|
Metadata-Version: 2.4 |
|
Name: pytorch-lightning |
|
Version: 2.5.2 |
|
Summary: PyTorch Lightning is the lightweight PyTorch wrapper for ML researchers. Scale your models. Write less boilerplate. |
|
Home-page: https://github.com/Lightning-AI/lightning |
|
Download-URL: https://github.com/Lightning-AI/lightning |
|
Author: Lightning AI et al. |
|
Author-email: pytorch@lightning.ai |
|
License: Apache-2.0 |
|
Project-URL: Bug Tracker, https://github.com/Lightning-AI/pytorch-lightning/issues |
|
Project-URL: Documentation, https://pytorch-lightning.rtfd.io/en/latest/ |
|
Project-URL: Source Code, https://github.com/Lightning-AI/lightning |
|
Keywords: deep learning,pytorch,AI |
|
Classifier: Environment :: Console |
|
Classifier: Natural Language :: English |
|
Classifier: Development Status :: 5 - Production/Stable |
|
Classifier: Intended Audience :: Developers |
|
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence |
|
Classifier: Topic :: Scientific/Engineering :: Image Recognition |
|
Classifier: Topic :: Scientific/Engineering :: Information Analysis |
|
Classifier: License :: OSI Approved :: Apache Software License |
|
Classifier: Operating System :: OS Independent |
|
Classifier: Programming Language :: Python :: 3 |
|
Classifier: Programming Language :: Python :: 3.9 |
|
Classifier: Programming Language :: Python :: 3.10 |
|
Classifier: Programming Language :: Python :: 3.11 |
|
Classifier: Programming Language :: Python :: 3.12 |
|
Requires-Python: >=3.9 |
|
Description-Content-Type: text/markdown |
|
License-File: LICENSE |
|
Requires-Dist: torch>=2.1.0 |
|
Requires-Dist: tqdm>=4.57.0 |
|
Requires-Dist: PyYAML>=5.4 |
|
Requires-Dist: fsspec[http]>=2022.5.0 |
|
Requires-Dist: torchmetrics>=0.7.0 |
|
Requires-Dist: packaging>=20.0 |
|
Requires-Dist: typing-extensions>=4.4.0 |
|
Requires-Dist: lightning-utilities>=0.10.0 |
|
Provides-Extra: strategies |
|
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "strategies" |
|
Provides-Extra: test |
|
Requires-Dist: coverage==7.9.1; extra == "test" |
|
Requires-Dist: pytest==8.4.0; extra == "test" |
|
Requires-Dist: pytest-cov==6.2.1; extra == "test" |
|
Requires-Dist: pytest-timeout==2.4.0; extra == "test" |
|
Requires-Dist: pytest-rerunfailures==15.1; extra == "test" |
|
Requires-Dist: pytest-random-order==1.1.1; extra == "test" |
|
Requires-Dist: cloudpickle>=1.3; extra == "test" |
|
Requires-Dist: scikit-learn>0.22.1; extra == "test" |
|
Requires-Dist: numpy>=1.17.2; extra == "test" |
|
Requires-Dist: onnx>=1.12.0; extra == "test" |
|
Requires-Dist: onnxruntime>=1.12.0; extra == "test" |
|
Requires-Dist: psutil<7.0.1; extra == "test" |
|
Requires-Dist: pandas>2.0; extra == "test" |
|
Requires-Dist: fastapi; extra == "test" |
|
Requires-Dist: uvicorn; extra == "test" |
|
Requires-Dist: tensorboard>=2.9.1; extra == "test" |
|
Provides-Extra: extra |
|
Requires-Dist: matplotlib>3.1; extra == "extra" |
|
Requires-Dist: omegaconf>=2.2.3; extra == "extra" |
|
Requires-Dist: hydra-core>=1.2.0; extra == "extra" |
|
Requires-Dist: jsonargparse[jsonnet,signatures]>=4.39.0; extra == "extra" |
|
Requires-Dist: rich>=12.3.0; extra == "extra" |
|
Requires-Dist: tensorboardX>=2.2; extra == "extra" |
|
Requires-Dist: bitsandbytes>=0.45.2; platform_system != "Darwin" and extra == "extra" |
|
Provides-Extra: examples |
|
Requires-Dist: requests<2.33.0; extra == "examples" |
|
Requires-Dist: torchvision>=0.16.0; extra == "examples" |
|
Requires-Dist: ipython[all]<8.19.0; extra == "examples" |
|
Requires-Dist: torchmetrics>=0.10.0; extra == "examples" |
|
Requires-Dist: lightning-utilities>=0.8.0; extra == "examples" |
|
Provides-Extra: deepspeed |
|
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "deepspeed" |
|
Provides-Extra: all |
|
Requires-Dist: matplotlib>3.1; extra == "all" |
|
Requires-Dist: omegaconf>=2.2.3; extra == "all" |
|
Requires-Dist: hydra-core>=1.2.0; extra == "all" |
|
Requires-Dist: jsonargparse[jsonnet,signatures]>=4.39.0; extra == "all" |
|
Requires-Dist: rich>=12.3.0; extra == "all" |
|
Requires-Dist: tensorboardX>=2.2; extra == "all" |
|
Requires-Dist: bitsandbytes>=0.45.2; platform_system != "Darwin" and extra == "all" |
|
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "all" |
|
Requires-Dist: requests<2.33.0; extra == "all" |
|
Requires-Dist: torchvision>=0.16.0; extra == "all" |
|
Requires-Dist: ipython[all]<8.19.0; extra == "all" |
|
Requires-Dist: torchmetrics>=0.10.0; extra == "all" |
|
Requires-Dist: lightning-utilities>=0.8.0; extra == "all" |
|
Provides-Extra: dev |
|
Requires-Dist: matplotlib>3.1; extra == "dev" |
|
Requires-Dist: omegaconf>=2.2.3; extra == "dev" |
|
Requires-Dist: hydra-core>=1.2.0; extra == "dev" |
|
Requires-Dist: jsonargparse[jsonnet,signatures]>=4.39.0; extra == "dev" |
|
Requires-Dist: rich>=12.3.0; extra == "dev" |
|
Requires-Dist: tensorboardX>=2.2; extra == "dev" |
|
Requires-Dist: bitsandbytes>=0.45.2; platform_system != "Darwin" and extra == "dev" |
|
Requires-Dist: deepspeed<=0.9.3,>=0.8.2; (platform_system != "Windows" and platform_system != "Darwin") and extra == "dev" |
|
Requires-Dist: requests<2.33.0; extra == "dev" |
|
Requires-Dist: torchvision>=0.16.0; extra == "dev" |
|
Requires-Dist: ipython[all]<8.19.0; extra == "dev" |
|
Requires-Dist: torchmetrics>=0.10.0; extra == "dev" |
|
Requires-Dist: lightning-utilities>=0.8.0; extra == "dev" |
|
Requires-Dist: coverage==7.9.1; extra == "dev" |
|
Requires-Dist: pytest==8.4.0; extra == "dev" |
|
Requires-Dist: pytest-cov==6.2.1; extra == "dev" |
|
Requires-Dist: pytest-timeout==2.4.0; extra == "dev" |
|
Requires-Dist: pytest-rerunfailures==15.1; extra == "dev" |
|
Requires-Dist: pytest-random-order==1.1.1; extra == "dev" |
|
Requires-Dist: cloudpickle>=1.3; extra == "dev" |
|
Requires-Dist: scikit-learn>0.22.1; extra == "dev" |
|
Requires-Dist: numpy>=1.17.2; extra == "dev" |
|
Requires-Dist: onnx>=1.12.0; extra == "dev" |
|
Requires-Dist: onnxruntime>=1.12.0; extra == "dev" |
|
Requires-Dist: psutil<7.0.1; extra == "dev" |
|
Requires-Dist: pandas>2.0; extra == "dev" |
|
Requires-Dist: fastapi; extra == "dev" |
|
Requires-Dist: uvicorn; extra == "dev" |
|
Requires-Dist: tensorboard>=2.9.1; extra == "dev" |
|
Dynamic: author |
|
Dynamic: author-email |
|
Dynamic: classifier |
|
Dynamic: description |
|
Dynamic: description-content-type |
|
Dynamic: download-url |
|
Dynamic: home-page |
|
Dynamic: keywords |
|
Dynamic: license |
|
Dynamic: license-file |
|
Dynamic: project-url |
|
Dynamic: provides-extra |
|
Dynamic: requires-dist |
|
Dynamic: requires-python |
|
Dynamic: summary |
|
|
|
<div align="center"> |
|
|
|
<img src="https://pl-public-data.s3.amazonaws.com/assets_lightning/pytorch-lightning.png" width="400px"> |
|
|
|
**The lightweight PyTorch wrapper for high-performance AI research. |
|
Scale your models, not the boilerplate.** |
|
|
|
______________________________________________________________________ |
|
|
|
<p align="center"> |
|
<a href="https://www.pytorchlightning.ai/">Website</a> β’ |
|
<a href="#key-features">Key Features</a> β’ |
|
<a href="#how-to-use">How To Use</a> β’ |
|
<a href="https://lightning.ai/docs/pytorch/stable/">Docs</a> β’ |
|
<a href="#examples">Examples</a> β’ |
|
<a href="#community">Community</a> β’ |
|
<a href="https://lightning.ai/">Lightning AI</a> β’ |
|
<a href="https://github.com/Lightning-AI/pytorch-lightning/blob/master/LICENSE">License</a> |
|
</p> |
|
|
|
<!-- DO NOT ADD CONDA DOWNLOADS... README CHANGES MUST BE APPROVED BY EDEN OR WILL --> |
|
|
|
[](https://pypi.org/project/pytorch-lightning/) |
|
[](https://badge.fury.io/py/pytorch-lightning) |
|
[](https://pepy.tech/project/pytorch-lightning) |
|
[](https://anaconda.org/conda-forge/pytorch-lightning) |
|
[](https://hub.docker.com/r/pytorchlightning/pytorch_lightning) |
|
[](https://codecov.io/gh/Lightning-AI/pytorch-lightning) |
|
|
|
[](https://lightning.ai/docs/pytorch/stable/)[](https://discord.gg/VptPCZkGNa) |
|
[](https://github.com/Lightning-AI/pytorch-lightning/blob/master/LICENSE) |
|
|
|
<!-- |
|
[](https://www.codefactor.io/repository/github/Lightning-AI/lightning) |
|
--> |
|
|
|
</div> |
|
|
|
###### \*Codecov is > 90%+ but build delays may show less |
|
|
|
______________________________________________________________________ |
|
|
|
## PyTorch Lightning is just organized PyTorch |
|
|
|
Lightning disentangles PyTorch code to decouple the science from the engineering. |
|
 |
|
|
|
______________________________________________________________________ |
|
|
|
## Lightning Design Philosophy |
|
|
|
Lightning structures PyTorch code with these principles: |
|
|
|
<div align="center"> |
|
<img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/philosophies.jpg" max-height="250px"> |
|
</div> |
|
|
|
Lightning forces the following structure to your code which makes it reusable and shareable: |
|
|
|
- Research code (the LightningModule). |
|
- Engineering code (you delete, and is handled by the Trainer). |
|
- Non-essential research code (logging, etc... this goes in Callbacks). |
|
- Data (use PyTorch DataLoaders or organize them into a LightningDataModule). |
|
|
|
Once you do this, you can train on multiple-GPUs, TPUs, CPUs, HPUs and even in 16-bit precision without changing your code! |
|
|
|
[Get started in just 15 minutes](https://lightning.ai/docs/pytorch/latest/starter/introduction.html) |
|
|
|
______________________________________________________________________ |
|
|
|
## Continuous Integration |
|
|
|
Lightning is rigorously tested across multiple CPUs, GPUs and TPUs and against major Python and PyTorch versions. |
|
|
|
<details> |
|
<summary>Current build statuses</summary> |
|
|
|
<center> |
|
|
|
| System / PyTorch ver. | 1.12 | 1.13 | 2.0 | 2.1 | |
|
| :--------------------------------: | :---------------------------------------------------------------------------------------------------------: | ----------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------- | |
|
| Linux py3.9 [GPUs] | | | |  | |
|
| Linux (multiple Python versions) |  |  |  |  | |
|
| OSX (multiple Python versions) |  |  |  |  | |
|
| Windows (multiple Python versions) |  |  |  |  | |
|
|
|
</center> |
|
</details> |
|
|
|
______________________________________________________________________ |
|
|
|
## How To Use |
|
|
|
### Step 0: Install |
|
|
|
Simple installation from PyPI |
|
|
|
```bash |
|
pip install pytorch-lightning |
|
``` |
|
|
|
<!-- --> |
|
|
|
### Step 1: Add these imports |
|
|
|
```python |
|
import os |
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
from torchvision.datasets import MNIST |
|
from torch.utils.data import DataLoader, random_split |
|
from torchvision import transforms |
|
import pytorch_lightning as pl |
|
``` |
|
|
|
### Step 2: Define a LightningModule (nn.Module subclass) |
|
|
|
A LightningModule defines a full *system* (ie: a GAN, autoencoder, BERT or a simple Image Classifier). |
|
|
|
```python |
|
class LitAutoEncoder(pl.LightningModule): |
|
def __init__(self): |
|
super().__init__() |
|
self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3)) |
|
self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28)) |
|
|
|
def forward(self, x): |
|
# in lightning, forward defines the prediction/inference actions |
|
embedding = self.encoder(x) |
|
return embedding |
|
|
|
def training_step(self, batch, batch_idx): |
|
# training_step defines the train loop. It is independent of forward |
|
x, _ = batch |
|
x = x.view(x.size(0), -1) |
|
z = self.encoder(x) |
|
x_hat = self.decoder(z) |
|
loss = F.mse_loss(x_hat, x) |
|
self.log("train_loss", loss) |
|
return loss |
|
|
|
def configure_optimizers(self): |
|
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3) |
|
return optimizer |
|
``` |
|
|
|
**Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.** |
|
|
|
### Step 3: Train! |
|
|
|
```python |
|
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor()) |
|
train, val = random_split(dataset, [55000, 5000]) |
|
|
|
autoencoder = LitAutoEncoder() |
|
trainer = pl.Trainer() |
|
trainer.fit(autoencoder, DataLoader(train), DataLoader(val)) |
|
``` |
|
|
|
## Advanced features |
|
|
|
Lightning has over [40+ advanced features](https://lightning.ai/docs/pytorch/stable/common/trainer.html#trainer-flags) designed for professional AI research at scale. |
|
|
|
Here are some examples: |
|
|
|
<div align="center"> |
|
<img src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/features_2.jpg" max-height="600px"> |
|
</div> |
|
|
|
<details> |
|
<summary>Highlighted feature code snippets</summary> |
|
|
|
```python |
|
# 8 GPUs |
|
# no code changes needed |
|
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8) |
|
|
|
# 256 GPUs |
|
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8, num_nodes=32) |
|
``` |
|
|
|
<summary>Train on TPUs without code changes</summary> |
|
|
|
```python |
|
# no code changes needed |
|
trainer = Trainer(accelerator="tpu", devices=8) |
|
``` |
|
|
|
<summary>16-bit precision</summary> |
|
|
|
```python |
|
# no code changes needed |
|
trainer = Trainer(precision=16) |
|
``` |
|
|
|
<summary>Experiment managers</summary> |
|
|
|
```python |
|
from pytorch_lightning import loggers |
|
|
|
# tensorboard |
|
trainer = Trainer(logger=TensorBoardLogger("logs/")) |
|
|
|
# weights and biases |
|
trainer = Trainer(logger=loggers.WandbLogger()) |
|
|
|
# comet |
|
trainer = Trainer(logger=loggers.CometLogger()) |
|
|
|
# mlflow |
|
trainer = Trainer(logger=loggers.MLFlowLogger()) |
|
|
|
# neptune |
|
trainer = Trainer(logger=loggers.NeptuneLogger()) |
|
|
|
# ... and dozens more |
|
``` |
|
|
|
<summary>EarlyStopping</summary> |
|
|
|
```python |
|
es = EarlyStopping(monitor="val_loss") |
|
trainer = Trainer(callbacks=[es]) |
|
``` |
|
|
|
<summary>Checkpointing</summary> |
|
|
|
```python |
|
checkpointing = ModelCheckpoint(monitor="val_loss") |
|
trainer = Trainer(callbacks=[checkpointing]) |
|
``` |
|
|
|
<summary>Export to torchscript (JIT) (production use)</summary> |
|
|
|
```python |
|
# torchscript |
|
autoencoder = LitAutoEncoder() |
|
torch.jit.save(autoencoder.to_torchscript(), "model.pt") |
|
``` |
|
|
|
<summary>Export to ONNX (production use)</summary> |
|
|
|
```python |
|
autoencoder = LitAutoEncoder() |
|
input_sample = torch.randn((1, 64)) |
|
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile: |
|
autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True) |
|
``` |
|
|
|
</details> |
|
|
|
### Pro-level control of optimization (advanced users) |
|
|
|
For complex/professional level work, you have optional full control of the optimizers. |
|
|
|
```python |
|
class LitAutoEncoder(pl.LightningModule): |
|
def __init__(self): |
|
super().__init__() |
|
self.automatic_optimization = False |
|
|
|
def training_step(self, batch, batch_idx): |
|
# access your optimizers with use_pl_optimizer=False. Default is True |
|
opt_a, opt_b = self.optimizers(use_pl_optimizer=True) |
|
|
|
loss_a = ... |
|
self.manual_backward(loss_a, opt_a) |
|
opt_a.step() |
|
opt_a.zero_grad() |
|
|
|
loss_b = ... |
|
self.manual_backward(loss_b, opt_b, retain_graph=True) |
|
self.manual_backward(loss_b, opt_b) |
|
opt_b.step() |
|
opt_b.zero_grad() |
|
``` |
|
|
|
______________________________________________________________________ |
|
|
|
## Advantages over unstructured PyTorch |
|
|
|
- Models become hardware agnostic |
|
- Code is clear to read because engineering code is abstracted away |
|
- Easier to reproduce |
|
- Make fewer mistakes because lightning handles the tricky engineering |
|
- Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate |
|
- Lightning has dozens of integrations with popular machine learning tools. |
|
- [Tested rigorously with every new PR](https://github.com/Lightning-AI/lightning/tree/master/tests). We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs. |
|
- Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch). |
|
|
|
______________________________________________________________________ |
|
|
|
## Examples |
|
|
|
###### Self-supervised Learning |
|
|
|
- [CPC transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#cpc-transforms) |
|
- [Moco v2 transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#moco-v2-transforms) |
|
- [SimCLR transforms](https://lightning-bolts.readthedocs.io/en/stable/transforms/self_supervised.html#simclr-transforms) |
|
|
|
###### Convolutional Architectures |
|
|
|
- [GPT-2](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#gpt-2) |
|
- [UNet](https://lightning-bolts.readthedocs.io/en/stable/models/convolutional.html#unet) |
|
|
|
###### Reinforcement Learning |
|
|
|
- [DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#dqn-loss) |
|
- [Double DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#double-dqn-loss) |
|
- [Per DQN Loss](https://lightning-bolts.readthedocs.io/en/stable/losses.html#per-dqn-loss) |
|
|
|
###### GANs |
|
|
|
- [Basic GAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#basic-gan) |
|
- [DCGAN](https://lightning-bolts.readthedocs.io/en/stable/models/gans.html#dcgan) |
|
|
|
###### Classic ML |
|
|
|
- [Logistic Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#logistic-regression) |
|
- [Linear Regression](https://lightning-bolts.readthedocs.io/en/stable/models/classic_ml.html#linear-regression) |
|
|
|
______________________________________________________________________ |
|
|
|
## Community |
|
|
|
The PyTorch Lightning community is maintained by |
|
|
|
- [10+ core contributors](https://lightning.ai/docs/pytorch/stable/community/governance.html) who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs. |
|
- 680+ active community contributors. |
|
|
|
Want to help us build Lightning and reduce boilerplate for thousands of researchers? [Learn how to make your first contribution here](https://devblog.pytorchlightning.ai/quick-contribution-guide-86d977171b3a) |
|
|
|
PyTorch Lightning is also part of the [PyTorch ecosystem](https://pytorch.org/ecosystem/) which requires projects to have solid testing, documentation and support. |
|
|
|
### Asking for help |
|
|
|
If you have any questions please: |
|
|
|
1. [Read the docs](https://lightning.ai/docs/pytorch/stable). |
|
1. [Search through existing Discussions](https://github.com/Lightning-AI/lightning/discussions), or [add a new question](https://github.com/Lightning-AI/lightning/discussions/new) |
|
1. [Join our Discord community](https://discord.gg/VptPCZkGNa). |
|
|