol1.append(i) |
|
sol2.append(i.diff()) |
|
else: |
|
sol1.append(self.parent.base.from_sympy(b)) |
|
sol2.append(self.parent.base.from_sympy(b).diff()) |
|
|
|
return _add_lists(sol1, sol2) |
|
|
|
for i in range(1, len(listofself)): |
|
|
|
listofother = _mul_Dxi_b(listofother) |
|
|
|
sol = _add_lists(sol, _mul_dmp_diffop(listofself[i], listofother)) |
|
|
|
return DifferentialOperator(sol, self.parent) |
|
|
|
def __rmul__(self, other): |
|
if not isinstance(other, DifferentialOperator): |
|
|
|
if not isinstance(other, self.parent.base.dtype): |
|
other = (self.parent.base).from_sympy(sympify(other)) |
|
|
|
sol = [other * j for j in self.listofpoly] |
|
return DifferentialOperator(sol, self.parent) |
|
|
|
def __add__(self, other): |
|
if isinstance(other, DifferentialOperator): |
|
|
|
sol = _add_lists(self.listofpoly, other.listofpoly) |
|
return DifferentialOperator(sol, self.parent) |
|
|
|
list_self = self.listofpoly |
|
if not isinstance(other, self.parent.base.dtype): |
|
list_other = [((self.parent).base).from_sympy(sympify(other))] |
|
else: |
|
list_other = [other] |
|
sol = [list_self[0] + list_other[0]] + list_self[1:] |
|
return DifferentialOperator(sol, self.parent) |
|
|
|
__radd__ = __add__ |
|
|
|
def __sub__(self, other): |
|
return self + (-1) * other |
|
|
|
def __rsub__(self, other): |
|
return (-1) * self + other |
|
|
|
def __neg__(self): |
|
return -1 * self |
|
|
|
def __truediv__(self, other): |
|
return self * (S.One / other) |
|
|
|
def __pow__(self, n): |
|
if n == 1: |
|
return self |
|
result = DifferentialOperator([self.parent.base.one], self.parent) |
|
if n == 0: |
|
return result |
|
|
|
if self.listofpoly == self.parent.derivative_operator.listofpoly: |
|
sol = [self.parent.base.zero]*n + [self.parent.base.one] |
|
return DifferentialOperator(sol, self.parent) |
|
x = self |
|
while True: |
|
if n % 2: |
|
result *= x |
|
n >>= 1 |
|
if not n: |
|
break |
|
x *= x |
|
return result |
|
|
|
def __str__(self): |
|
listofpoly = self.listofpoly |
|
print_str = '' |
|
|
|
for i, j in enumerate(listofpoly): |
|
if j == self.parent.base.zero: |
|
continue |
|
|
|
j = self.parent.base.to_sympy(j) |
|
|
|
if i == 0: |
|
print_str += '(' + sstr(j) + ')' |
|
continue |
|
|
|
if print_str: |
|
print_str += ' + ' |
|
|
|
if i == 1: |
|
print_str += '(' + sstr(j) + ')*%s' %(self.parent.gen_symbol) |
|
continue |
|
|
|
print_str += '(' + sstr(j) + ')' + '*%s**' %(self.parent.gen_symbol) + sstr(i) |
|
|
|
return print_str |
|
|
|
__repr__ = __str__ |
|
|
|
def __eq__(self, other): |
|
if isinstance(other, DifferentialOperator): |
|
return self.listofpoly == other.listofpoly and \ |
|
self.parent == other.parent |
|
return self.listofpoly[0] == other and \ |
|
all(i is self.parent.base.zero for i in self.listofpoly[1:]) |
|
|
|
def is_singular(self, x0): |
|
""" |
|
Checks if the differential equation is singular at x0. |
|
""" |
|
|
|
base = self.parent.base |
|
return x0 in roots(base.to_sympy(self.listofpoly[-1]), self.x) |
|
|
|
|
|
class HolonomicFunction: |
|
r""" |
|
A Holonomic Function is a solution to a linear homogeneous ordinary |
|
differential equation with polynomial coefficients. This differential |
|
equation can also be represented by an annihilator i.e. a Differential |
|
Operator ``L`` such that :math:`L.f = 0`. For uniqueness of these functions, |
|
initial conditions can also be provided along with the annihilator. |
|
|
|
Explanation |
|
=========== |
|
|
|
Holonomic functions have closure properties and thus forms a ring. |
|
Given two Holonomic Functions f and g, their sum, product, |
|
integral and derivative is also a Holonomic Function. |
|
|
|
For ordinary points initial condition should be a vector of values of |
|
the derivatives i.e. :math:`[y(x_0), y'(x_0), y''(x_0) ... ]`. |
|
|
|
For regular singular points initial conditions can also be provided in this |
|
format: |
|
:math:`{s0: [C_0, C_1, ...], s1: [C^1_0, C^1_1, ...], ...}` |
|
where s0, s1, ... are the roots of indicial equation and vectors |
|
:math:`[C_0, C_1, ...], [C^0_0, C^0_1, ...], ...` are the corresponding initial |
|
terms of the associated power series. See Examples below. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import QQ |
|
>>> from sympy import symbols, S |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') |
|
|
|
>>> p = HolonomicFunction(Dx - 1, x, 0, [1]) # e^x |
|
>>> q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) # sin(x) |
|
|
|
>>> p + q # annihilator of e^x + sin(x) |
|
HolonomicFunction((-1) + (1)*Dx + (-1)*Dx**2 + (1)*Dx**3, x, 0, [1, 2, 1]) |
|
|
|
>>> p * q # annihilator of e^x * sin(x) |
|
HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x, 0, [0, 1]) |
|
|
|
An example of initial conditions for regular singular points, |
|
the indicial equation has only one root `1/2`. |
|
|
|
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}) |
|
HolonomicFunction((-1/2) + (x)*Dx, x, 0, {1/2: [1]}) |
|
|
|
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_expr() |
|
sqrt(x) |
|
|
|
To plot a Holonomic Function, one can use `.evalf()` for numerical |
|
computation. Here's an example on `sin(x)**2/x` using numpy and matplotlib. |
|
|
|
>>> import sympy.holonomic # doctest: +SKIP |
|
>>> from sympy import var, sin # doctest: +SKIP |
|
>>> import matplotlib.pyplot as plt # doctest: +SKIP |
|
>>> import numpy as np # doctest: +SKIP |
|
>>> var("x") # doctest: +SKIP |
|
>>> r = np.linspace(1, 5, 100) # doctest: +SKIP |
|
>>> y = sympy.holonomic.expr_to_holonomic(sin(x)**2/x, x0=1).evalf(r) # doctest: +SKIP |
|
>>> plt.plot(r, y, label="holonomic function") # doctest: +SKIP |
|
>>> plt.show() # doctest: +SKIP |
|
|
|
""" |
|
|
|
_op_priority = 20 |
|
|
|
def __init__(self, annihilator, x, x0=0, y0=None): |
|
""" |
|
|
|
Parameters |
|
========== |
|
|
|
annihilator: |
|
Annihilator of the Holonomic Function, represented by a |
|
`DifferentialOperator` object. |
|
x: |
|
Variable of the function. |
|
x0: |
|
The point at which initial conditions are stored. |
|
Generally an integer. |
|
y0: |
|
The initial condition. The proper format for the initial condition |
|
is described in class docstring. To make the function unique, |
|
length of the vector `y0` should be equal to or greater than the |
|
order of differential equation. |
|
""" |
|
|
|
|
|
self.y0 = y0 |
|
|
|
self.x0 = x0 |
|
|
|
self.annihilator = annihilator |
|
self.x = x |
|
|
|
def __str__(self): |
|
if self._have_init_cond(): |
|
str_sol = 'HolonomicFunction(%s, %s, %s, %s)' % (str(self.annihilator),\ |
|
sstr(self.x), sstr(self.x0), sstr(self.y0)) |
|
else: |
|
str_sol = 'HolonomicFunction(%s, %s)' % (str(self.annihilator),\ |
|
sstr(self.x)) |
|
|
|
return str_sol |
|
|
|
__repr__ = __str__ |
|
|
|
def unify(self, other): |
|
""" |
|
Unifies the base polynomial ring of a given two Holonomic |
|
Functions. |
|
""" |
|
|
|
R1 = self.annihilator.parent.base |
|
R2 = other.annihilator.parent.base |
|
|
|
dom1 = R1.dom |
|
dom2 = R2.dom |
|
|
|
if R1 == R2: |
|
return (self, other) |
|
|
|
R = (dom1.unify(dom2)).old_poly_ring(self.x) |
|
|
|
newparent, _ = DifferentialOperators(R, str(self.annihilator.parent.gen_symbol)) |
|
|
|
sol1 = [R1.to_sympy(i) for i in self.annihilator.listofpoly] |
|
sol2 = [R2.to_sympy(i) for i in other.annihilator.listofpoly] |
|
|
|
sol1 = DifferentialOperator(sol1, newparent) |
|
sol2 = DifferentialOperator(sol2, newparent) |
|
|
|
sol1 = HolonomicFunction(sol1, self.x, self.x0, self.y0) |
|
sol2 = HolonomicFunction(sol2, other.x, other.x0, other.y0) |
|
|
|
return (sol1, sol2) |
|
|
|
def is_singularics(self): |
|
""" |
|
Returns True if the function have singular initial condition |
|
in the dictionary format. |
|
|
|
Returns False if the function have ordinary initial condition |
|
in the list format. |
|
|
|
Returns None for all other cases. |
|
""" |
|
|
|
if isinstance(self.y0, dict): |
|
return True |
|
elif isinstance(self.y0, list): |
|
return False |
|
|
|
def _have_init_cond(self): |
|
""" |
|
Checks if the function have initial condition. |
|
""" |
|
return bool(self.y0) |
|
|
|
def _singularics_to_ord(self): |
|
""" |
|
Converts a singular initial condition to ordinary if possible. |
|
""" |
|
a = list(self.y0)[0] |
|
b = self.y0[a] |
|
|
|
if len(self.y0) == 1 and a == int(a) and a > 0: |
|
a = int(a) |
|
y0 = [S.Zero] * a |
|
y0 += [j * factorial(a + i) for i, j in enumerate(b)] |
|
|
|
return HolonomicFunction(self.annihilator, self.x, self.x0, y0) |
|
|
|
def __add__(self, other): |
|
|
|
if self.annihilator.parent.base != other.annihilator.parent.base: |
|
a, b = self.unify(other) |
|
return a + b |
|
|
|
deg1 = self.annihilator.order |
|
deg2 = other.annihilator.order |
|
dim = max(deg1, deg2) |
|
R = self.annihilator.parent.base |
|
K = R.get_field() |
|
|
|
rowsself = [self.annihilator] |
|
rowsother = [other.annihilator] |
|
gen = self.annihilator.parent.derivative_operator |
|
|
|
|
|
for i in range(dim - deg1): |
|
diff1 = (gen * rowsself[-1]) |
|
rowsself.append(diff1) |
|
|
|
for i in range(dim - deg2): |
|
diff2 = (gen * rowsother[-1]) |
|
rowsother.append(diff2) |
|
|
|
row = rowsself + rowsother |
|
|
|
|
|
r = [] |
|
|
|
for expr in row: |
|
p = [] |
|
for i in range(dim + 1): |
|
if i >= len(expr.listofpoly): |
|
p.append(K.zero) |
|
else: |
|
p.append(K.new(expr.listofpoly[i].to_list())) |
|
r.append(p) |
|
|
|
|
|
r = DomainMatrix(r, (len(row), dim+1), K).transpose() |
|
homosys = DomainMatrix.zeros((dim+1, 1), K) |
|
sol = _find_nonzero_solution(r, homosys) |
|
|
|
|
|
|
|
while sol.is_zero_matrix: |
|
dim += 1 |
|
|
|
diff1 = (gen * rowsself[-1]) |
|
rowsself.append(diff1) |
|
|
|
diff2 = (gen * rowsother[-1]) |
|
rowsother.append(diff2) |
|
|
|
row = rowsself + rowsother |
|
r = [] |
|
|
|
for expr in row: |
|
p = [] |
|
for i in range(dim + 1): |
|
if i >= len(expr.listofpoly): |
|
p.append(K.zero) |
|
else: |
|
p.append(K.new(expr.listofpoly[i].to_list())) |
|
r.append(p) |
|
|
|
|
|
r = DomainMatrix(r, (len(row), dim+1), K).transpose() |
|
homosys = DomainMatrix.zeros((dim+1, 1), K) |
|
sol = _find_nonzero_solution(r, homosys) |
|
|
|
|
|
|
|
|
|
sol = sol.flat()[:dim + 1 - deg1] |
|
sol1 = _normalize(sol, self.annihilator.parent) |
|
|
|
sol = sol1 * (self.annihilator) |
|
sol = _normalize(sol.listofpoly, self.annihilator.parent, negative=False) |
|
|
|
if not (self._have_init_cond() and other._have_init_cond()): |
|
return HolonomicFunction(sol, self.x) |
|
|
|
|
|
if self.is_singularics() == False and other.is_singularics() == False: |
|
|
|
|
|
if self.x0 == other.x0: |
|
|
|
|
|
y1 = _extend_y0(self, sol.order) |
|
y2 = _extend_y0(other, sol.order) |
|
y0 = [a + b for a, b in zip(y1, y2)] |
|
return HolonomicFunction(sol, self.x, self.x0, y0) |
|
|
|
|
|
selfat0 = self.annihilator.is_singular(0) |
|
otherat0 = other.annihilator.is_singular(0) |
|
if self.x0 == 0 and not selfat0 and not otherat0: |
|
return self + other.change_ics(0) |
|
if other.x0 == 0 and not selfat0 and not otherat0: |
|
return self.change_ics(0) + other |
|
|
|
selfatx0 = self.annihilator.is_singular(self.x0) |
|
otheratx0 = other.annihilator.is_singular(self.x0) |
|
if not selfatx0 and not otheratx0: |
|
return self + other.change_ics(self.x0) |
|
return self.change_ics(other.x0) + other |
|
|
|
if self.x0 != other.x0: |
|
return HolonomicFunction(sol, self.x) |
|
|
|
|
|
y1 = None |
|
y2 = None |
|
|
|
if self.is_singularics() == False and other.is_singularics() == True: |
|
|
|
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)] |
|
y1 = {S.Zero: _y0} |
|
y2 = other.y0 |
|
elif self.is_singularics() == True and other.is_singularics() == False: |
|
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)] |
|
y1 = self.y0 |
|
y2 = {S.Zero: _y0} |
|
elif self.is_singularics() == True and other.is_singularics() == True: |
|
y1 = self.y0 |
|
y2 = other.y0 |
|
|
|
|
|
|
|
y0 = {} |
|
for i in y1: |
|
|
|
|
|
if i in y2: |
|
y0[i] = [a + b for a, b in zip(y1[i], y2[i])] |
|
else: |
|
y0[i] = y1[i] |
|
for i in y2: |
|
if i not in y1: |
|
y0[i] = y2[i] |
|
return HolonomicFunction(sol, self.x, self.x0, y0) |
|
|
|
def integrate(self, limits, initcond=False): |
|
""" |
|
Integrates the given holonomic function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import QQ |
|
>>> from sympy import symbols |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') |
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).integrate((x, 0, x)) # e^x - 1 |
|
HolonomicFunction((-1)*Dx + (1)*Dx**2, x, 0, [0, 1]) |
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).integrate((x, 0, x)) |
|
HolonomicFunction((1)*Dx + (1)*Dx**3, x, 0, [0, 1, 0]) |
|
""" |
|
|
|
|
|
D = self.annihilator.parent.derivative_operator |
|
|
|
|
|
if self.is_singularics() == True: |
|
|
|
r = self._singularics_to_ord() |
|
if r: |
|
return r.integrate(limits, initcond=initcond) |
|
|
|
|
|
|
|
y0 = {} |
|
for i in self.y0: |
|
c = self.y0[i] |
|
c2 = [] |
|
for j, cj in enumerate(c): |
|
if cj == 0: |
|
c2.append(S.Zero) |
|
|
|
|
|
|
|
elif i + j + 1 == 0: |
|
raise NotImplementedError("logarithmic terms in the series are not supported") |
|
else: |
|
c2.append(cj / S(i + j + 1)) |
|
y0[i + 1] = c2 |
|
|
|
if hasattr(limits, "__iter__"): |
|
raise NotImplementedError("Definite integration for singular initial conditions") |
|
|
|
return HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) |
|
|
|
|
|
if not self._have_init_cond(): |
|
if initcond: |
|
return HolonomicFunction(self.annihilator * D, self.x, self.x0, [S.Zero]) |
|
return HolonomicFunction(self.annihilator * D, self.x) |
|
|
|
|
|
|
|
|
|
if hasattr(limits, "__iter__"): |
|
|
|
if len(limits) == 3 and limits[0] == self.x: |
|
x0 = self.x0 |
|
a = limits[1] |
|
b = limits[2] |
|
definite = True |
|
|
|
else: |
|
definite = False |
|
|
|
y0 = [S.Zero] |
|
y0 += self.y0 |
|
|
|
indefinite_integral = HolonomicFunction(self.annihilator * D, self.x, self.x0, y0) |
|
|
|
if not definite: |
|
return indefinite_integral |
|
|
|
|
|
if x0 != a: |
|
try: |
|
indefinite_expr = indefinite_integral.to_expr() |
|
except (NotHyperSeriesError, NotPowerSeriesError): |
|
indefinite_expr = None |
|
|
|
if indefinite_expr: |
|
lower = indefinite_expr.subs(self.x, a) |
|
if isinstance(lower, NaN): |
|
lower = indefinite_expr.limit(self.x, a) |
|
else: |
|
lower = indefinite_integral.evalf(a) |
|
|
|
if b == self.x: |
|
y0[0] = y0[0] - lower |
|
return HolonomicFunction(self.annihilator * D, self.x, x0, y0) |
|
|
|
elif S(b).is_Number: |
|
if indefinite_expr: |
|
upper = indefinite_expr.subs(self.x, b) |
|
if isinstance(upper, NaN): |
|
upper = indefinite_expr.limit(self.x, b) |
|
else: |
|
upper = indefinite_integral.evalf(b) |
|
|
|
return upper - lower |
|
|
|
|
|
|
|
if b == self.x: |
|
return HolonomicFunction(self.annihilator * D, self.x, a, y0) |
|
|
|
|
|
elif S(b).is_Number: |
|
try: |
|
s = HolonomicFunction(self.annihilator * D, self.x, a,\ |
|
y0).to_expr() |
|
indefinite = s.subs(self.x, b) |
|
if not isinstance(indefinite, NaN): |
|
return indefinite |
|
else: |
|
return s.limit(self.x, b) |
|
except (NotHyperSeriesError, NotPowerSeriesError): |
|
return HolonomicFunction(self.annihilator * D, self.x, a, y0).evalf(b) |
|
|
|
return HolonomicFunction(self.annihilator * D, self.x) |
|
|
|
def diff(self, *args, **kwargs): |
|
r""" |
|
Differentiation of the given Holonomic function. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import ZZ |
|
>>> from sympy import symbols |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') |
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).diff().to_expr() |
|
cos(x) |
|
>>> HolonomicFunction(Dx - 2, x, 0, [1]).diff().to_expr() |
|
2*exp(2*x) |
|
|
|
See Also |
|
======== |
|
|
|
integrate |
|
""" |
|
kwargs.setdefault('evaluate', True) |
|
if args: |
|
if args[0] != self.x: |
|
return S.Zero |
|
elif len(args) == 2: |
|
sol = self |
|
for i in range(args[1]): |
|
sol = sol.diff(args[0]) |
|
return sol |
|
|
|
ann = self.annihilator |
|
|
|
|
|
if ann.listofpoly[0] == ann.parent.base.zero and ann.order == 1: |
|
return S.Zero |
|
|
|
|
|
|
|
elif ann.listofpoly[0] == ann.parent.base.zero: |
|
|
|
sol = DifferentialOperator(ann.listofpoly[1:], ann.parent) |
|
|
|
if self._have_init_cond(): |
|
|
|
if self.is_singularics() == False: |
|
return HolonomicFunction(sol, self.x, self.x0, self.y0[1:]) |
|
|
|
return HolonomicFunction(sol, self.x) |
|
else: |
|
return HolonomicFunction(sol, self.x) |
|
|
|
|
|
R = ann.parent.base |
|
K = R.get_field() |
|
|
|
seq_dmf = [K.new(i.to_list()) for i in ann.listofpoly] |
|
|
|
|
|
rhs = [i / seq_dmf[0] for i in seq_dmf[1:]] |
|
rhs.insert(0, K.zero) |
|
|
|
|
|
sol = _derivate_diff_eq(rhs, K) |
|
|
|
|
|
sol = _add_lists(sol, [K.zero, K.one]) |
|
|
|
sol = _normalize(sol[1:], self.annihilator.parent, negative=False) |
|
|
|
if not self._have_init_cond() or self.is_singularics() == True: |
|
return HolonomicFunction(sol, self.x) |
|
|
|
y0 = _extend_y0(self, sol.order + 1)[1:] |
|
return HolonomicFunction(sol, self.x, self.x0, y0) |
|
|
|
def __eq__(self, other): |
|
if self.annihilator != other.annihilator or self.x != other.x: |
|
return False |
|
if self._have_init_cond() and other._have_init_cond(): |
|
return self.x0 == other.x0 and self.y0 == other.y0 |
|
return True |
|
|
|
def __mul__(self, other): |
|
ann_self = self.annihilator |
|
|
|
if not isinstance(other, HolonomicFunction): |
|
other = sympify(other) |
|
|
|
if other.has(self.x): |
|
raise NotImplementedError(" Can't multiply a HolonomicFunction and expressions/functions.") |
|
|
|
if not self._have_init_cond(): |
|
return self |
|
y0 = _extend_y0(self, ann_self.order) |
|
y1 = [(Poly.new(j, self.x) * other).rep for j in y0] |
|
return HolonomicFunction(ann_self, self.x, self.x0, y1) |
|
|
|
if self.annihilator.parent.base != other.annihilator.parent.base: |
|
a, b = self.unify(other) |
|
return a * b |
|
|
|
ann_other = other.annihilator |
|
|
|
a = ann_self.order |
|
b = ann_other.order |
|
|
|
R = ann_self.parent.base |
|
K = R.get_field() |
|
|
|
list_self = [K.new(j.to_list()) for j in ann_self.listofpoly] |
|
list_other = [K.new(j.to_list()) for j in ann_other.listofpoly] |
|
|
|
|
|
self_red = [-list_self[i] / list_self[a] for i in range(a)] |
|
|
|
other_red = [-list_other[i] / list_other[b] for i in range(b)] |
|
|
|
|
|
coeff_mul = [[K.zero for i in range(b + 1)] for j in range(a + 1)] |
|
coeff_mul[0][0] = K.one |
|
|
|
|
|
lin_sys_elements = [[coeff_mul[i][j] for i in range(a) for j in range(b)]] |
|
lin_sys = DomainMatrix(lin_sys_elements, (1, a*b), K).transpose() |
|
|
|
homo_sys = DomainMatrix.zeros((a*b, 1), K) |
|
|
|
sol = _find_nonzero_solution(lin_sys, homo_sys) |
|
|
|
|
|
while sol.is_zero_matrix: |
|
|
|
|
|
for i in range(a - 1, -1, -1): |
|
for j in range(b - 1, -1, -1): |
|
coeff_mul[i][j + 1] += coeff_mul[i][j] |
|
coeff_mul[i + 1][j] += coeff_mul[i][j] |
|
if isinstance(coeff_mul[i][j], K.dtype): |
|
coeff_mul[i][j] = DMFdiff(coeff_mul[i][j], K) |
|
else: |
|
coeff_mul[i][j] = coeff_mul[i][j].diff(self.x) |
|
|
|
|
|
for i in range(a + 1): |
|
if coeff_mul[i][b].is_zero: |
|
continue |
|
for j in range(b): |
|
coeff_mul[i][j] += other_red[j] * coeff_mul[i][b] |
|
coeff_mul[i][b] = K.zero |
|
|
|
|
|
for j in range(b): |
|
if coeff_mul[a][j] == 0: |
|
continue |
|
for i in range(a): |
|
coeff_mul[i][j] += self_red[i] * coeff_mul[a][j] |
|
coeff_mul[a][j] = K.zero |
|
|
|
lin_sys_elements.append([coeff_mul[i][j] for i in range(a) for j in range(b)]) |
|
lin_sys = DomainMatrix(lin_sys_elements, (len(lin_sys_elements), a*b), K).transpose() |
|
|
|
sol = _find_nonzero_solution(lin_sys, homo_sys) |
|
|
|
sol_ann = _normalize(sol.flat(), self.annihilator.parent, negative=False) |
|
|
|
if not (self._have_init_cond() and other._have_init_cond()): |
|
return HolonomicFunction(sol_ann, self.x) |
|
|
|
if self.is_singularics() == False and other.is_singularics() == False: |
|
|
|
|
|
if self.x0 == other.x0: |
|
|
|
|
|
y0_self = _extend_y0(self, sol_ann.order) |
|
y0_other = _extend_y0(other, sol_ann.order) |
|
|
|
y0 = [y0_self[0] * y0_other[0]] |
|
|
|
|
|
for i in range(1, min(len(y0_self), len(y0_other))): |
|
coeff = [[0 for i in range(i + 1)] for j in range(i + 1)] |
|
for j in range(i + 1): |
|
for k in range(i + 1): |
|
if j + k == i: |
|
coeff[j][k] = binomial(i, j) |
|
|
|
sol = 0 |
|
for j in range(i + 1): |
|
for k in range(i + 1): |
|
sol += coeff[j][k]* y0_self[j] * y0_other[k] |
|
|
|
y0.append(sol) |
|
|
|
return HolonomicFunction(sol_ann, self.x, self.x0, y0) |
|
|
|
|
|
selfat0 = self.annihilator.is_singular(0) |
|
otherat0 = other.annihilator.is_singular(0) |
|
|
|
if self.x0 == 0 and not selfat0 and not otherat0: |
|
return self * other.change_ics(0) |
|
if other.x0 == 0 and not selfat0 and not otherat0: |
|
return self.change_ics(0) * other |
|
|
|
selfatx0 = self.annihilator.is_singular(self.x0) |
|
otheratx0 = other.annihilator.is_singular(self.x0) |
|
if not selfatx0 and not otheratx0: |
|
return self * other.change_ics(self.x0) |
|
return self.change_ics(other.x0) * other |
|
|
|
if self.x0 != other.x0: |
|
return HolonomicFunction(sol_ann, self.x) |
|
|
|
|
|
y1 = None |
|
y2 = None |
|
|
|
if self.is_singularics() == False and other.is_singularics() == True: |
|
_y0 = [j / factorial(i) for i, j in enumerate(self.y0)] |
|
y1 = {S.Zero: _y0} |
|
y2 = other.y0 |
|
elif self.is_singularics() == True and other.is_singularics() == False: |
|
_y0 = [j / factorial(i) for i, j in enumerate(other.y0)] |
|
y1 = self.y0 |
|
y2 = {S.Zero: _y0} |
|
elif self.is_singularics() == True and other.is_singularics() == True: |
|
y1 = self.y0 |
|
y2 = other.y0 |
|
|
|
y0 = {} |
|
|
|
for i in y1: |
|
for j in y2: |
|
k = min(len(y1[i]), len(y2[j])) |
|
c = [sum((y1[i][b] * y2[j][a - b] for b in range(a + 1)), |
|
start=S.Zero) for a in range(k)] |
|
if not i + j in y0: |
|
y0[i + j] = c |
|
else: |
|
y0[i + j] = [a + b for a, b in zip(c, y0[i + j])] |
|
return HolonomicFunction(sol_ann, self.x, self.x0, y0) |
|
|
|
__rmul__ = __mul__ |
|
|
|
def __sub__(self, other): |
|
return self + other * -1 |
|
|
|
def __rsub__(self, other): |
|
return self * -1 + other |
|
|
|
def __neg__(self): |
|
return -1 * self |
|
|
|
def __truediv__(self, other): |
|
return self * (S.One / other) |
|
|
|
def __pow__(self, n): |
|
if self.annihilator.order <= 1: |
|
ann = self.annihilator |
|
parent = ann.parent |
|
|
|
if self.y0 is None: |
|
y0 = None |
|
else: |
|
y0 = [list(self.y0)[0] ** n] |
|
|
|
p0 = ann.listofpoly[0] |
|
p1 = ann.listofpoly[1] |
|
|
|
p0 = (Poly.new(p0, self.x) * n).rep |
|
|
|
sol = [parent.base.to_sympy(i) for i in [p0, p1]] |
|
dd = DifferentialOperator(sol, parent) |
|
return HolonomicFunction(dd, self.x, self.x0, y0) |
|
if n < 0: |
|
raise NotHolonomicError("Negative Power on a Holonomic Function") |
|
Dx = self.annihilator.parent.derivative_operator |
|
result = HolonomicFunction(Dx, self.x, S.Zero, [S.One]) |
|
if n == 0: |
|
return result |
|
x = self |
|
while True: |
|
if n % 2: |
|
result *= x |
|
n >>= 1 |
|
if not n: |
|
break |
|
x *= x |
|
return result |
|
|
|
def degree(self): |
|
""" |
|
Returns the highest power of `x` in the annihilator. |
|
""" |
|
return max(i.degree() for i in self.annihilator.listofpoly) |
|
|
|
def composition(self, expr, *args, **kwargs): |
|
""" |
|
Returns function after composition of a holonomic |
|
function with an algebraic function. The method cannot compute |
|
initial conditions for the result by itself, so they can be also be |
|
provided. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import QQ |
|
>>> from sympy import symbols |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') |
|
>>> HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) |
|
HolonomicFunction((-2*x) + (1)*Dx, x, 0, [1]) |
|
>>> HolonomicFunction(Dx**2 + 1, x).composition(x**2 - 1, 1, [1, 0]) |
|
HolonomicFunction((4*x**3) + (-1)*Dx + (x)*Dx**2, x, 1, [1, 0]) |
|
|
|
See Also |
|
======== |
|
|
|
from_hyper |
|
""" |
|
|
|
R = self.annihilator.parent |
|
a = self.annihilator.order |
|
diff = expr.diff(self.x) |
|
listofpoly = self.annihilator.listofpoly |
|
|
|
for i, j in enumerate(listofpoly): |
|
if isinstance(j, self.annihilator.parent.base.dtype): |
|
listofpoly[i] = self.annihilator.parent.base.to_sympy(j) |
|
|
|
r = listofpoly[a].subs({self.x:expr}) |
|
subs = [-listofpoly[i].subs({self.x:expr}) / r for i in range (a)] |
|
coeffs = [S.Zero for i in range(a)] |
|
coeffs[0] = S.One |
|
system = [coeffs] |
|
homogeneous = Matrix([[S.Zero for i in range(a)]]).transpose() |
|
while True: |
|
coeffs_next = [p.diff(self.x) for p in coeffs] |
|
for i in range(a - 1): |
|
coeffs_next[i + 1] += (coeffs[i] * diff) |
|
for i in range(a): |
|
coeffs_next[i] += (coeffs[-1] * subs[i] * diff) |
|
coeffs = coeffs_next |
|
|
|
system.append(coeffs) |
|
sol, taus = (Matrix(system).transpose() |
|
).gauss_jordan_solve(homogeneous) |
|
if sol.is_zero_matrix is not True: |
|
break |
|
|
|
tau = list(taus)[0] |
|
sol = sol.subs(tau, 1) |
|
sol = _normalize(sol[0:], R, negative=False) |
|
|
|
|
|
if args: |
|
return HolonomicFunction(sol, self.x, args[0], args[1]) |
|
return HolonomicFunction(sol, self.x) |
|
|
|
def to_sequence(self, lb=True): |
|
r""" |
|
Finds recurrence relation for the coefficients in the series expansion |
|
of the function about :math:`x_0`, where :math:`x_0` is the point at |
|
which the initial condition is stored. |
|
|
|
Explanation |
|
=========== |
|
|
|
If the point :math:`x_0` is ordinary, solution of the form :math:`[(R, n_0)]` |
|
is returned. Where :math:`R` is the recurrence relation and :math:`n_0` is the |
|
smallest ``n`` for which the recurrence holds true. |
|
|
|
If the point :math:`x_0` is regular singular, a list of solutions in |
|
the format :math:`(R, p, n_0)` is returned, i.e. `[(R, p, n_0), ... ]`. |
|
Each tuple in this vector represents a recurrence relation :math:`R` |
|
associated with a root of the indicial equation ``p``. Conditions of |
|
a different format can also be provided in this case, see the |
|
docstring of HolonomicFunction class. |
|
|
|
If it's not possible to numerically compute a initial condition, |
|
it is returned as a symbol :math:`C_j`, denoting the coefficient of |
|
:math:`(x - x_0)^j` in the power series about :math:`x_0`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import QQ |
|
>>> from sympy import symbols, S |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') |
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() |
|
[(HolonomicSequence((-1) + (n + 1)Sn, n), u(0) = 1, 0)] |
|
>>> HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_sequence() |
|
[(HolonomicSequence((n**2) + (n**2 + n)Sn, n), u(0) = 0, u(1) = 1, u(2) = -1/2, 2)] |
|
>>> HolonomicFunction(-S(1)/2 + x*Dx, x, 0, {S(1)/2: [1]}).to_sequence() |
|
[(HolonomicSequence((n), n), u(0) = 1, 1/2, 1)] |
|
|
|
See Also |
|
======== |
|
|
|
HolonomicFunction.series |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://hal.inria.fr/inria-00070025/document |
|
.. [2] https://www3.risc.jku.at/publications/download/risc_2244/DIPLFORM.pdf |
|
|
|
""" |
|
|
|
if self.x0 != 0: |
|
return self.shift_x(self.x0).to_sequence() |
|
|
|
|
|
if self.annihilator.is_singular(self.x0): |
|
return self._frobenius(lb=lb) |
|
|
|
dict1 = {} |
|
n = Symbol('n', integer=True) |
|
dom = self.annihilator.parent.base.dom |
|
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') |
|
|
|
|
|
|
|
|
|
|
|
for i, j in enumerate(self.annihilator.listofpoly): |
|
|
|
listofdmp = j.all_coeffs() |
|
degree = len(listofdmp) - 1 |
|
|
|
for k in range(degree + 1): |
|
coeff = listofdmp[degree - k] |
|
|
|
if coeff == 0: |
|
continue |
|
|
|
if (i - k, k) in dict1: |
|
dict1[(i - k, k)] += (dom.to_sympy(coeff) * rf(n - k + 1, i)) |
|
else: |
|
dict1[(i - k, k)] = (dom.to_sympy(coeff) * rf(n - k + 1, i)) |
|
|
|
|
|
sol = [] |
|
keylist = [i[0] for i in dict1] |
|
lower = min(keylist) |
|
upper = max(keylist) |
|
degree = self.degree() |
|
|
|
|
|
|
|
smallest_n = lower + degree |
|
dummys = {} |
|
eqs = [] |
|
unknowns = [] |
|
|
|
|
|
for j in range(lower, upper + 1): |
|
if j in keylist: |
|
temp = sum((v.subs(n, n - lower) |
|
for k, v in dict1.items() if k[0] == j), |
|
start=S.Zero) |
|
sol.append(temp) |
|
else: |
|
sol.append(S.Zero) |
|
|
|
|
|
sol = RecurrenceOperator(sol, R) |
|
|
|
|
|
order = sol.order |
|
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') |
|
all_roots = all_roots.keys() |
|
|
|
if all_roots: |
|
max_root = max(all_roots) + 1 |
|
smallest_n = max(max_root, smallest_n) |
|
order += smallest_n |
|
|
|
y0 = _extend_y0(self, order) |
|
|
|
u0 = [j / factorial(i) for i, j in enumerate(y0)] |
|
|
|
|
|
|
|
|
|
|
|
if len(u0) < order: |
|
|
|
for i in range(degree): |
|
eq = S.Zero |
|
|
|
for j in dict1: |
|
|
|
if i + j[0] < 0: |
|
dummys[i + j[0]] = S.Zero |
|
|
|
elif i + j[0] < len(u0): |
|
dummys[i + j[0]] = u0[i + j[0]] |
|
|
|
elif not i + j[0] in dummys: |
|
dummys[i + j[0]] = Symbol('C_%s' %(i + j[0])) |
|
unknowns.append(dummys[i + j[0]]) |
|
|
|
if j[1] <= i: |
|
eq += dict1[j].subs(n, i) * dummys[i + j[0]] |
|
|
|
eqs.append(eq) |
|
|
|
|
|
soleqs = solve(eqs, *unknowns) |
|
|
|
if isinstance(soleqs, dict): |
|
|
|
for i in range(len(u0), order): |
|
|
|
if i not in dummys: |
|
dummys[i] = Symbol('C_%s' %i) |
|
|
|
if dummys[i] in soleqs: |
|
u0.append(soleqs[dummys[i]]) |
|
|
|
else: |
|
u0.append(dummys[i]) |
|
|
|
if lb: |
|
return [(HolonomicSequence(sol, u0), smallest_n)] |
|
return [HolonomicSequence(sol, u0)] |
|
|
|
for i in range(len(u0), order): |
|
|
|
if i not in dummys: |
|
dummys[i] = Symbol('C_%s' %i) |
|
|
|
s = False |
|
for j in soleqs: |
|
if dummys[i] in j: |
|
u0.append(j[dummys[i]]) |
|
s = True |
|
if not s: |
|
u0.append(dummys[i]) |
|
|
|
if lb: |
|
return [(HolonomicSequence(sol, u0), smallest_n)] |
|
|
|
return [HolonomicSequence(sol, u0)] |
|
|
|
def _frobenius(self, lb=True): |
|
|
|
indicialroots = self._indicial() |
|
|
|
reals = [] |
|
compl = [] |
|
for i in ordered(indicialroots.keys()): |
|
if i.is_real: |
|
reals.extend([i] * indicialroots[i]) |
|
else: |
|
a, b = i.as_real_imag() |
|
compl.extend([(i, a, b)] * indicialroots[i]) |
|
|
|
|
|
compl.sort(key=lambda x : x[1]) |
|
compl.sort(key=lambda x : x[2]) |
|
reals.sort() |
|
|
|
|
|
grp = [] |
|
|
|
for i in reals: |
|
if len(grp) == 0: |
|
grp.append([i]) |
|
continue |
|
for j in grp: |
|
if int_valued(j[0] - i): |
|
j.append(i) |
|
break |
|
else: |
|
grp.append([i]) |
|
|
|
|
|
|
|
independent = all(len(i) == 1 for i in grp) |
|
|
|
allpos = all(i >= 0 for i in reals) |
|
allint = all(int_valued(i) for i in reals) |
|
|
|
|
|
|
|
if self.is_singularics() == True: |
|
rootstoconsider = [] |
|
for i in ordered(self.y0.keys()): |
|
for j in ordered(indicialroots.keys()): |
|
if equal_valued(j, i): |
|
rootstoconsider.append(i) |
|
|
|
elif allpos and allint: |
|
rootstoconsider = [min(reals)] |
|
|
|
elif independent: |
|
rootstoconsider = [i[0] for i in grp] + [j[0] for j in compl] |
|
|
|
elif not allint: |
|
rootstoconsider = [i for i in reals if not int(i) == i] |
|
|
|
elif not allpos: |
|
|
|
if not self._have_init_cond() or S(self.y0[0]).is_finite == False: |
|
rootstoconsider = [min(reals)] |
|
|
|
else: |
|
posroots = [i for i in reals if i >= 0] |
|
rootstoconsider = [min(posroots)] |
|
|
|
n = Symbol('n', integer=True) |
|
dom = self.annihilator.parent.base.dom |
|
R, _ = RecurrenceOperators(dom.old_poly_ring(n), 'Sn') |
|
|
|
finalsol = [] |
|
char = ord('C') |
|
|
|
for p in rootstoconsider: |
|
dict1 = {} |
|
|
|
for i, j in enumerate(self.annihilator.listofpoly): |
|
|
|
listofdmp = j.all_coeffs() |
|
degree = len(listofdmp) - 1 |
|
|
|
for k in range(degree + 1): |
|
coeff = listofdmp[degree - k] |
|
|
|
if coeff == 0: |
|
continue |
|
|
|
if (i - k, k - i) in dict1: |
|
dict1[(i - k, k - i)] += (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) |
|
else: |
|
dict1[(i - k, k - i)] = (dom.to_sympy(coeff) * rf(n - k + 1 + p, i)) |
|
|
|
sol = [] |
|
keylist = [i[0] for i in dict1] |
|
lower = min(keylist) |
|
upper = max(keylist) |
|
degree = max(i[1] for i in dict1) |
|
degree2 = min(i[1] for i in dict1) |
|
|
|
smallest_n = lower + degree |
|
dummys = {} |
|
eqs = [] |
|
unknowns = [] |
|
|
|
for j in range(lower, upper + 1): |
|
if j in keylist: |
|
temp = sum((v.subs(n, n - lower) |
|
for k, v in dict1.items() if k[0] == j), |
|
start=S.Zero) |
|
sol.append(temp) |
|
else: |
|
sol.append(S.Zero) |
|
|
|
|
|
sol = RecurrenceOperator(sol, R) |
|
|
|
|
|
order = sol.order |
|
all_roots = roots(R.base.to_sympy(sol.listofpoly[-1]), n, filter='Z') |
|
all_roots = all_roots.keys() |
|
|
|
if all_roots: |
|
max_root = max(all_roots) + 1 |
|
smallest_n = max(max_root, smallest_n) |
|
order += smallest_n |
|
|
|
u0 = [] |
|
|
|
if self.is_singularics() == True: |
|
u0 = self.y0[p] |
|
|
|
elif self.is_singularics() == False and p >= 0 and int(p) == p and len(rootstoconsider) == 1: |
|
y0 = _extend_y0(self, order + int(p)) |
|
|
|
if len(y0) > int(p): |
|
u0 = [y0[i] / factorial(i) for i in range(int(p), len(y0))] |
|
|
|
if len(u0) < order: |
|
|
|
for i in range(degree2, degree): |
|
eq = S.Zero |
|
|
|
for j in dict1: |
|
if i + j[0] < 0: |
|
dummys[i + j[0]] = S.Zero |
|
|
|
elif i + j[0] < len(u0): |
|
dummys[i + j[0]] = u0[i + j[0]] |
|
|
|
elif not i + j[0] in dummys: |
|
letter = chr(char) + '_%s' %(i + j[0]) |
|
dummys[i + j[0]] = Symbol(letter) |
|
unknowns.append(dummys[i + j[0]]) |
|
|
|
if j[1] <= i: |
|
eq += dict1[j].subs(n, i) * dummys[i + j[0]] |
|
|
|
eqs.append(eq) |
|
|
|
|
|
soleqs = solve(eqs, *unknowns) |
|
|
|
if isinstance(soleqs, dict): |
|
|
|
for i in range(len(u0), order): |
|
|
|
if i not in dummys: |
|
letter = chr(char) + '_%s' %i |
|
dummys[i] = Symbol(letter) |
|
|
|
if dummys[i] in soleqs: |
|
u0.append(soleqs[dummys[i]]) |
|
|
|
else: |
|
u0.append(dummys[i]) |
|
|
|
if lb: |
|
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) |
|
continue |
|
else: |
|
finalsol.append((HolonomicSequence(sol, u0), p)) |
|
continue |
|
|
|
for i in range(len(u0), order): |
|
|
|
if i not in dummys: |
|
letter = chr(char) + '_%s' %i |
|
dummys[i] = Symbol(letter) |
|
|
|
s = False |
|
for j in soleqs: |
|
if dummys[i] in j: |
|
u0.append(j[dummys[i]]) |
|
s = True |
|
if not s: |
|
u0.append(dummys[i]) |
|
if lb: |
|
finalsol.append((HolonomicSequence(sol, u0), p, smallest_n)) |
|
|
|
else: |
|
finalsol.append((HolonomicSequence(sol, u0), p)) |
|
char += 1 |
|
return finalsol |
|
|
|
def series(self, n=6, coefficient=False, order=True, _recur=None): |
|
r""" |
|
Finds the power series expansion of given holonomic function about :math:`x_0`. |
|
|
|
Explanation |
|
=========== |
|
|
|
A list of series might be returned if :math:`x_0` is a regular point with |
|
multiple roots of the indicial equation. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import QQ |
|
>>> from sympy import symbols |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') |
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).series() # e^x |
|
1 + x + x**2/2 + x**3/6 + x**4/24 + x**5/120 + O(x**6) |
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).series(n=8) # sin(x) |
|
x - x**3/6 + x**5/120 - x**7/5040 + O(x**8) |
|
|
|
See Also |
|
======== |
|
|
|
HolonomicFunction.to_sequence |
|
""" |
|
|
|
if _recur is None: |
|
recurrence = self.to_sequence() |
|
else: |
|
recurrence = _recur |
|
|
|
if isinstance(recurrence, tuple) and len(recurrence) == 2: |
|
recurrence = recurrence[0] |
|
constantpower = 0 |
|
elif isinstance(recurrence, tuple) and len(recurrence) == 3: |
|
constantpower = recurrence[1] |
|
recurrence = recurrence[0] |
|
|
|
elif len(recurrence) == 1 and len(recurrence[0]) == 2: |
|
recurrence = recurrence[0][0] |
|
constantpower = 0 |
|
elif len(recurrence) == 1 and len(recurrence[0]) == 3: |
|
constantpower = recurrence[0][1] |
|
recurrence = recurrence[0][0] |
|
else: |
|
return [self.series(_recur=i) for i in recurrence] |
|
|
|
n = n - int(constantpower) |
|
l = len(recurrence.u0) - 1 |
|
k = recurrence.recurrence.order |
|
x = self.x |
|
x0 = self.x0 |
|
seq_dmp = recurrence.recurrence.listofpoly |
|
R = recurrence.recurrence.parent.base |
|
K = R.get_field() |
|
seq = [K.new(j.to_list()) for j in seq_dmp] |
|
sub = [-seq[i] / seq[k] for i in range(k)] |
|
sol = list(recurrence.u0) |
|
|
|
if l + 1 < n: |
|
|
|
for i in range(l + 1 - k, n - k): |
|
coeff = sum((DMFsubs(sub[j], i) * sol[i + j] |
|
for j in range(k) if i + j >= 0), start=S.Zero) |
|
sol.append(coeff) |
|
|
|
if coefficient: |
|
return sol |
|
|
|
ser = sum((x**(i + constantpower) * j for i, j in enumerate(sol)), |
|
start=S.Zero) |
|
if order: |
|
ser += Order(x**(n + int(constantpower)), x) |
|
if x0 != 0: |
|
return ser.subs(x, x - x0) |
|
return ser |
|
|
|
def _indicial(self): |
|
""" |
|
Computes roots of the Indicial equation. |
|
""" |
|
|
|
if self.x0 != 0: |
|
return self.shift_x(self.x0)._indicial() |
|
|
|
list_coeff = self.annihilator.listofpoly |
|
R = self.annihilator.parent.base |
|
x = self.x |
|
s = R.zero |
|
y = R.one |
|
|
|
def _pole_degree(poly): |
|
root_all = roots(R.to_sympy(poly), x, filter='Z') |
|
if 0 in root_all.keys(): |
|
return root_all[0] |
|
else: |
|
return 0 |
|
|
|
degree = max(j.degree() for j in list_coeff) |
|
inf = 10 * (max(1, degree) + max(1, self.annihilator.order)) |
|
|
|
deg = lambda q: inf if q.is_zero else _pole_degree(q) |
|
b = min(deg(q) - j for j, q in enumerate(list_coeff)) |
|
|
|
for i, j in enumerate(list_coeff): |
|
listofdmp = j.all_coeffs() |
|
degree = len(listofdmp) - 1 |
|
if 0 <= i + b <= degree: |
|
s = s + listofdmp[degree - i - b] * y |
|
y *= R.from_sympy(x - i) |
|
|
|
return roots(R.to_sympy(s), x) |
|
|
|
def evalf(self, points, method='RK4', h=0.05, derivatives=False): |
|
r""" |
|
Finds numerical value of a holonomic function using numerical methods. |
|
(RK4 by default). A set of points (real or complex) must be provided |
|
which will be the path for the numerical integration. |
|
|
|
Explanation |
|
=========== |
|
|
|
The path should be given as a list :math:`[x_1, x_2, \dots x_n]`. The numerical |
|
values will be computed at each point in this order |
|
:math:`x_1 \rightarrow x_2 \rightarrow x_3 \dots \rightarrow x_n`. |
|
|
|
Returns values of the function at :math:`x_1, x_2, \dots x_n` in a list. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import QQ |
|
>>> from sympy import symbols |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(QQ.old_poly_ring(x),'Dx') |
|
|
|
A straight line on the real axis from (0 to 1) |
|
|
|
>>> r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] |
|
|
|
Runge-Kutta 4th order on e^x from 0.1 to 1. |
|
Exact solution at 1 is 2.71828182845905 |
|
|
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r) |
|
[1.10517083333333, 1.22140257085069, 1.34985849706254, 1.49182424008069, |
|
1.64872063859684, 1.82211796209193, 2.01375162659678, 2.22553956329232, |
|
2.45960141378007, 2.71827974413517] |
|
|
|
Euler's method for the same |
|
|
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).evalf(r, method='Euler') |
|
[1.1, 1.21, 1.331, 1.4641, 1.61051, 1.771561, 1.9487171, 2.14358881, |
|
2.357947691, 2.5937424601] |
|
|
|
One can also observe that the value obtained using Runge-Kutta 4th order |
|
is much more accurate than Euler's method. |
|
""" |
|
|
|
from sympy.holonomic.numerical import _evalf |
|
lp = False |
|
|
|
|
|
if not hasattr(points, "__iter__"): |
|
lp = True |
|
b = S(points) |
|
if self.x0 == b: |
|
return _evalf(self, [b], method=method, derivatives=derivatives)[-1] |
|
|
|
if not b.is_Number: |
|
raise NotImplementedError |
|
|
|
a = self.x0 |
|
if a > b: |
|
h = -h |
|
n = int((b - a) / h) |
|
points = [a + h] |
|
for i in range(n - 1): |
|
points.append(points[-1] + h) |
|
|
|
for i in roots(self.annihilator.parent.base.to_sympy(self.annihilator.listofpoly[-1]), self.x): |
|
if i == self.x0 or i in points: |
|
raise SingularityError(self, i) |
|
|
|
if lp: |
|
return _evalf(self, points, method=method, derivatives=derivatives)[-1] |
|
return _evalf(self, points, method=method, derivatives=derivatives) |
|
|
|
def change_x(self, z): |
|
""" |
|
Changes only the variable of Holonomic Function, for internal |
|
purposes. For composition use HolonomicFunction.composition() |
|
""" |
|
|
|
dom = self.annihilator.parent.base.dom |
|
R = dom.old_poly_ring(z) |
|
parent, _ = DifferentialOperators(R, 'Dx') |
|
sol = [R(j.to_list()) for j in self.annihilator.listofpoly] |
|
sol = DifferentialOperator(sol, parent) |
|
return HolonomicFunction(sol, z, self.x0, self.y0) |
|
|
|
def shift_x(self, a): |
|
""" |
|
Substitute `x + a` for `x`. |
|
""" |
|
|
|
x = self.x |
|
listaftershift = self.annihilator.listofpoly |
|
base = self.annihilator.parent.base |
|
|
|
sol = [base.from_sympy(base.to_sympy(i).subs(x, x + a)) for i in listaftershift] |
|
sol = DifferentialOperator(sol, self.annihilator.parent) |
|
x0 = self.x0 - a |
|
if not self._have_init_cond(): |
|
return HolonomicFunction(sol, x) |
|
return HolonomicFunction(sol, x, x0, self.y0) |
|
|
|
def to_hyper(self, as_list=False, _recur=None): |
|
r""" |
|
Returns a hypergeometric function (or linear combination of them) |
|
representing the given holonomic function. |
|
|
|
Explanation |
|
=========== |
|
|
|
Returns an answer of the form: |
|
`a_1 \cdot x^{b_1} \cdot{hyper()} + a_2 \cdot x^{b_2} \cdot{hyper()} \dots` |
|
|
|
This is very useful as one can now use ``hyperexpand`` to find the |
|
symbolic expressions/functions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import ZZ |
|
>>> from sympy import symbols |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') |
|
>>> # sin(x) |
|
>>> HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_hyper() |
|
x*hyper((), (3/2,), -x**2/4) |
|
>>> # exp(x) |
|
>>> HolonomicFunction(Dx - 1, x, 0, [1]).to_hyper() |
|
hyper((), (), x) |
|
|
|
See Also |
|
======== |
|
|
|
from_hyper, from_meijerg |
|
""" |
|
|
|
if _recur is None: |
|
recurrence = self.to_sequence() |
|
else: |
|
recurrence = _recur |
|
|
|
if isinstance(recurrence, tuple) and len(recurrence) == 2: |
|
smallest_n = recurrence[1] |
|
recurrence = recurrence[0] |
|
constantpower = 0 |
|
elif isinstance(recurrence, tuple) and len(recurrence) == 3: |
|
smallest_n = recurrence[2] |
|
constantpower = recurrence[1] |
|
recurrence = recurrence[0] |
|
elif len(recurrence) == 1 and len(recurrence[0]) == 2: |
|
smallest_n = recurrence[0][1] |
|
recurrence = recurrence[0][0] |
|
constantpower = 0 |
|
elif len(recurrence) == 1 and len(recurrence[0]) == 3: |
|
smallest_n = recurrence[0][2] |
|
constantpower = recurrence[0][1] |
|
recurrence = recurrence[0][0] |
|
else: |
|
sol = self.to_hyper(as_list=as_list, _recur=recurrence[0]) |
|
for i in recurrence[1:]: |
|
sol += self.to_hyper(as_list=as_list, _recur=i) |
|
return sol |
|
|
|
u0 = recurrence.u0 |
|
r = recurrence.recurrence |
|
x = self.x |
|
x0 = self.x0 |
|
|
|
|
|
m = r.order |
|
|
|
|
|
if m == 0: |
|
nonzeroterms = roots(r.parent.base.to_sympy(r.listofpoly[0]), recurrence.n, filter='R') |
|
|
|
sol = S.Zero |
|
for j, i in enumerate(nonzeroterms): |
|
|
|
if i < 0 or not int_valued(i): |
|
continue |
|
|
|
i = int(i) |
|
if i < len(u0): |
|
if isinstance(u0[i], (PolyElement, FracElement)): |
|
u0[i] = u0[i].as_expr() |
|
sol += u0[i] * x**i |
|
|
|
else: |
|
sol += Symbol('C_%s' %j) * x**i |
|
|
|
if isinstance(sol, (PolyElement, FracElement)): |
|
sol = sol.as_expr() * x**constantpower |
|
else: |
|
sol = sol * x**constantpower |
|
if as_list: |
|
if x0 != 0: |
|
return [(sol.subs(x, x - x0), )] |
|
return [(sol, )] |
|
if x0 != 0: |
|
return sol.subs(x, x - x0) |
|
return sol |
|
|
|
if smallest_n + m > len(u0): |
|
raise NotImplementedError("Can't compute sufficient Initial Conditions") |
|
|
|
|
|
if any(i != r.parent.base.zero for i in r.listofpoly[1:-1]): |
|
raise NotHyperSeriesError(self, self.x0) |
|
|
|
a = r.listofpoly[0] |
|
b = r.listofpoly[-1] |
|
|
|
|
|
if isinstance(a.LC(), (PolyElement, FracElement)): |
|
c = - (S(a.LC().as_expr()) * m**(a.degree())) / (S(b.LC().as_expr()) * m**(b.degree())) |
|
else: |
|
c = - (S(a.LC()) * m**(a.degree())) / (S(b.LC()) * m**(b.degree())) |
|
|
|
sol = 0 |
|
|
|
arg1 = roots(r.parent.base.to_sympy(a), recurrence.n) |
|
arg2 = roots(r.parent.base.to_sympy(b), recurrence.n) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if as_list: |
|
listofsol = [] |
|
for i in range(smallest_n + m): |
|
|
|
|
|
|
|
|
|
|
|
if i < smallest_n: |
|
if as_list: |
|
listofsol.append(((S(u0[i]) * x**(i+constantpower)).subs(x, x-x0), )) |
|
else: |
|
sol += S(u0[i]) * x**i |
|
continue |
|
|
|
|
|
|
|
|
|
if S(u0[i]) == 0: |
|
continue |
|
|
|
ap = [] |
|
bq = [] |
|
|
|
|
|
for k in ordered(arg1.keys()): |
|
ap.extend([nsimplify((i - k) / m)] * arg1[k]) |
|
|
|
for k in ordered(arg2.keys()): |
|
bq.extend([nsimplify((i - k) / m)] * arg2[k]) |
|
|
|
|
|
if 1 in bq: |
|
bq.remove(1) |
|
else: |
|
ap.append(1) |
|
if as_list: |
|
listofsol.append(((S(u0[i])*x**(i+constantpower)).subs(x, x-x0), (hyper(ap, bq, c*x**m)).subs(x, x-x0))) |
|
else: |
|
sol += S(u0[i]) * hyper(ap, bq, c * x**m) * x**i |
|
if as_list: |
|
return listofsol |
|
sol = sol * x**constantpower |
|
if x0 != 0: |
|
return sol.subs(x, x - x0) |
|
|
|
return sol |
|
|
|
def to_expr(self): |
|
""" |
|
Converts a Holonomic Function back to elementary functions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import HolonomicFunction, DifferentialOperators |
|
>>> from sympy import ZZ |
|
>>> from sympy import symbols, S |
|
>>> x = symbols('x') |
|
>>> R, Dx = DifferentialOperators(ZZ.old_poly_ring(x),'Dx') |
|
>>> HolonomicFunction(x**2*Dx**2 + x*Dx + (x**2 - 1), x, 0, [0, S(1)/2]).to_expr() |
|
besselj(1, x) |
|
>>> HolonomicFunction((1 + x)*Dx**3 + Dx**2, x, 0, [1, 1, 1]).to_expr() |
|
x*log(x + 1) + log(x + 1) + 1 |
|
|
|
""" |
|
|
|
return hyperexpand(self.to_hyper()).simplify() |
|
|
|
def change_ics(self, b, lenics=None): |
|
""" |
|
Changes the point `x0` to ``b`` for initial conditions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic import expr_to_holonomic |
|
>>> from sympy import symbols, sin, exp |
|
>>> x = symbols('x') |
|
|
|
>>> expr_to_holonomic(sin(x)).change_ics(1) |
|
HolonomicFunction((1) + (1)*Dx**2, x, 1, [sin(1), cos(1)]) |
|
|
|
>>> expr_to_holonomic(exp(x)).change_ics(2) |
|
HolonomicFunction((-1) + (1)*Dx, x, 2, [exp(2)]) |
|
""" |
|
|
|
symbolic = True |
|
|
|
if lenics is None and len(self.y0) > self.annihilator.order: |
|
lenics = len(self.y0) |
|
dom = self.annihilator.parent.base.domain |
|
|
|
try: |
|
sol = expr_to_holonomic(self.to_expr(), x=self.x, x0=b, lenics=lenics, domain=dom) |
|
except (NotPowerSeriesError, NotHyperSeriesError): |
|
symbolic = False |
|
|
|
if symbolic and sol.x0 == b: |
|
return sol |
|
|
|
y0 = self.evalf(b, derivatives=True) |
|
return HolonomicFunction(self.annihilator, self.x, b, y0) |
|
|
|
def to_meijerg(self): |
|
""" |
|
Returns a linear combination of Meijer G-functions. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic import expr_to_holonomic |
|
>>> from sympy import sin, cos, hyperexpand, log, symbols |
|
>>> x = symbols('x') |
|
>>> hyperexpand(expr_to_holonomic(cos(x) + sin(x)).to_meijerg()) |
|
sin(x) + cos(x) |
|
>>> hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() |
|
log(x) |
|
|
|
See Also |
|
======== |
|
|
|
to_hyper |
|
""" |
|
|
|
|
|
rep = self.to_hyper(as_list=True) |
|
sol = S.Zero |
|
|
|
for i in rep: |
|
if len(i) == 1: |
|
sol += i[0] |
|
|
|
elif len(i) == 2: |
|
sol += i[0] * _hyper_to_meijerg(i[1]) |
|
|
|
return sol |
|
|
|
|
|
def from_hyper(func, x0=0, evalf=False): |
|
r""" |
|
Converts a hypergeometric function to holonomic. |
|
``func`` is the Hypergeometric Function and ``x0`` is the point at |
|
which initial conditions are required. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import from_hyper |
|
>>> from sympy import symbols, hyper, S |
|
>>> x = symbols('x') |
|
>>> from_hyper(hyper([], [S(3)/2], x**2/4)) |
|
HolonomicFunction((-x) + (2)*Dx + (x)*Dx**2, x, 1, [sinh(1), -sinh(1) + cosh(1)]) |
|
""" |
|
|
|
a = func.ap |
|
b = func.bq |
|
z = func.args[2] |
|
x = z.atoms(Symbol).pop() |
|
R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') |
|
|
|
|
|
xDx = x*Dx |
|
r1 = 1 |
|
for ai in a: |
|
r1 *= xDx + ai |
|
xDx_1 = xDx - 1 |
|
|
|
r2 = Dx |
|
for bi in b: |
|
r2 *= xDx_1 + bi |
|
sol = r1 - r2 |
|
|
|
simp = hyperexpand(func) |
|
|
|
if simp in (Infinity, NegativeInfinity): |
|
return HolonomicFunction(sol, x).composition(z) |
|
|
|
|
|
if not isinstance(simp, hyper): |
|
y0 = _find_conditions(simp, x, x0, sol.order, use_limit=False) |
|
while not y0: |
|
|
|
|
|
|
|
x0 += 1 |
|
y0 = _find_conditions(simp, x, x0, sol.order, use_limit=False) |
|
|
|
return HolonomicFunction(sol, x).composition(z, x0, y0) |
|
|
|
if isinstance(simp, hyper): |
|
x0 = 1 |
|
|
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf, use_limit=False) |
|
while not y0: |
|
x0 += 1 |
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf, use_limit=False) |
|
return HolonomicFunction(sol, x).composition(z, x0, y0) |
|
|
|
return HolonomicFunction(sol, x).composition(z) |
|
|
|
|
|
def from_meijerg(func, x0=0, evalf=False, initcond=True, domain=QQ): |
|
""" |
|
Converts a Meijer G-function to Holonomic. |
|
``func`` is the G-Function and ``x0`` is the point at |
|
which initial conditions are required. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import from_meijerg |
|
>>> from sympy import symbols, meijerg, S |
|
>>> x = symbols('x') |
|
>>> from_meijerg(meijerg(([], []), ([S(1)/2], [0]), x**2/4)) |
|
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1/sqrt(pi)]) |
|
""" |
|
|
|
a = func.ap |
|
b = func.bq |
|
n = len(func.an) |
|
m = len(func.bm) |
|
p = len(a) |
|
z = func.args[2] |
|
x = z.atoms(Symbol).pop() |
|
R, Dx = DifferentialOperators(domain.old_poly_ring(x), 'Dx') |
|
|
|
|
|
|
|
xDx = x*Dx |
|
xDx1 = xDx + 1 |
|
r1 = x*(-1)**(m + n - p) |
|
for ai in a: |
|
r1 *= xDx1 - ai |
|
|
|
r2 = 1 |
|
for bi in b: |
|
r2 *= xDx - bi |
|
sol = r1 - r2 |
|
|
|
if not initcond: |
|
return HolonomicFunction(sol, x).composition(z) |
|
|
|
simp = hyperexpand(func) |
|
|
|
if simp in (Infinity, NegativeInfinity): |
|
return HolonomicFunction(sol, x).composition(z) |
|
|
|
|
|
if not isinstance(simp, meijerg): |
|
y0 = _find_conditions(simp, x, x0, sol.order, use_limit=False) |
|
while not y0: |
|
x0 += 1 |
|
y0 = _find_conditions(simp, x, x0, sol.order, use_limit=False) |
|
|
|
return HolonomicFunction(sol, x).composition(z, x0, y0) |
|
|
|
if isinstance(simp, meijerg): |
|
x0 = 1 |
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf, use_limit=False) |
|
while not y0: |
|
x0 += 1 |
|
y0 = _find_conditions(simp, x, x0, sol.order, evalf, use_limit=False) |
|
|
|
return HolonomicFunction(sol, x).composition(z, x0, y0) |
|
|
|
return HolonomicFunction(sol, x).composition(z) |
|
|
|
|
|
x_1 = Dummy('x_1') |
|
_lookup_table = None |
|
domain_for_table = None |
|
from sympy.integrals.meijerint import _mytype |
|
|
|
|
|
def expr_to_holonomic(func, x=None, x0=0, y0=None, lenics=None, domain=None, initcond=True): |
|
""" |
|
Converts a function or an expression to a holonomic function. |
|
|
|
Parameters |
|
========== |
|
|
|
func: |
|
The expression to be converted. |
|
x: |
|
variable for the function. |
|
x0: |
|
point at which initial condition must be computed. |
|
y0: |
|
One can optionally provide initial condition if the method |
|
is not able to do it automatically. |
|
lenics: |
|
Number of terms in the initial condition. By default it is |
|
equal to the order of the annihilator. |
|
domain: |
|
Ground domain for the polynomials in ``x`` appearing as coefficients |
|
in the annihilator. |
|
initcond: |
|
Set it false if you do not want the initial conditions to be computed. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy.holonomic.holonomic import expr_to_holonomic |
|
>>> from sympy import sin, exp, symbols |
|
>>> x = symbols('x') |
|
>>> expr_to_holonomic(sin(x)) |
|
HolonomicFunction((1) + (1)*Dx**2, x, 0, [0, 1]) |
|
>>> expr_to_holonomic(exp(x)) |
|
HolonomicFunction((-1) + (1)*Dx, x, 0, [1]) |
|
|
|
See Also |
|
======== |
|
|
|
sympy.integrals.meijerint._rewrite1, _convert_poly_rat_alg, _create_table |
|
""" |
|
func = sympify(func) |
|
syms = func.free_symbols |
|
|
|
if not x: |
|
if len(syms) == 1: |
|
x= syms.pop() |
|
else: |
|
raise ValueError("Specify the variable for the function") |
|
elif x in syms: |
|
syms.remove(x) |
|
|
|
extra_syms = list(syms) |
|
|
|
if domain is None: |
|
if func.has(Float): |
|
domain = RR |
|
else: |
|
domain = QQ |
|
if len(extra_syms) != 0: |
|
domain = domain[extra_syms].get_field() |
|
|
|
|
|
solpoly = _convert_poly_rat_alg(func, x, x0=x0, y0=y0, lenics=lenics, domain=domain, initcond=initcond) |
|
if solpoly: |
|
return solpoly |
|
|
|
|
|
global _lookup_table, domain_for_table |
|
if not _lookup_table: |
|
domain_for_table = domain |
|
_lookup_table = {} |
|
_create_table(_lookup_table, domain=domain) |
|
elif domain != domain_for_table: |
|
domain_for_table = domain |
|
_lookup_table = {} |
|
_create_table(_lookup_table, domain=domain) |
|
|
|
|
|
if func.is_Function: |
|
f = func.subs(x, x_1) |
|
t = _mytype(f, x_1) |
|
if t in _lookup_table: |
|
l = _lookup_table[t] |
|
sol = l[0][1].change_x(x) |
|
else: |
|
sol = _convert_meijerint(func, x, initcond=False, domain=domain) |
|
if not sol: |
|
raise NotImplementedError |
|
if y0: |
|
sol.y0 = y0 |
|
if y0 or not initcond: |
|
sol.x0 = x0 |
|
return sol |
|
if not lenics: |
|
lenics = sol.annihilator.order |
|
_y0 = _find_conditions(func, x, x0, lenics) |
|
while not _y0: |
|
x0 += 1 |
|
_y0 = _find_conditions(func, x, x0, lenics) |
|
return HolonomicFunction(sol.annihilator, x, x0, _y0) |
|
|
|
if y0 or not initcond: |
|
sol = sol.composition(func.args[0]) |
|
if y0: |
|
sol.y0 = y0 |
|
sol.x0 = x0 |
|
return sol |
|
if not lenics: |
|
lenics = sol.annihilator.order |
|
|
|
_y0 = _find_conditions(func, x, x0, lenics) |
|
while not _y0: |
|
x0 += 1 |
|
_y0 = _find_conditions(func, x, x0, lenics) |
|
return sol.composition(func.args[0], x0, _y0) |
|
|
|
|
|
args = func.args |
|
f = func.func |
|
sol = expr_to_holonomic(args[0], x=x, initcond=False, domain=domain) |
|
|
|
if f is Add: |
|
for i in range(1, len(args)): |
|
sol += expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) |
|
|
|
elif f is Mul: |
|
for i in range(1, len(args)): |
|
sol *= expr_to_holonomic(args[i], x=x, initcond=False, domain=domain) |
|
|
|
elif f is Pow: |
|
sol = sol**args[1] |
|
sol.x0 = x0 |
|
if not sol: |
|
raise NotImplementedError |
|
if y0: |
|
sol.y0 = y0 |
|
if y0 or not initcond: |
|
return sol |
|
if sol.y0: |
|
return sol |
|
if not lenics: |
|
lenics = sol.annihilator.order |
|
if sol.annihilator.is_singular(x0): |
|
r = sol._indicial() |
|
l = list(r) |
|
if len(r) == 1 and r[l[0]] == S.One: |
|
r = l[0] |
|
g = func / (x - x0)**r |
|
singular_ics = _find_conditions(g, x, x0, lenics) |
|
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] |
|
y0 = {r:singular_ics} |
|
return HolonomicFunction(sol.annihilator, x, x0, y0) |
|
|
|
_y0 = _find_conditions(func, x, x0, lenics) |
|
while not _y0: |
|
x0 += 1 |
|
_y0 = _find_conditions(func, x, x0, lenics) |
|
|
|
return HolonomicFunction(sol.annihilator, x, x0, _y0) |
|
|
|
|
|
|
|
|
|
def _normalize(list_of, parent, negative=True): |
|
""" |
|
Normalize a given annihilator |
|
""" |
|
|
|
num = [] |
|
denom = [] |
|
base = parent.base |
|
K = base.get_field() |
|
lcm_denom = base.from_sympy(S.One) |
|
list_of_coeff = [] |
|
|
|
|
|
|
|
for i, j in enumerate(list_of): |
|
if isinstance(j, base.dtype): |
|
list_of_coeff.append(K.new(j.to_list())) |
|
elif not isinstance(j, K.dtype): |
|
list_of_coeff.append(K.from_sympy(sympify(j))) |
|
else: |
|
list_of_coeff.append(j) |
|
|
|
|
|
num.append(list_of_coeff[i].numer()) |
|
|
|
|
|
denom.append(list_of_coeff[i].denom()) |
|
|
|
|
|
for i in denom: |
|
lcm_denom = i.lcm(lcm_denom) |
|
|
|
if negative: |
|
lcm_denom = -lcm_denom |
|
|
|
lcm_denom = K.new(lcm_denom.to_list()) |
|
|
|
|
|
for i, j in enumerate(list_of_coeff): |
|
list_of_coeff[i] = j * lcm_denom |
|
|
|
gcd_numer = base((list_of_coeff[-1].numer() / list_of_coeff[-1].denom()).to_list()) |
|
|
|
|
|
for i in num: |
|
gcd_numer = i.gcd(gcd_numer) |
|
|
|
gcd_numer = K.new(gcd_numer.to_list()) |
|
|
|
|
|
for i, j in enumerate(list_of_coeff): |
|
frac_ans = j / gcd_numer |
|
list_of_coeff[i] = base((frac_ans.numer() / frac_ans.denom()).to_list()) |
|
|
|
return DifferentialOperator(list_of_coeff, parent) |
|
|
|
|
|
def _derivate_diff_eq(listofpoly, K): |
|
""" |
|
Let a differential equation a0(x)y(x) + a1(x)y'(x) + ... = 0 |
|
where a0, a1,... are polynomials or rational functions. The function |
|
returns b0, b1, b2... such that the differential equation |
|
b0(x)y(x) + b1(x)y'(x) +... = 0 is formed after differentiating the |
|
former equation. |
|
""" |
|
|
|
sol = [] |
|
a = len(listofpoly) - 1 |
|
sol.append(DMFdiff(listofpoly[0], K)) |
|
|
|
for i, j in enumerate(listofpoly[1:]): |
|
sol.append(DMFdiff(j, K) + listofpoly[i]) |
|
|
|
sol.append(listofpoly[a]) |
|
return sol |
|
|
|
|
|
def _hyper_to_meijerg(func): |
|
""" |
|
Converts a `hyper` to meijerg. |
|
""" |
|
ap = func.ap |
|
bq = func.bq |
|
|
|
if any(i <= 0 and int(i) == i for i in ap): |
|
return hyperexpand(func) |
|
|
|
z = func.args[2] |
|
|
|
|
|
an = (1 - i for i in ap) |
|
anp = () |
|
bm = (S.Zero, ) |
|
bmq = (1 - i for i in bq) |
|
|
|
k = S.One |
|
|
|
for i in bq: |
|
k = k * gamma(i) |
|
|
|
for i in ap: |
|
k = k / gamma(i) |
|
|
|
return k * meijerg(an, anp, bm, bmq, -z) |
|
|
|
|
|
def _add_lists(list1, list2): |
|
"""Takes polynomial sequences of two annihilators a and b and returns |
|
the list of polynomials of sum of a and b. |
|
""" |
|
if len(list1) <= len(list2): |
|
sol = [a + b for a, b in zip(list1, list2)] + list2[len(list1):] |
|
else: |
|
sol = [a + b for a, b in zip(list1, list2)] + list1[len(list2):] |
|
return sol |
|
|
|
|
|
def _extend_y0(Holonomic, n): |
|
""" |
|
Tries to find more initial conditions by substituting the initial |
|
value point in the differential equation. |
|
""" |
|
|
|
if Holonomic.annihilator.is_singular(Holonomic.x0) or Holonomic.is_singularics() == True: |
|
return Holonomic.y0 |
|
|
|
annihilator = Holonomic.annihilator |
|
a = annihilator.order |
|
|
|
listofpoly = [] |
|
|
|
y0 = Holonomic.y0 |
|
R = annihilator.parent.base |
|
K = R.get_field() |
|
|
|
for j in annihilator.listofpoly: |
|
if isinstance(j, annihilator.parent.base.dtype): |
|
listofpoly.append(K.new(j.to_list())) |
|
|
|
if len(y0) < a or n <= len(y0): |
|
return y0 |
|
list_red = [-listofpoly[i] / listofpoly[a] |
|
for i in range(a)] |
|
y1 = y0[:min(len(y0), a)] |
|
for _ in range(n - a): |
|
sol = 0 |
|
for a, b in zip(y1, list_red): |
|
r = DMFsubs(b, Holonomic.x0) |
|
if not getattr(r, 'is_finite', True): |
|
return y0 |
|
if isinstance(r, (PolyElement, FracElement)): |
|
r = r.as_expr() |
|
sol += a * r |
|
y1.append(sol) |
|
list_red = _derivate_diff_eq(list_red, K) |
|
return y0 + y1[len(y0):] |
|
|
|
|
|
def DMFdiff(frac, K): |
|
|
|
if not isinstance(frac, DMF): |
|
return frac.diff() |
|
|
|
p = K.numer(frac) |
|
q = K.denom(frac) |
|
sol_num = - p * q.diff() + q * p.diff() |
|
sol_denom = q**2 |
|
return K((sol_num.to_list(), sol_denom.to_list())) |
|
|
|
|
|
def DMFsubs(frac, x0, mpm=False): |
|
|
|
if not isinstance(frac, DMF): |
|
return frac |
|
|
|
p = frac.num |
|
q = frac.den |
|
sol_p = S.Zero |
|
sol_q = S.Zero |
|
|
|
if mpm: |
|
from mpmath import mp |
|
|
|
for i, j in enumerate(reversed(p)): |
|
if mpm: |
|
j = sympify(j)._to_mpmath(mp.prec) |
|
sol_p += j * x0**i |
|
|
|
for i, j in enumerate(reversed(q)): |
|
if mpm: |
|
j = sympify(j)._to_mpmath(mp.prec) |
|
sol_q += j * x0**i |
|
|
|
if isinstance(sol_p, (PolyElement, FracElement)): |
|
sol_p = sol_p.as_expr() |
|
if isinstance(sol_q, (PolyElement, FracElement)): |
|
sol_q = sol_q.as_expr() |
|
|
|
return sol_p / sol_q |
|
|
|
|
|
def _convert_poly_rat_alg(func, x, x0=0, y0=None, lenics=None, domain=QQ, initcond=True): |
|
""" |
|
Converts polynomials, rationals and algebraic functions to holonomic. |
|
""" |
|
|
|
ispoly = func.is_polynomial() |
|
if not ispoly: |
|
israt = func.is_rational_function() |
|
else: |
|
israt = True |
|
|
|
if not (ispoly or israt): |
|
basepoly, ratexp = func.as_base_exp() |
|
if basepoly.is_polynomial() and ratexp.is_Number: |
|
if isinstance(ratexp, Float): |
|
ratexp = nsimplify(ratexp) |
|
m, n = ratexp.p, ratexp.q |
|
is_alg = True |
|
else: |
|
is_alg = False |
|
else: |
|
is_alg = True |
|
|
|
if not (ispoly or israt or is_alg): |
|
return None |
|
|
|
R = domain.old_poly_ring(x) |
|
_, Dx = DifferentialOperators(R, 'Dx') |
|
|
|
|
|
if not func.has(x): |
|
return HolonomicFunction(Dx, x, 0, [func]) |
|
|
|
if ispoly: |
|
|
|
sol = func * Dx - func.diff(x) |
|
sol = _normalize(sol.listofpoly, sol.parent, negative=False) |
|
is_singular = sol.is_singular(x0) |
|
|
|
|
|
if y0 is None and x0 == 0 and is_singular: |
|
rep = R.from_sympy(func).to_list() |
|
for i, j in enumerate(reversed(rep)): |
|
if j == 0: |
|
continue |
|
coeff = list(reversed(rep))[i:] |
|
indicial = i |
|
break |
|
for i, j in enumerate(coeff): |
|
if isinstance(j, (PolyElement, FracElement)): |
|
coeff[i] = j.as_expr() |
|
y0 = {indicial: S(coeff)} |
|
|
|
elif israt: |
|
p, q = func.as_numer_denom() |
|
|
|
sol = p * q * Dx + p * q.diff(x) - q * p.diff(x) |
|
sol = _normalize(sol.listofpoly, sol.parent, negative=False) |
|
|
|
elif is_alg: |
|
sol = n * (x / m) * Dx - 1 |
|
sol = HolonomicFunction(sol, x).composition(basepoly).annihilator |
|
is_singular = sol.is_singular(x0) |
|
|
|
|
|
if y0 is None and x0 == 0 and is_singular and \ |
|
(lenics is None or lenics <= 1): |
|
rep = R.from_sympy(basepoly).to_list() |
|
for i, j in enumerate(reversed(rep)): |
|
if j == 0: |
|
continue |
|
if isinstance(j, (PolyElement, FracElement)): |
|
j = j.as_expr() |
|
|
|
coeff = S(j)**ratexp |
|
indicial = S(i) * ratexp |
|
break |
|
if isinstance(coeff, (PolyElement, FracElement)): |
|
coeff = coeff.as_expr() |
|
y0 = {indicial: S([coeff])} |
|
|
|
if y0 or not initcond: |
|
return HolonomicFunction(sol, x, x0, y0) |
|
|
|
if not lenics: |
|
lenics = sol.order |
|
|
|
if sol.is_singular(x0): |
|
r = HolonomicFunction(sol, x, x0)._indicial() |
|
l = list(r) |
|
if len(r) == 1 and r[l[0]] == S.One: |
|
r = l[0] |
|
g = func / (x - x0)**r |
|
singular_ics = _find_conditions(g, x, x0, lenics) |
|
singular_ics = [j / factorial(i) for i, j in enumerate(singular_ics)] |
|
y0 = {r:singular_ics} |
|
return HolonomicFunction(sol, x, x0, y0) |
|
|
|
y0 = _find_conditions(func, x, x0, lenics) |
|
while not y0: |
|
x0 += 1 |
|
y0 = _find_conditions(func, x, x0, lenics) |
|
|
|
return HolonomicFunction(sol, x, x0, y0) |
|
|
|
|
|
def _convert_meijerint(func, x, initcond=True, domain=QQ): |
|
args = meijerint._rewrite1(func, x) |
|
|
|
if args: |
|
fac, po, g, _ = args |
|
else: |
|
return None |
|
|
|
|
|
fac_list = [fac * i[0] for i in g] |
|
t = po.as_base_exp() |
|
s = t[1] if t[0] == x else S.Zero |
|
po_list = [s + i[1] for i in g] |
|
G_list = [i[2] for i in g] |
|
|
|
|
|
def _shift(func, s): |
|
z = func.args[-1] |
|
if z.has(I): |
|
z = z.subs(exp_polar, exp) |
|
|
|
d = z.collect(x, evaluate=False) |
|
b = list(d)[0] |
|
a = d[b] |
|
|
|
t = b.as_base_exp() |
|
b = t[1] if t[0] == x else S.Zero |
|
r = s / b |
|
an = (i + r for i in func.args[0][0]) |
|
ap = (i + r for i in func.args[0][1]) |
|
bm = (i + r for i in func.args[1][0]) |
|
bq = (i + r for i in func.args[1][1]) |
|
|
|
return a**-r, meijerg((an, ap), (bm, bq), z) |
|
|
|
coeff, m = _shift(G_list[0], po_list[0]) |
|
sol = fac_list[0] * coeff * from_meijerg(m, initcond=initcond, domain=domain) |
|
|
|
|
|
for i in range(1, len(G_list)): |
|
coeff, m = _shift(G_list[i], po_list[i]) |
|
sol += fac_list[i] * coeff * from_meijerg(m, initcond=initcond, domain=domain) |
|
|
|
return sol |
|
|
|
|
|
def _create_table(table, domain=QQ): |
|
""" |
|
Creates the look-up table. For a similar implementation |
|
see meijerint._create_lookup_table. |
|
""" |
|
|
|
def add(formula, annihilator, arg, x0=0, y0=()): |
|
""" |
|
Adds a formula in the dictionary |
|
""" |
|
table.setdefault(_mytype(formula, x_1), []).append((formula, |
|
HolonomicFunction(annihilator, arg, x0, y0))) |
|
|
|
R = domain.old_poly_ring(x_1) |
|
_, Dx = DifferentialOperators(R, 'Dx') |
|
|
|
|
|
add(sin(x_1), Dx**2 + 1, x_1, 0, [0, 1]) |
|
add(cos(x_1), Dx**2 + 1, x_1, 0, [1, 0]) |
|
add(exp(x_1), Dx - 1, x_1, 0, 1) |
|
add(log(x_1), Dx + x_1*Dx**2, x_1, 1, [0, 1]) |
|
|
|
add(erf(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) |
|
add(erfc(x_1), 2*x_1*Dx + Dx**2, x_1, 0, [1, -2/sqrt(pi)]) |
|
add(erfi(x_1), -2*x_1*Dx + Dx**2, x_1, 0, [0, 2/sqrt(pi)]) |
|
|
|
add(sinh(x_1), Dx**2 - 1, x_1, 0, [0, 1]) |
|
add(cosh(x_1), Dx**2 - 1, x_1, 0, [1, 0]) |
|
|
|
add(sinc(x_1), x_1 + 2*Dx + x_1*Dx**2, x_1) |
|
|
|
add(Si(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) |
|
add(Ci(x_1), x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) |
|
|
|
add(Shi(x_1), -x_1*Dx + 2*Dx**2 + x_1*Dx**3, x_1) |
|
|
|
|
|
def _find_conditions(func, x, x0, order, evalf=False, use_limit=True): |
|
y0 = [] |
|
for _ in range(order): |
|
val = func.subs(x, x0) |
|
if evalf: |
|
val = val.evalf() |
|
if use_limit and isinstance(val, NaN): |
|
val = limit(func, x, x0) |
|
if val.is_finite is False or isinstance(val, NaN): |
|
return None |
|
y0.append(val) |
|
func = func.diff(x) |
|
return y0 |
|
|