|
from sympy.core import S, sympify |
|
from sympy.core.symbol import (Dummy, symbols) |
|
from sympy.functions import Piecewise, piecewise_fold |
|
from sympy.logic.boolalg import And |
|
from sympy.sets.sets import Interval |
|
|
|
from functools import lru_cache |
|
|
|
|
|
def _ivl(cond, x): |
|
"""return the interval corresponding to the condition |
|
|
|
Conditions in spline's Piecewise give the range over |
|
which an expression is valid like (lo <= x) & (x <= hi). |
|
This function returns (lo, hi). |
|
""" |
|
if isinstance(cond, And) and len(cond.args) == 2: |
|
a, b = cond.args |
|
if a.lts == x: |
|
a, b = b, a |
|
return a.lts, b.gts |
|
raise TypeError('unexpected cond type: %s' % cond) |
|
|
|
|
|
def _add_splines(c, b1, d, b2, x): |
|
"""Construct c*b1 + d*b2.""" |
|
|
|
if S.Zero in (b1, c): |
|
rv = piecewise_fold(d * b2) |
|
elif S.Zero in (b2, d): |
|
rv = piecewise_fold(c * b1) |
|
else: |
|
new_args = [] |
|
|
|
p1 = piecewise_fold(c * b1) |
|
p2 = piecewise_fold(d * b2) |
|
|
|
|
|
p2args = list(p2.args[:-1]) |
|
|
|
|
|
|
|
for arg in p1.args[:-1]: |
|
expr = arg.expr |
|
cond = arg.cond |
|
|
|
lower = _ivl(cond, x)[0] |
|
|
|
|
|
for i, arg2 in enumerate(p2args): |
|
expr2 = arg2.expr |
|
cond2 = arg2.cond |
|
|
|
lower_2, upper_2 = _ivl(cond2, x) |
|
if cond2 == cond: |
|
|
|
expr += expr2 |
|
|
|
del p2args[i] |
|
|
|
break |
|
elif lower_2 < lower and upper_2 <= lower: |
|
|
|
|
|
|
|
new_args.append(arg2) |
|
del p2args[i] |
|
break |
|
|
|
|
|
new_args.append((expr, cond)) |
|
|
|
|
|
new_args.extend(p2args) |
|
|
|
|
|
new_args.append((0, True)) |
|
|
|
rv = Piecewise(*new_args, evaluate=False) |
|
|
|
return rv.expand() |
|
|
|
|
|
@lru_cache(maxsize=128) |
|
def bspline_basis(d, knots, n, x): |
|
""" |
|
The $n$-th B-spline at $x$ of degree $d$ with knots. |
|
|
|
Explanation |
|
=========== |
|
|
|
B-Splines are piecewise polynomials of degree $d$. They are defined on a |
|
set of knots, which is a sequence of integers or floats. |
|
|
|
Examples |
|
======== |
|
|
|
The 0th degree splines have a value of 1 on a single interval: |
|
|
|
>>> from sympy import bspline_basis |
|
>>> from sympy.abc import x |
|
>>> d = 0 |
|
>>> knots = tuple(range(5)) |
|
>>> bspline_basis(d, knots, 0, x) |
|
Piecewise((1, (x >= 0) & (x <= 1)), (0, True)) |
|
|
|
For a given ``(d, knots)`` there are ``len(knots)-d-1`` B-splines |
|
defined, that are indexed by ``n`` (starting at 0). |
|
|
|
Here is an example of a cubic B-spline: |
|
|
|
>>> bspline_basis(3, tuple(range(5)), 0, x) |
|
Piecewise((x**3/6, (x >= 0) & (x <= 1)), |
|
(-x**3/2 + 2*x**2 - 2*x + 2/3, |
|
(x >= 1) & (x <= 2)), |
|
(x**3/2 - 4*x**2 + 10*x - 22/3, |
|
(x >= 2) & (x <= 3)), |
|
(-x**3/6 + 2*x**2 - 8*x + 32/3, |
|
(x >= 3) & (x <= 4)), |
|
(0, True)) |
|
|
|
By repeating knot points, you can introduce discontinuities in the |
|
B-splines and their derivatives: |
|
|
|
>>> d = 1 |
|
>>> knots = (0, 0, 2, 3, 4) |
|
>>> bspline_basis(d, knots, 0, x) |
|
Piecewise((1 - x/2, (x >= 0) & (x <= 2)), (0, True)) |
|
|
|
It is quite time consuming to construct and evaluate B-splines. If |
|
you need to evaluate a B-spline many times, it is best to lambdify them |
|
first: |
|
|
|
>>> from sympy import lambdify |
|
>>> d = 3 |
|
>>> knots = tuple(range(10)) |
|
>>> b0 = bspline_basis(d, knots, 0, x) |
|
>>> f = lambdify(x, b0) |
|
>>> y = f(0.5) |
|
|
|
Parameters |
|
========== |
|
|
|
d : integer |
|
degree of bspline |
|
|
|
knots : list of integer values |
|
list of knots points of bspline |
|
|
|
n : integer |
|
$n$-th B-spline |
|
|
|
x : symbol |
|
|
|
See Also |
|
======== |
|
|
|
bspline_basis_set |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/B-spline |
|
|
|
""" |
|
|
|
xvar = x |
|
x = Dummy() |
|
|
|
knots = tuple(sympify(k) for k in knots) |
|
d = int(d) |
|
n = int(n) |
|
n_knots = len(knots) |
|
n_intervals = n_knots - 1 |
|
if n + d + 1 > n_intervals: |
|
raise ValueError("n + d + 1 must not exceed len(knots) - 1") |
|
if d == 0: |
|
result = Piecewise( |
|
(S.One, Interval(knots[n], knots[n + 1]).contains(x)), (0, True) |
|
) |
|
elif d > 0: |
|
denom = knots[n + d + 1] - knots[n + 1] |
|
if denom != S.Zero: |
|
B = (knots[n + d + 1] - x) / denom |
|
b2 = bspline_basis(d - 1, knots, n + 1, x) |
|
else: |
|
b2 = B = S.Zero |
|
|
|
denom = knots[n + d] - knots[n] |
|
if denom != S.Zero: |
|
A = (x - knots[n]) / denom |
|
b1 = bspline_basis(d - 1, knots, n, x) |
|
else: |
|
b1 = A = S.Zero |
|
|
|
result = _add_splines(A, b1, B, b2, x) |
|
else: |
|
raise ValueError("degree must be non-negative: %r" % n) |
|
|
|
|
|
return result.xreplace({x: xvar}) |
|
|
|
|
|
def bspline_basis_set(d, knots, x): |
|
""" |
|
Return the ``len(knots)-d-1`` B-splines at *x* of degree *d* |
|
with *knots*. |
|
|
|
Explanation |
|
=========== |
|
|
|
This function returns a list of piecewise polynomials that are the |
|
``len(knots)-d-1`` B-splines of degree *d* for the given knots. |
|
This function calls ``bspline_basis(d, knots, n, x)`` for different |
|
values of *n*. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import bspline_basis_set |
|
>>> from sympy.abc import x |
|
>>> d = 2 |
|
>>> knots = range(5) |
|
>>> splines = bspline_basis_set(d, knots, x) |
|
>>> splines |
|
[Piecewise((x**2/2, (x >= 0) & (x <= 1)), |
|
(-x**2 + 3*x - 3/2, (x >= 1) & (x <= 2)), |
|
(x**2/2 - 3*x + 9/2, (x >= 2) & (x <= 3)), |
|
(0, True)), |
|
Piecewise((x**2/2 - x + 1/2, (x >= 1) & (x <= 2)), |
|
(-x**2 + 5*x - 11/2, (x >= 2) & (x <= 3)), |
|
(x**2/2 - 4*x + 8, (x >= 3) & (x <= 4)), |
|
(0, True))] |
|
|
|
Parameters |
|
========== |
|
|
|
d : integer |
|
degree of bspline |
|
|
|
knots : list of integers |
|
list of knots points of bspline |
|
|
|
x : symbol |
|
|
|
See Also |
|
======== |
|
|
|
bspline_basis |
|
|
|
""" |
|
n_splines = len(knots) - d - 1 |
|
return [bspline_basis(d, tuple(knots), i, x) for i in range(n_splines)] |
|
|
|
|
|
def interpolating_spline(d, x, X, Y): |
|
""" |
|
Return spline of degree *d*, passing through the given *X* |
|
and *Y* values. |
|
|
|
Explanation |
|
=========== |
|
|
|
This function returns a piecewise function such that each part is |
|
a polynomial of degree not greater than *d*. The value of *d* |
|
must be 1 or greater and the values of *X* must be strictly |
|
increasing. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import interpolating_spline |
|
>>> from sympy.abc import x |
|
>>> interpolating_spline(1, x, [1, 2, 4, 7], [3, 6, 5, 7]) |
|
Piecewise((3*x, (x >= 1) & (x <= 2)), |
|
(7 - x/2, (x >= 2) & (x <= 4)), |
|
(2*x/3 + 7/3, (x >= 4) & (x <= 7))) |
|
>>> interpolating_spline(3, x, [-2, 0, 1, 3, 4], [4, 2, 1, 1, 3]) |
|
Piecewise((7*x**3/117 + 7*x**2/117 - 131*x/117 + 2, (x >= -2) & (x <= 1)), |
|
(10*x**3/117 - 2*x**2/117 - 122*x/117 + 77/39, (x >= 1) & (x <= 4))) |
|
|
|
Parameters |
|
========== |
|
|
|
d : integer |
|
Degree of Bspline strictly greater than equal to one |
|
|
|
x : symbol |
|
|
|
X : list of strictly increasing real values |
|
list of X coordinates through which the spline passes |
|
|
|
Y : list of real values |
|
list of corresponding Y coordinates through which the spline passes |
|
|
|
See Also |
|
======== |
|
|
|
bspline_basis_set, interpolating_poly |
|
|
|
""" |
|
from sympy.solvers.solveset import linsolve |
|
from sympy.matrices.dense import Matrix |
|
|
|
|
|
d = sympify(d) |
|
if not (d.is_Integer and d.is_positive): |
|
raise ValueError("Spline degree must be a positive integer, not %s." % d) |
|
if len(X) != len(Y): |
|
raise ValueError("Number of X and Y coordinates must be the same.") |
|
if len(X) < d + 1: |
|
raise ValueError("Degree must be less than the number of control points.") |
|
if not all(a < b for a, b in zip(X, X[1:])): |
|
raise ValueError("The x-coordinates must be strictly increasing.") |
|
X = [sympify(i) for i in X] |
|
|
|
|
|
if d.is_odd: |
|
j = (d + 1) // 2 |
|
interior_knots = X[j:-j] |
|
else: |
|
j = d // 2 |
|
interior_knots = [ |
|
(a + b)/2 for a, b in zip(X[j : -j - 1], X[j + 1 : -j]) |
|
] |
|
|
|
knots = [X[0]] * (d + 1) + list(interior_knots) + [X[-1]] * (d + 1) |
|
|
|
basis = bspline_basis_set(d, knots, x) |
|
|
|
A = [[b.subs(x, v) for b in basis] for v in X] |
|
|
|
coeff = linsolve((Matrix(A), Matrix(Y)), symbols("c0:{}".format(len(X)), cls=Dummy)) |
|
coeff = list(coeff)[0] |
|
intervals = {c for b in basis for (e, c) in b.args if c != True} |
|
|
|
|
|
|
|
intervals = sorted(intervals, key=lambda c: _ivl(c, x)) |
|
|
|
basis_dicts = [{c: e for (e, c) in b.args} for b in basis] |
|
spline = [] |
|
for i in intervals: |
|
piece = sum( |
|
[c * d.get(i, S.Zero) for (c, d) in zip(coeff, basis_dicts)], S.Zero |
|
) |
|
spline.append((piece, i)) |
|
return Piecewise(*spline) |
|
|