|
from sympy.assumptions import Predicate |
|
from sympy.multipledispatch import Dispatcher |
|
|
|
class SquarePredicate(Predicate): |
|
""" |
|
Square matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.square(x)`` is true iff ``x`` is a square matrix. A square matrix |
|
is a matrix with the same number of rows and columns. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> Y = MatrixSymbol('X', 2, 3) |
|
>>> ask(Q.square(X)) |
|
True |
|
>>> ask(Q.square(Y)) |
|
False |
|
>>> ask(Q.square(ZeroMatrix(3, 3))) |
|
True |
|
>>> ask(Q.square(Identity(3))) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Square_matrix |
|
|
|
""" |
|
name = 'square' |
|
handler = Dispatcher("SquareHandler", doc="Handler for Q.square.") |
|
|
|
|
|
class SymmetricPredicate(Predicate): |
|
""" |
|
Symmetric matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.symmetric(x)`` is true iff ``x`` is a square matrix and is equal to |
|
its transpose. Every square diagonal matrix is a symmetric matrix. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> Y = MatrixSymbol('Y', 2, 3) |
|
>>> Z = MatrixSymbol('Z', 2, 2) |
|
>>> ask(Q.symmetric(X*Z), Q.symmetric(X) & Q.symmetric(Z)) |
|
True |
|
>>> ask(Q.symmetric(X + Z), Q.symmetric(X) & Q.symmetric(Z)) |
|
True |
|
>>> ask(Q.symmetric(Y)) |
|
False |
|
|
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Symmetric_matrix |
|
|
|
""" |
|
|
|
|
|
name = 'symmetric' |
|
handler = Dispatcher("SymmetricHandler", doc="Handler for Q.symmetric.") |
|
|
|
|
|
class InvertiblePredicate(Predicate): |
|
""" |
|
Invertible matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.invertible(x)`` is true iff ``x`` is an invertible matrix. |
|
A square matrix is called invertible only if its determinant is 0. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> Y = MatrixSymbol('Y', 2, 3) |
|
>>> Z = MatrixSymbol('Z', 2, 2) |
|
>>> ask(Q.invertible(X*Y), Q.invertible(X)) |
|
False |
|
>>> ask(Q.invertible(X*Z), Q.invertible(X) & Q.invertible(Z)) |
|
True |
|
>>> ask(Q.invertible(X), Q.fullrank(X) & Q.square(X)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Invertible_matrix |
|
|
|
""" |
|
name = 'invertible' |
|
handler = Dispatcher("InvertibleHandler", doc="Handler for Q.invertible.") |
|
|
|
|
|
class OrthogonalPredicate(Predicate): |
|
""" |
|
Orthogonal matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.orthogonal(x)`` is true iff ``x`` is an orthogonal matrix. |
|
A square matrix ``M`` is an orthogonal matrix if it satisfies |
|
``M^TM = MM^T = I`` where ``M^T`` is the transpose matrix of |
|
``M`` and ``I`` is an identity matrix. Note that an orthogonal |
|
matrix is necessarily invertible. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, Identity |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> Y = MatrixSymbol('Y', 2, 3) |
|
>>> Z = MatrixSymbol('Z', 2, 2) |
|
>>> ask(Q.orthogonal(Y)) |
|
False |
|
>>> ask(Q.orthogonal(X*Z*X), Q.orthogonal(X) & Q.orthogonal(Z)) |
|
True |
|
>>> ask(Q.orthogonal(Identity(3))) |
|
True |
|
>>> ask(Q.invertible(X), Q.orthogonal(X)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Orthogonal_matrix |
|
|
|
""" |
|
name = 'orthogonal' |
|
handler = Dispatcher("OrthogonalHandler", doc="Handler for key 'orthogonal'.") |
|
|
|
|
|
class UnitaryPredicate(Predicate): |
|
""" |
|
Unitary matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.unitary(x)`` is true iff ``x`` is a unitary matrix. |
|
Unitary matrix is an analogue to orthogonal matrix. A square |
|
matrix ``M`` with complex elements is unitary if :math:``M^TM = MM^T= I`` |
|
where :math:``M^T`` is the conjugate transpose matrix of ``M``. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, Identity |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> Y = MatrixSymbol('Y', 2, 3) |
|
>>> Z = MatrixSymbol('Z', 2, 2) |
|
>>> ask(Q.unitary(Y)) |
|
False |
|
>>> ask(Q.unitary(X*Z*X), Q.unitary(X) & Q.unitary(Z)) |
|
True |
|
>>> ask(Q.unitary(Identity(3))) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Unitary_matrix |
|
|
|
""" |
|
name = 'unitary' |
|
handler = Dispatcher("UnitaryHandler", doc="Handler for key 'unitary'.") |
|
|
|
|
|
class FullRankPredicate(Predicate): |
|
""" |
|
Fullrank matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.fullrank(x)`` is true iff ``x`` is a full rank matrix. |
|
A matrix is full rank if all rows and columns of the matrix |
|
are linearly independent. A square matrix is full rank iff |
|
its determinant is nonzero. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix, Identity |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> ask(Q.fullrank(X.T), Q.fullrank(X)) |
|
True |
|
>>> ask(Q.fullrank(ZeroMatrix(3, 3))) |
|
False |
|
>>> ask(Q.fullrank(Identity(3))) |
|
True |
|
|
|
""" |
|
name = 'fullrank' |
|
handler = Dispatcher("FullRankHandler", doc="Handler for key 'fullrank'.") |
|
|
|
|
|
class PositiveDefinitePredicate(Predicate): |
|
r""" |
|
Positive definite matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
If $M$ is a :math:`n \times n` symmetric real matrix, it is said |
|
to be positive definite if :math:`Z^TMZ` is positive for |
|
every non-zero column vector $Z$ of $n$ real numbers. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, Identity |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> Y = MatrixSymbol('Y', 2, 3) |
|
>>> Z = MatrixSymbol('Z', 2, 2) |
|
>>> ask(Q.positive_definite(Y)) |
|
False |
|
>>> ask(Q.positive_definite(Identity(3))) |
|
True |
|
>>> ask(Q.positive_definite(X + Z), Q.positive_definite(X) & |
|
... Q.positive_definite(Z)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Positive-definite_matrix |
|
|
|
""" |
|
name = "positive_definite" |
|
handler = Dispatcher("PositiveDefiniteHandler", doc="Handler for key 'positive_definite'.") |
|
|
|
|
|
class UpperTriangularPredicate(Predicate): |
|
""" |
|
Upper triangular matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
A matrix $M$ is called upper triangular matrix if :math:`M_{ij}=0` |
|
for :math:`i<j`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, ZeroMatrix, Identity |
|
>>> ask(Q.upper_triangular(Identity(3))) |
|
True |
|
>>> ask(Q.upper_triangular(ZeroMatrix(3, 3))) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://mathworld.wolfram.com/UpperTriangularMatrix.html |
|
|
|
""" |
|
name = "upper_triangular" |
|
handler = Dispatcher("UpperTriangularHandler", doc="Handler for key 'upper_triangular'.") |
|
|
|
|
|
class LowerTriangularPredicate(Predicate): |
|
""" |
|
Lower triangular matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
A matrix $M$ is called lower triangular matrix if :math:`M_{ij}=0` |
|
for :math:`i>j`. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, ZeroMatrix, Identity |
|
>>> ask(Q.lower_triangular(Identity(3))) |
|
True |
|
>>> ask(Q.lower_triangular(ZeroMatrix(3, 3))) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://mathworld.wolfram.com/LowerTriangularMatrix.html |
|
|
|
""" |
|
name = "lower_triangular" |
|
handler = Dispatcher("LowerTriangularHandler", doc="Handler for key 'lower_triangular'.") |
|
|
|
|
|
class DiagonalPredicate(Predicate): |
|
""" |
|
Diagonal matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.diagonal(x)`` is true iff ``x`` is a diagonal matrix. A diagonal |
|
matrix is a matrix in which the entries outside the main diagonal |
|
are all zero. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol, ZeroMatrix |
|
>>> X = MatrixSymbol('X', 2, 2) |
|
>>> ask(Q.diagonal(ZeroMatrix(3, 3))) |
|
True |
|
>>> ask(Q.diagonal(X), Q.lower_triangular(X) & |
|
... Q.upper_triangular(X)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Diagonal_matrix |
|
|
|
""" |
|
name = "diagonal" |
|
handler = Dispatcher("DiagonalHandler", doc="Handler for key 'diagonal'.") |
|
|
|
|
|
class IntegerElementsPredicate(Predicate): |
|
""" |
|
Integer elements matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.integer_elements(x)`` is true iff all the elements of ``x`` |
|
are integers. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 4, 4) |
|
>>> ask(Q.integer(X[1, 2]), Q.integer_elements(X)) |
|
True |
|
|
|
""" |
|
name = "integer_elements" |
|
handler = Dispatcher("IntegerElementsHandler", doc="Handler for key 'integer_elements'.") |
|
|
|
|
|
class RealElementsPredicate(Predicate): |
|
""" |
|
Real elements matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.real_elements(x)`` is true iff all the elements of ``x`` |
|
are real numbers. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 4, 4) |
|
>>> ask(Q.real(X[1, 2]), Q.real_elements(X)) |
|
True |
|
|
|
""" |
|
name = "real_elements" |
|
handler = Dispatcher("RealElementsHandler", doc="Handler for key 'real_elements'.") |
|
|
|
|
|
class ComplexElementsPredicate(Predicate): |
|
""" |
|
Complex elements matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.complex_elements(x)`` is true iff all the elements of ``x`` |
|
are complex numbers. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 4, 4) |
|
>>> ask(Q.complex(X[1, 2]), Q.complex_elements(X)) |
|
True |
|
>>> ask(Q.complex_elements(X), Q.integer_elements(X)) |
|
True |
|
|
|
""" |
|
name = "complex_elements" |
|
handler = Dispatcher("ComplexElementsHandler", doc="Handler for key 'complex_elements'.") |
|
|
|
|
|
class SingularPredicate(Predicate): |
|
""" |
|
Singular matrix predicate. |
|
|
|
A matrix is singular iff the value of its determinant is 0. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 4, 4) |
|
>>> ask(Q.singular(X), Q.invertible(X)) |
|
False |
|
>>> ask(Q.singular(X), ~Q.invertible(X)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://mathworld.wolfram.com/SingularMatrix.html |
|
|
|
""" |
|
name = "singular" |
|
handler = Dispatcher("SingularHandler", doc="Predicate fore key 'singular'.") |
|
|
|
|
|
class NormalPredicate(Predicate): |
|
""" |
|
Normal matrix predicate. |
|
|
|
A matrix is normal if it commutes with its conjugate transpose. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 4, 4) |
|
>>> ask(Q.normal(X), Q.unitary(X)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Normal_matrix |
|
|
|
""" |
|
name = "normal" |
|
handler = Dispatcher("NormalHandler", doc="Predicate fore key 'normal'.") |
|
|
|
|
|
class TriangularPredicate(Predicate): |
|
""" |
|
Triangular matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
``Q.triangular(X)`` is true if ``X`` is one that is either lower |
|
triangular or upper triangular. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 4, 4) |
|
>>> ask(Q.triangular(X), Q.upper_triangular(X)) |
|
True |
|
>>> ask(Q.triangular(X), Q.lower_triangular(X)) |
|
True |
|
|
|
References |
|
========== |
|
|
|
.. [1] https://en.wikipedia.org/wiki/Triangular_matrix |
|
|
|
""" |
|
name = "triangular" |
|
handler = Dispatcher("TriangularHandler", doc="Predicate fore key 'triangular'.") |
|
|
|
|
|
class UnitTriangularPredicate(Predicate): |
|
""" |
|
Unit triangular matrix predicate. |
|
|
|
Explanation |
|
=========== |
|
|
|
A unit triangular matrix is a triangular matrix with 1s |
|
on the diagonal. |
|
|
|
Examples |
|
======== |
|
|
|
>>> from sympy import Q, ask, MatrixSymbol |
|
>>> X = MatrixSymbol('X', 4, 4) |
|
>>> ask(Q.triangular(X), Q.unit_triangular(X)) |
|
True |
|
|
|
""" |
|
name = "unit_triangular" |
|
handler = Dispatcher("UnitTriangularHandler", doc="Predicate fore key 'unit_triangular'.") |
|
|