|
from sympy.core.numbers import (Rational, oo) |
|
from sympy.core.singleton import S |
|
from sympy.core.symbol import symbols |
|
from sympy.functions.elementary.complexes import sign |
|
from sympy.functions.elementary.miscellaneous import sqrt |
|
from sympy.geometry.ellipse import (Circle, Ellipse) |
|
from sympy.geometry.line import (Line, Ray2D, Segment2D) |
|
from sympy.geometry.parabola import Parabola |
|
from sympy.geometry.point import (Point, Point2D) |
|
from sympy.testing.pytest import raises |
|
|
|
from sympy.abc import x, y |
|
|
|
def test_parabola_geom(): |
|
a, b = symbols('a b') |
|
p1 = Point(0, 0) |
|
p2 = Point(3, 7) |
|
p3 = Point(0, 4) |
|
p4 = Point(6, 0) |
|
p5 = Point(a, a) |
|
d1 = Line(Point(4, 0), Point(4, 9)) |
|
d2 = Line(Point(7, 6), Point(3, 6)) |
|
d3 = Line(Point(4, 0), slope=oo) |
|
d4 = Line(Point(7, 6), slope=0) |
|
d5 = Line(Point(b, a), slope=oo) |
|
d6 = Line(Point(a, b), slope=0) |
|
|
|
half = S.Half |
|
|
|
pa1 = Parabola(None, d2) |
|
pa2 = Parabola(directrix=d1) |
|
pa3 = Parabola(p1, d1) |
|
pa4 = Parabola(p2, d2) |
|
pa5 = Parabola(p2, d4) |
|
pa6 = Parabola(p3, d2) |
|
pa7 = Parabola(p2, d1) |
|
pa8 = Parabola(p4, d1) |
|
pa9 = Parabola(p4, d3) |
|
pa10 = Parabola(p5, d5) |
|
pa11 = Parabola(p5, d6) |
|
d = Line(Point(3, 7), Point(2, 9)) |
|
pa12 = Parabola(Point(7, 8), d) |
|
pa12r = Parabola(Point(7, 8).reflect(d), d) |
|
|
|
raises(ValueError, lambda: |
|
Parabola(Point(7, 8, 9), Line(Point(6, 7), Point(7, 7)))) |
|
raises(ValueError, lambda: |
|
Parabola(Point(0, 2), Line(Point(7, 2), Point(6, 2)))) |
|
raises(ValueError, lambda: Parabola(Point(7, 8), Point(3, 8))) |
|
|
|
|
|
assert pa1.focus == Point(0, 0) |
|
assert pa1.ambient_dimension == S(2) |
|
assert pa2 == pa3 |
|
assert pa4 != pa7 |
|
assert pa6 != pa7 |
|
assert pa6.focus == Point2D(0, 4) |
|
assert pa6.focal_length == 1 |
|
assert pa6.p_parameter == -1 |
|
assert pa6.vertex == Point2D(0, 5) |
|
assert pa6.eccentricity == 1 |
|
assert pa7.focus == Point2D(3, 7) |
|
assert pa7.focal_length == half |
|
assert pa7.p_parameter == -half |
|
assert pa7.vertex == Point2D(7*half, 7) |
|
assert pa4.focal_length == half |
|
assert pa4.p_parameter == half |
|
assert pa4.vertex == Point2D(3, 13*half) |
|
assert pa8.focal_length == 1 |
|
assert pa8.p_parameter == 1 |
|
assert pa8.vertex == Point2D(5, 0) |
|
assert pa4.focal_length == pa5.focal_length |
|
assert pa4.p_parameter == pa5.p_parameter |
|
assert pa4.vertex == pa5.vertex |
|
assert pa4.equation() == pa5.equation() |
|
assert pa8.focal_length == pa9.focal_length |
|
assert pa8.p_parameter == pa9.p_parameter |
|
assert pa8.vertex == pa9.vertex |
|
assert pa8.equation() == pa9.equation() |
|
assert pa10.focal_length == pa11.focal_length == sqrt((a - b) ** 2) / 2 |
|
assert pa11.vertex == Point(*pa10.vertex[::-1]) == Point(a, |
|
a - sqrt((a - b)**2)*sign(a - b)/2) |
|
aos = pa12.axis_of_symmetry |
|
assert aos == Line(Point(7, 8), Point(5, 7)) |
|
assert pa12.directrix == Line(Point(3, 7), Point(2, 9)) |
|
assert pa12.directrix.angle_between(aos) == S.Pi/2 |
|
assert pa12.eccentricity == 1 |
|
assert pa12.equation(x, y) == (x - 7)**2 + (y - 8)**2 - (-2*x - y + 13)**2/5 |
|
assert pa12.focal_length == 9*sqrt(5)/10 |
|
assert pa12.focus == Point(7, 8) |
|
assert pa12.p_parameter == 9*sqrt(5)/10 |
|
assert pa12.vertex == Point2D(S(26)/5, S(71)/10) |
|
assert pa12r.focal_length == 9*sqrt(5)/10 |
|
assert pa12r.focus == Point(-S(1)/5, S(22)/5) |
|
assert pa12r.p_parameter == -9*sqrt(5)/10 |
|
assert pa12r.vertex == Point(S(8)/5, S(53)/10) |
|
|
|
|
|
def test_parabola_intersection(): |
|
l1 = Line(Point(1, -2), Point(-1,-2)) |
|
l2 = Line(Point(1, 2), Point(-1,2)) |
|
l3 = Line(Point(1, 0), Point(-1,0)) |
|
|
|
p1 = Point(0,0) |
|
p2 = Point(0, -2) |
|
p3 = Point(120, -12) |
|
parabola1 = Parabola(p1, l1) |
|
|
|
|
|
assert parabola1.intersection(parabola1) == [parabola1] |
|
assert parabola1.intersection(Parabola(p1, l2)) == [Point2D(-2, 0), Point2D(2, 0)] |
|
assert parabola1.intersection(Parabola(p2, l3)) == [Point2D(0, -1)] |
|
assert parabola1.intersection(Parabola(Point(16, 0), l1)) == [Point2D(8, 15)] |
|
assert parabola1.intersection(Parabola(Point(0, 16), l1)) == [Point2D(-6, 8), Point2D(6, 8)] |
|
assert parabola1.intersection(Parabola(p3, l3)) == [] |
|
|
|
assert parabola1.intersection(p1) == [] |
|
assert parabola1.intersection(Point2D(0, -1)) == [Point2D(0, -1)] |
|
assert parabola1.intersection(Point2D(4, 3)) == [Point2D(4, 3)] |
|
|
|
assert parabola1.intersection(Line(Point2D(-7, 3), Point(12, 3))) == [Point2D(-4, 3), Point2D(4, 3)] |
|
assert parabola1.intersection(Line(Point(-4, -1), Point(4, -1))) == [Point(0, -1)] |
|
assert parabola1.intersection(Line(Point(2, 0), Point(0, -2))) == [Point2D(2, 0)] |
|
raises(TypeError, lambda: parabola1.intersection(Line(Point(0, 0, 0), Point(1, 1, 1)))) |
|
|
|
assert parabola1.intersection(Segment2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)] |
|
assert parabola1.intersection(Segment2D((0, -5), (0, 6))) == [Point2D(0, -1)] |
|
assert parabola1.intersection(Segment2D((-12, -65), (14, -68))) == [] |
|
|
|
assert parabola1.intersection(Ray2D((-4, -5), (4, 3))) == [Point2D(0, -1), Point2D(4, 3)] |
|
assert parabola1.intersection(Ray2D((0, 7), (1, 14))) == [Point2D(14 + 2*sqrt(57), 105 + 14*sqrt(57))] |
|
assert parabola1.intersection(Ray2D((0, 7), (0, 14))) == [] |
|
|
|
assert parabola1.intersection(Circle(p1, 2)) == [Point2D(-2, 0), Point2D(2, 0)] |
|
assert parabola1.intersection(Circle(p2, 1)) == [Point2D(0, -1)] |
|
assert parabola1.intersection(Ellipse(p2, 2, 1)) == [Point2D(0, -1)] |
|
assert parabola1.intersection(Ellipse(Point(0, 19), 5, 7)) == [] |
|
assert parabola1.intersection(Ellipse((0, 3), 12, 4)) == [ |
|
Point2D(0, -1), |
|
Point2D(-4*sqrt(17)/3, Rational(59, 9)), |
|
Point2D(4*sqrt(17)/3, Rational(59, 9))] |
|
|
|
raises(TypeError, lambda: parabola1.intersection(2)) |
|
|