jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from collections import OrderedDict
from collections.abc import Iterable
import sys
import weakref
try:
import numpy as np
except ImportError:
np = None
import pytest
import pyarrow as pa
import pyarrow.compute as pc
from pyarrow.interchange import from_dataframe
from pyarrow.vendored.version import Version
def test_chunked_array_basics():
data = pa.chunked_array([], type=pa.string())
assert data.type == pa.string()
assert data.to_pylist() == []
data.validate()
data2 = pa.chunked_array([], type='binary')
assert data2.type == pa.binary()
with pytest.raises(ValueError):
pa.chunked_array([])
data = pa.chunked_array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
])
assert isinstance(data.chunks, list)
assert all(isinstance(c, pa.lib.Int64Array) for c in data.chunks)
assert all(isinstance(c, pa.lib.Int64Array) for c in data.iterchunks())
assert len(data.chunks) == 3
assert data.get_total_buffer_size() == sum(c.get_total_buffer_size()
for c in data.iterchunks())
assert sys.getsizeof(data) >= object.__sizeof__(
data) + data.get_total_buffer_size()
assert data.nbytes == 3 * 3 * 8 # 3 items per 3 lists with int64 size(8)
data.validate()
wr = weakref.ref(data)
assert wr() is not None
del data
assert wr() is None
def test_chunked_array_construction():
arr = pa.chunked_array([
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
])
assert arr.type == pa.int64()
assert len(arr) == 9
assert len(arr.chunks) == 3
arr = pa.chunked_array([
[1, 2, 3],
[4., 5., 6.],
[7, 8, 9],
])
assert arr.type == pa.int64()
assert len(arr) == 9
assert len(arr.chunks) == 3
arr = pa.chunked_array([
[1, 2, 3],
[4., 5., 6.],
[7, 8, 9],
], type=pa.int8())
assert arr.type == pa.int8()
assert len(arr) == 9
assert len(arr.chunks) == 3
arr = pa.chunked_array([
[1, 2, 3],
[]
])
assert arr.type == pa.int64()
assert len(arr) == 3
assert len(arr.chunks) == 2
msg = "cannot construct ChunkedArray from empty vector and omitted type"
with pytest.raises(ValueError, match=msg):
assert pa.chunked_array([])
assert pa.chunked_array([], type=pa.string()).type == pa.string()
assert pa.chunked_array([[]]).type == pa.null()
assert pa.chunked_array([[]], type=pa.string()).type == pa.string()
def test_combine_chunks():
# ARROW-77363
arr = pa.array([1, 2])
chunked_arr = pa.chunked_array([arr, arr])
res = chunked_arr.combine_chunks()
expected = pa.array([1, 2, 1, 2])
assert res.equals(expected)
def test_chunked_array_can_combine_chunks_with_no_chunks():
# https://issues.apache.org/jira/browse/ARROW-17256
assert pa.chunked_array([], type=pa.bool_()).combine_chunks() == pa.array(
[], type=pa.bool_()
)
assert pa.chunked_array(
[pa.array([], type=pa.bool_())], type=pa.bool_()
).combine_chunks() == pa.array([], type=pa.bool_())
@pytest.mark.numpy
def test_chunked_array_to_numpy():
data = pa.chunked_array([
[1, 2, 3],
[4, 5, 6],
[]
])
arr1 = np.asarray(data)
arr2 = data.to_numpy()
assert isinstance(arr2, np.ndarray)
assert arr2.shape == (6,)
assert np.array_equal(arr1, arr2)
def test_chunked_array_mismatch_types():
msg = "chunks must all be same type"
with pytest.raises(TypeError, match=msg):
# Given array types are different
pa.chunked_array([
pa.array([1, 2, 3]),
pa.array([1., 2., 3.])
])
with pytest.raises(TypeError, match=msg):
# Given array type is different from explicit type argument
pa.chunked_array([pa.array([1, 2, 3])], type=pa.float64())
def test_chunked_array_str():
data = [
pa.array([1, 2, 3]),
pa.array([4, 5, 6])
]
data = pa.chunked_array(data)
assert str(data) == """[
[
1,
2,
3
],
[
4,
5,
6
]
]"""
@pytest.mark.numpy
def test_chunked_array_getitem():
data = [
pa.array([1, 2, 3]),
pa.array([4, 5, 6])
]
data = pa.chunked_array(data)
assert data[1].as_py() == 2
assert data[-1].as_py() == 6
assert data[-6].as_py() == 1
with pytest.raises(IndexError):
data[6]
with pytest.raises(IndexError):
data[-7]
# Ensure this works with numpy scalars
assert data[np.int32(1)].as_py() == 2
data_slice = data[2:4]
assert data_slice.to_pylist() == [3, 4]
data_slice = data[4:-1]
assert data_slice.to_pylist() == [5]
data_slice = data[99:99]
assert data_slice.type == data.type
assert data_slice.to_pylist() == []
def test_chunked_array_slice():
data = [
pa.array([1, 2, 3]),
pa.array([4, 5, 6])
]
data = pa.chunked_array(data)
data_slice = data.slice(len(data))
assert data_slice.type == data.type
assert data_slice.to_pylist() == []
data_slice = data.slice(len(data) + 10)
assert data_slice.type == data.type
assert data_slice.to_pylist() == []
table = pa.Table.from_arrays([data], names=["a"])
table_slice = table.slice(len(table))
assert len(table_slice) == 0
table = pa.Table.from_arrays([data], names=["a"])
table_slice = table.slice(len(table) + 10)
assert len(table_slice) == 0
def test_chunked_array_iter():
data = [
pa.array([0]),
pa.array([1, 2, 3]),
pa.array([4, 5, 6]),
pa.array([7, 8, 9])
]
arr = pa.chunked_array(data)
for i, j in zip(range(10), arr):
assert i == j.as_py()
assert isinstance(arr, Iterable)
def test_chunked_array_equals():
def eq(xarrs, yarrs):
if isinstance(xarrs, pa.ChunkedArray):
x = xarrs
else:
x = pa.chunked_array(xarrs)
if isinstance(yarrs, pa.ChunkedArray):
y = yarrs
else:
y = pa.chunked_array(yarrs)
assert x.equals(y)
assert y.equals(x)
assert x == y
assert x != str(y)
def ne(xarrs, yarrs):
if isinstance(xarrs, pa.ChunkedArray):
x = xarrs
else:
x = pa.chunked_array(xarrs)
if isinstance(yarrs, pa.ChunkedArray):
y = yarrs
else:
y = pa.chunked_array(yarrs)
assert not x.equals(y)
assert not y.equals(x)
assert x != y
eq(pa.chunked_array([], type=pa.int32()),
pa.chunked_array([], type=pa.int32()))
ne(pa.chunked_array([], type=pa.int32()),
pa.chunked_array([], type=pa.int64()))
a = pa.array([0, 2], type=pa.int32())
b = pa.array([0, 2], type=pa.int64())
c = pa.array([0, 3], type=pa.int32())
d = pa.array([0, 2, 0, 3], type=pa.int32())
eq([a], [a])
ne([a], [b])
eq([a, c], [a, c])
eq([a, c], [d])
ne([c, a], [a, c])
# ARROW-4822
assert not pa.chunked_array([], type=pa.int32()).equals(None)
@pytest.mark.parametrize(
('data', 'typ'),
[
([True, False, True, True], pa.bool_()),
([1, 2, 4, 6], pa.int64()),
([1.0, 2.5, None], pa.float64()),
(['a', None, 'b'], pa.string()),
([], pa.list_(pa.uint8())),
([[1, 2], [3]], pa.list_(pa.int64())),
([['a'], None, ['b', 'c']], pa.list_(pa.string())),
([(1, 'a'), (2, 'c'), None],
pa.struct([pa.field('a', pa.int64()), pa.field('b', pa.string())]))
]
)
def test_chunked_array_pickle(data, typ, pickle_module):
arrays = []
while data:
arrays.append(pa.array(data[:2], type=typ))
data = data[2:]
array = pa.chunked_array(arrays, type=typ)
array.validate()
result = pickle_module.loads(pickle_module.dumps(array))
result.validate()
assert result.equals(array)
@pytest.mark.pandas
def test_chunked_array_to_pandas():
import pandas as pd
data = [
pa.array([-10, -5, 0, 5, 10])
]
table = pa.table(data, names=['a'])
col = table.column(0)
assert isinstance(col, pa.ChunkedArray)
series = col.to_pandas()
assert isinstance(series, pd.Series)
assert series.shape == (5,)
assert series[0] == -10
assert series.name == 'a'
@pytest.mark.pandas
def test_chunked_array_to_pandas_preserve_name():
# https://issues.apache.org/jira/browse/ARROW-7709
import pandas as pd
import pandas.testing as tm
for data in [
pa.array([1, 2, 3]),
pa.array(pd.Categorical(["a", "b", "a"])),
pa.array(pd.date_range("2012", periods=3)),
pa.array(pd.date_range("2012", periods=3, tz="Europe/Brussels")),
pa.array([1, 2, 3], pa.timestamp("ms")),
pa.array([1, 2, 3], pa.timestamp("ms", "Europe/Brussels"))]:
table = pa.table({"name": data})
result = table.column("name").to_pandas()
assert result.name == "name"
expected = pd.Series(data.to_pandas(), name="name")
tm.assert_series_equal(result, expected)
@pytest.mark.pandas
def test_table_roundtrip_to_pandas_empty_dataframe():
# https://issues.apache.org/jira/browse/ARROW-10643
# The conversion should not results in a table with 0 rows if the original
# DataFrame has a RangeIndex but is empty.
import pandas as pd
data = pd.DataFrame(index=pd.RangeIndex(0, 10, 1))
table = pa.table(data)
result = table.to_pandas()
assert table.num_rows == 10
assert data.shape == (10, 0)
assert result.shape == (10, 0)
assert result.index.equals(data.index)
data = pd.DataFrame(index=pd.RangeIndex(0, 10, 3))
table = pa.table(data)
result = table.to_pandas()
assert table.num_rows == 4
assert data.shape == (4, 0)
assert result.shape == (4, 0)
assert result.index.equals(data.index)
@pytest.mark.pandas
def test_recordbatch_roundtrip_to_pandas_empty_dataframe():
# https://issues.apache.org/jira/browse/ARROW-10643
# The conversion should not results in a RecordBatch with 0 rows if
# the original DataFrame has a RangeIndex but is empty.
import pandas as pd
data = pd.DataFrame(index=pd.RangeIndex(0, 10, 1))
batch = pa.RecordBatch.from_pandas(data)
result = batch.to_pandas()
assert batch.num_rows == 10
assert data.shape == (10, 0)
assert result.shape == (10, 0)
assert result.index.equals(data.index)
data = pd.DataFrame(index=pd.RangeIndex(0, 10, 3))
batch = pa.RecordBatch.from_pandas(data)
result = batch.to_pandas()
assert batch.num_rows == 4
assert data.shape == (4, 0)
assert result.shape == (4, 0)
assert result.index.equals(data.index)
@pytest.mark.pandas
def test_to_pandas_empty_table():
# https://issues.apache.org/jira/browse/ARROW-15370
import pandas as pd
import pandas.testing as tm
df = pd.DataFrame({'a': [1, 2], 'b': [0.1, 0.2]})
table = pa.table(df)
result = table.schema.empty_table().to_pandas()
assert result.shape == (0, 2)
tm.assert_frame_equal(result, df.iloc[:0])
@pytest.mark.pandas
@pytest.mark.nopandas
def test_chunked_array_asarray():
# ensure this is tested both when pandas is present or not (ARROW-6564)
data = [
pa.array([0]),
pa.array([1, 2, 3])
]
chunked_arr = pa.chunked_array(data)
np_arr = np.asarray(chunked_arr)
assert np_arr.tolist() == [0, 1, 2, 3]
assert np_arr.dtype == np.dtype('int64')
# An optional type can be specified when calling np.asarray
np_arr = np.asarray(chunked_arr, dtype='str')
assert np_arr.tolist() == ['0', '1', '2', '3']
# Types are modified when there are nulls
data = [
pa.array([1, None]),
pa.array([1, 2, 3])
]
chunked_arr = pa.chunked_array(data)
np_arr = np.asarray(chunked_arr)
elements = np_arr.tolist()
assert elements[0] == 1.
assert np.isnan(elements[1])
assert elements[2:] == [1., 2., 3.]
assert np_arr.dtype == np.dtype('float64')
# DictionaryType data will be converted to dense numpy array
arr = pa.DictionaryArray.from_arrays(
pa.array([0, 1, 2, 0, 1]), pa.array(['a', 'b', 'c']))
chunked_arr = pa.chunked_array([arr, arr])
np_arr = np.asarray(chunked_arr)
assert np_arr.dtype == np.dtype('object')
assert np_arr.tolist() == ['a', 'b', 'c', 'a', 'b'] * 2
def test_chunked_array_flatten():
ty = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
a = pa.array([(1, 2.5), (3, 4.5), (5, 6.5)], type=ty)
carr = pa.chunked_array(a)
x, y = carr.flatten()
assert x.equals(pa.chunked_array(pa.array([1, 3, 5], type=pa.int16())))
assert y.equals(pa.chunked_array(pa.array([2.5, 4.5, 6.5],
type=pa.float32())))
# Empty column
a = pa.array([], type=ty)
carr = pa.chunked_array(a)
x, y = carr.flatten()
assert x.equals(pa.chunked_array(pa.array([], type=pa.int16())))
assert y.equals(pa.chunked_array(pa.array([], type=pa.float32())))
def test_chunked_array_unify_dictionaries():
arr = pa.chunked_array([
pa.array(["foo", "bar", None, "foo"]).dictionary_encode(),
pa.array(["quux", None, "foo"]).dictionary_encode(),
])
assert arr.chunk(0).dictionary.equals(pa.array(["foo", "bar"]))
assert arr.chunk(1).dictionary.equals(pa.array(["quux", "foo"]))
arr = arr.unify_dictionaries()
expected_dict = pa.array(["foo", "bar", "quux"])
assert arr.chunk(0).dictionary.equals(expected_dict)
assert arr.chunk(1).dictionary.equals(expected_dict)
assert arr.to_pylist() == ["foo", "bar", None, "foo", "quux", None, "foo"]
def test_recordbatch_dunder_init():
with pytest.raises(TypeError, match='RecordBatch'):
pa.RecordBatch()
def test_chunked_array_c_array_interface():
class ArrayWrapper:
def __init__(self, array):
self.array = array
def __arrow_c_array__(self, requested_schema=None):
return self.array.__arrow_c_array__(requested_schema)
data = pa.array([1, 2, 3], pa.int64())
chunked = pa.chunked_array([data])
wrapper = ArrayWrapper(data)
# Can roundtrip through the wrapper.
result = pa.chunked_array(wrapper)
assert result == chunked
# Can also import with a type that implementer can cast to.
result = pa.chunked_array(wrapper, type=pa.int16())
assert result == chunked.cast(pa.int16())
def test_chunked_array_c_stream_interface():
class ChunkedArrayWrapper:
def __init__(self, chunked):
self.chunked = chunked
def __arrow_c_stream__(self, requested_schema=None):
return self.chunked.__arrow_c_stream__(requested_schema)
data = pa.chunked_array([[1, 2, 3], [4, None, 6]])
wrapper = ChunkedArrayWrapper(data)
# Can roundtrip through the wrapper.
result = pa.chunked_array(wrapper)
assert result == data
# Can also import with a type that implementer can cast to.
result = pa.chunked_array(wrapper, type=pa.int16())
assert result == data.cast(pa.int16())
class BatchWrapper:
def __init__(self, batch):
self.batch = batch
def __arrow_c_array__(self, requested_schema=None):
return self.batch.__arrow_c_array__(requested_schema)
class BatchDeviceWrapper:
def __init__(self, batch):
self.batch = batch
def __arrow_c_device_array__(self, requested_schema=None, **kwargs):
return self.batch.__arrow_c_device_array__(requested_schema, **kwargs)
@pytest.mark.parametrize("wrapper_class", [BatchWrapper, BatchDeviceWrapper])
def test_recordbatch_c_array_interface(wrapper_class):
data = pa.record_batch([
pa.array([1, 2, 3], type=pa.int64())
], names=['a'])
wrapper = wrapper_class(data)
# Can roundtrip through the wrapper.
result = pa.record_batch(wrapper)
assert result == data
# Can also import with a schema that implementer can cast to.
castable_schema = pa.schema([
pa.field('a', pa.int32())
])
result = pa.record_batch(wrapper, schema=castable_schema)
expected = pa.record_batch([
pa.array([1, 2, 3], type=pa.int32())
], names=['a'])
assert result == expected
def test_recordbatch_c_array_interface_device_unsupported_keyword():
# For the device-aware version, we raise a specific error for unsupported keywords
data = pa.record_batch(
[pa.array([1, 2, 3], type=pa.int64())], names=['a']
)
with pytest.raises(
NotImplementedError,
match=r"Received unsupported keyword argument\(s\): \['other'\]"
):
data.__arrow_c_device_array__(other="not-none")
# but with None value it is ignored
_ = data.__arrow_c_device_array__(other=None)
@pytest.mark.parametrize("wrapper_class", [BatchWrapper, BatchDeviceWrapper])
def test_table_c_array_interface(wrapper_class):
data = pa.record_batch([
pa.array([1, 2, 3], type=pa.int64())
], names=['a'])
wrapper = wrapper_class(data)
# Can roundtrip through the wrapper.
result = pa.table(wrapper)
expected = pa.Table.from_batches([data])
assert result == expected
# Can also import with a schema that implementer can cast to.
castable_schema = pa.schema([
pa.field('a', pa.int32())
])
result = pa.table(wrapper, schema=castable_schema)
expected = pa.table({
'a': pa.array([1, 2, 3], type=pa.int32())
})
assert result == expected
def test_table_c_stream_interface():
class StreamWrapper:
def __init__(self, batches):
self.batches = batches
def __arrow_c_stream__(self, requested_schema=None):
reader = pa.RecordBatchReader.from_batches(
self.batches[0].schema, self.batches)
return reader.__arrow_c_stream__(requested_schema)
data = [
pa.record_batch([pa.array([1, 2, 3], type=pa.int64())], names=['a']),
pa.record_batch([pa.array([4, 5, 6], type=pa.int64())], names=['a'])
]
wrapper = StreamWrapper(data)
# Can roundtrip through the wrapper.
result = pa.table(wrapper)
expected = pa.Table.from_batches(data)
assert result == expected
# Passing schema works if already that schema
result = pa.table(wrapper, schema=data[0].schema)
assert result == expected
# Passing a different schema will cast
good_schema = pa.schema([pa.field('a', pa.int32())])
result = pa.table(wrapper, schema=good_schema)
assert result == expected.cast(good_schema)
# If schema doesn't match, raises NotImplementedError
with pytest.raises(
pa.lib.ArrowTypeError, match="Field 0 cannot be cast"
):
pa.table(
wrapper, schema=pa.schema([pa.field('a', pa.list_(pa.int32()))])
)
def test_recordbatch_itercolumns():
data = [
pa.array(range(5), type='int16'),
pa.array([-10, -5, 0, None, 10], type='int32')
]
batch = pa.record_batch(data, ['c0', 'c1'])
columns = []
for col in batch.itercolumns():
columns.append(col)
assert batch.columns == columns
assert batch == pa.record_batch(columns, names=batch.column_names)
assert batch != pa.record_batch(columns[1:], names=batch.column_names[1:])
assert batch != columns
def test_recordbatch_equals():
data1 = [
pa.array(range(5), type='int16'),
pa.array([-10, -5, 0, None, 10], type='int32')
]
data2 = [
pa.array(['a', 'b', 'c']),
pa.array([['d'], ['e'], ['f']]),
]
column_names = ['c0', 'c1']
batch = pa.record_batch(data1, column_names)
assert batch == pa.record_batch(data1, column_names)
assert batch.equals(pa.record_batch(data1, column_names))
assert batch != pa.record_batch(data2, column_names)
assert not batch.equals(pa.record_batch(data2, column_names))
batch_meta = pa.record_batch(data1, names=column_names,
metadata={'key': 'value'})
assert batch_meta.equals(batch)
assert not batch_meta.equals(batch, check_metadata=True)
# ARROW-8889
assert not batch.equals(None)
assert batch != "foo"
def test_recordbatch_take():
batch = pa.record_batch(
[pa.array([1, 2, 3, None, 5]),
pa.array(['a', 'b', 'c', 'd', 'e'])],
['f1', 'f2'])
assert batch.take(pa.array([2, 3])).equals(batch.slice(2, 2))
assert batch.take(pa.array([2, None])).equals(
pa.record_batch([pa.array([3, None]), pa.array(['c', None])],
['f1', 'f2']))
def test_recordbatch_column_sets_private_name():
# ARROW-6429
rb = pa.record_batch([pa.array([1, 2, 3, 4])], names=['a0'])
assert rb[0]._name == 'a0'
def test_recordbatch_from_arrays_validate_schema():
# ARROW-6263
arr = pa.array([1, 2])
schema = pa.schema([pa.field('f0', pa.list_(pa.utf8()))])
with pytest.raises(NotImplementedError):
pa.record_batch([arr], schema=schema)
def test_recordbatch_from_arrays_validate_lengths():
# ARROW-2820
data = [pa.array([1]), pa.array(["tokyo", "like", "happy"]),
pa.array(["derek"])]
with pytest.raises(ValueError):
pa.record_batch(data, ['id', 'tags', 'name'])
def test_recordbatch_no_fields():
batch = pa.record_batch([], [])
assert len(batch) == 0
assert batch.num_rows == 0
assert batch.num_columns == 0
def test_recordbatch_from_arrays_invalid_names():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10])
]
with pytest.raises(ValueError):
pa.record_batch(data, names=['a', 'b', 'c'])
with pytest.raises(ValueError):
pa.record_batch(data, names=['a'])
def test_recordbatch_empty_metadata():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10])
]
batch = pa.record_batch(data, ['c0', 'c1'])
assert batch.schema.metadata is None
def test_recordbatch_pickle(pickle_module):
data = [
pa.array(range(5), type='int8'),
pa.array([-10, -5, 0, 5, 10], type='float32')
]
fields = [
pa.field('ints', pa.int8()),
pa.field('floats', pa.float32()),
]
schema = pa.schema(fields, metadata={b'foo': b'bar'})
batch = pa.record_batch(data, schema=schema)
result = pickle_module.loads(pickle_module.dumps(batch))
assert result.equals(batch)
assert result.schema == schema
def test_recordbatch_get_field():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
batch = pa.RecordBatch.from_arrays(data, names=('a', 'b', 'c'))
assert batch.field('a').equals(batch.schema.field('a'))
assert batch.field(0).equals(batch.schema.field('a'))
with pytest.raises(KeyError):
batch.field('d')
with pytest.raises(TypeError):
batch.field(None)
with pytest.raises(IndexError):
batch.field(4)
def test_recordbatch_select_column():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
batch = pa.RecordBatch.from_arrays(data, names=('a', 'b', 'c'))
assert batch.column('a').equals(batch.column(0))
with pytest.raises(
KeyError, match='Field "d" does not exist in schema'):
batch.column('d')
with pytest.raises(TypeError):
batch.column(None)
with pytest.raises(IndexError):
batch.column(4)
def test_recordbatch_select():
a1 = pa.array([1, 2, 3, None, 5])
a2 = pa.array(['a', 'b', 'c', 'd', 'e'])
a3 = pa.array([[1, 2], [3, 4], [5, 6], None, [9, 10]])
batch = pa.record_batch([a1, a2, a3], ['f1', 'f2', 'f3'])
# selecting with string names
result = batch.select(['f1'])
expected = pa.record_batch([a1], ['f1'])
assert result.equals(expected)
result = batch.select(['f3', 'f2'])
expected = pa.record_batch([a3, a2], ['f3', 'f2'])
assert result.equals(expected)
# selecting with integer indices
result = batch.select([0])
expected = pa.record_batch([a1], ['f1'])
assert result.equals(expected)
result = batch.select([2, 1])
expected = pa.record_batch([a3, a2], ['f3', 'f2'])
assert result.equals(expected)
# preserve metadata
batch2 = batch.replace_schema_metadata({"a": "test"})
result = batch2.select(["f1", "f2"])
assert b"a" in result.schema.metadata
# selecting non-existing column raises
with pytest.raises(KeyError, match='Field "f5" does not exist'):
batch.select(['f5'])
with pytest.raises(IndexError, match="index out of bounds"):
batch.select([5])
# duplicate selection gives duplicated names in resulting recordbatch
result = batch.select(['f2', 'f2'])
expected = pa.record_batch([a2, a2], ['f2', 'f2'])
assert result.equals(expected)
# selection duplicated column raises
batch = pa.record_batch([a1, a2, a3], ['f1', 'f2', 'f1'])
with pytest.raises(KeyError, match='Field "f1" exists 2 times'):
batch.select(['f1'])
result = batch.select(['f2'])
expected = pa.record_batch([a2], ['f2'])
assert result.equals(expected)
def test_recordbatch_from_struct_array_invalid():
with pytest.raises(TypeError):
pa.RecordBatch.from_struct_array(pa.array(range(5)))
def test_recordbatch_from_struct_array():
struct_array = pa.array(
[{"ints": 1}, {"floats": 1.0}],
type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]),
)
result = pa.RecordBatch.from_struct_array(struct_array)
assert result.equals(pa.RecordBatch.from_arrays(
[
pa.array([1, None], type=pa.int32()),
pa.array([None, 1.0], type=pa.float32()),
], ["ints", "floats"]
))
def test_recordbatch_to_struct_array():
batch = pa.RecordBatch.from_arrays(
[
pa.array([1, None], type=pa.int32()),
pa.array([None, 1.0], type=pa.float32()),
], ["ints", "floats"]
)
result = batch.to_struct_array()
assert result.equals(pa.array(
[{"ints": 1}, {"floats": 1.0}],
type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]),
))
def test_table_from_struct_array_invalid():
with pytest.raises(TypeError, match="Argument 'struct_array' has incorrect type"):
pa.Table.from_struct_array(pa.array(range(5)))
def test_table_from_struct_array():
struct_array = pa.array(
[{"ints": 1}, {"floats": 1.0}],
type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]),
)
result = pa.Table.from_struct_array(struct_array)
assert result.equals(pa.Table.from_arrays(
[
pa.array([1, None], type=pa.int32()),
pa.array([None, 1.0], type=pa.float32()),
], ["ints", "floats"]
))
def test_table_from_struct_array_chunked_array():
chunked_struct_array = pa.chunked_array(
[[{"ints": 1}, {"floats": 1.0}]],
type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]),
)
result = pa.Table.from_struct_array(chunked_struct_array)
assert result.equals(pa.Table.from_arrays(
[
pa.array([1, None], type=pa.int32()),
pa.array([None, 1.0], type=pa.float32()),
], ["ints", "floats"]
))
def test_table_to_struct_array():
table = pa.Table.from_arrays(
[
pa.array([1, None], type=pa.int32()),
pa.array([None, 1.0], type=pa.float32()),
], ["ints", "floats"]
)
result = table.to_struct_array()
assert result.equals(pa.chunked_array(
[[{"ints": 1}, {"floats": 1.0}]],
type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]),
))
def test_table_to_struct_array_with_max_chunksize():
table = pa.Table.from_arrays(
[
pa.array([1, None], type=pa.int32()),
pa.array([None, 1.0], type=pa.float32()),
], ["ints", "floats"]
)
result = table.to_struct_array(max_chunksize=1)
assert result.equals(pa.chunked_array(
[[{"ints": 1}], [{"floats": 1.0}]],
type=pa.struct([("ints", pa.int32()), ("floats", pa.float32())]),
))
def check_tensors(tensor, expected_tensor, type, size):
assert tensor.equals(expected_tensor)
assert tensor.size == size
assert tensor.type == type
assert tensor.shape == expected_tensor.shape
assert tensor.strides == expected_tensor.strides
@pytest.mark.numpy
@pytest.mark.parametrize('typ_str', [
"uint8", "uint16", "uint32", "uint64",
"int8", "int16", "int32", "int64",
"float32", "float64",
])
def test_recordbatch_to_tensor_uniform_type(typ_str):
typ = np.dtype(typ_str)
arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90]
arr3 = [100, 100, 100, 100, 100, 100, 100, 100, 100]
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.from_numpy_dtype(typ)),
pa.array(arr2, type=pa.from_numpy_dtype(typ)),
pa.array(arr3, type=pa.from_numpy_dtype(typ)),
], ["a", "b", "c"]
)
result = batch.to_tensor(row_major=False)
x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="F")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.from_numpy_dtype(typ), 27)
result = batch.to_tensor()
x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="C")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.from_numpy_dtype(typ), 27)
# Test offset
batch1 = batch.slice(1)
arr1 = [2, 3, 4, 5, 6, 7, 8, 9]
arr2 = [20, 30, 40, 50, 60, 70, 80, 90]
arr3 = [100, 100, 100, 100, 100, 100, 100, 100]
result = batch1.to_tensor(row_major=False)
x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="F")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.from_numpy_dtype(typ), 24)
result = batch1.to_tensor()
x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="C")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.from_numpy_dtype(typ), 24)
batch2 = batch.slice(1, 5)
arr1 = [2, 3, 4, 5, 6]
arr2 = [20, 30, 40, 50, 60]
arr3 = [100, 100, 100, 100, 100]
result = batch2.to_tensor(row_major=False)
x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="F")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.from_numpy_dtype(typ), 15)
result = batch2.to_tensor()
x = np.column_stack([arr1, arr2, arr3]).astype(typ, order="C")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.from_numpy_dtype(typ), 15)
@pytest.mark.numpy
def test_recordbatch_to_tensor_uniform_float_16():
arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90]
arr3 = [100, 100, 100, 100, 100, 100, 100, 100, 100]
batch = pa.RecordBatch.from_arrays(
[
pa.array(np.array(arr1, dtype=np.float16), type=pa.float16()),
pa.array(np.array(arr2, dtype=np.float16), type=pa.float16()),
pa.array(np.array(arr3, dtype=np.float16), type=pa.float16()),
], ["a", "b", "c"]
)
result = batch.to_tensor(row_major=False)
x = np.column_stack([arr1, arr2, arr3]).astype(np.float16, order="F")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.float16(), 27)
result = batch.to_tensor()
x = np.column_stack([arr1, arr2, arr3]).astype(np.float16, order="C")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.float16(), 27)
@pytest.mark.numpy
def test_recordbatch_to_tensor_mixed_type():
# uint16 + int16 = int32
arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90]
arr3 = [100, 200, 300, np.nan, 500, 600, 700, 800, 900]
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.uint16()),
pa.array(arr2, type=pa.int16()),
], ["a", "b"]
)
result = batch.to_tensor(row_major=False)
x = np.column_stack([arr1, arr2]).astype(np.int32, order="F")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.int32(), 18)
result = batch.to_tensor()
x = np.column_stack([arr1, arr2]).astype(np.int32, order="C")
expected = pa.Tensor.from_numpy(x)
check_tensors(result, expected, pa.int32(), 18)
# uint16 + int16 + float32 = float64
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.uint16()),
pa.array(arr2, type=pa.int16()),
pa.array(arr3, type=pa.float32()),
], ["a", "b", "c"]
)
result = batch.to_tensor(row_major=False)
x = np.column_stack([arr1, arr2, arr3]).astype(np.float64, order="F")
expected = pa.Tensor.from_numpy(x)
np.testing.assert_equal(result.to_numpy(), x)
assert result.size == 27
assert result.type == pa.float64()
assert result.shape == expected.shape
assert result.strides == expected.strides
result = batch.to_tensor()
x = np.column_stack([arr1, arr2, arr3]).astype(np.float64, order="C")
expected = pa.Tensor.from_numpy(x)
np.testing.assert_equal(result.to_numpy(), x)
assert result.size == 27
assert result.type == pa.float64()
assert result.shape == expected.shape
assert result.strides == expected.strides
@pytest.mark.numpy
def test_recordbatch_to_tensor_unsupported_mixed_type_with_float16():
arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
arr2 = [10, 20, 30, 40, 50, 60, 70, 80, 90]
arr3 = [100, 200, 300, 400, 500, 600, 700, 800, 900]
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.uint16()),
pa.array(np.array(arr2, dtype=np.float16), type=pa.float16()),
pa.array(arr3, type=pa.float32()),
], ["a", "b", "c"]
)
with pytest.raises(
NotImplementedError,
match="Casting from or to halffloat is not supported."
):
batch.to_tensor()
@pytest.mark.numpy
def test_recordbatch_to_tensor_nan():
arr1 = [1, 2, 3, 4, np.nan, 6, 7, 8, 9]
arr2 = [10, 20, 30, 40, 50, 60, 70, np.nan, 90]
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.float32()),
pa.array(arr2, type=pa.float32()),
], ["a", "b"]
)
result = batch.to_tensor(row_major=False)
x = np.column_stack([arr1, arr2]).astype(np.float32, order="F")
expected = pa.Tensor.from_numpy(x)
np.testing.assert_equal(result.to_numpy(), x)
assert result.size == 18
assert result.type == pa.float32()
assert result.shape == expected.shape
assert result.strides == expected.strides
@pytest.mark.numpy
def test_recordbatch_to_tensor_null():
arr1 = [1, 2, 3, 4, None, 6, 7, 8, 9]
arr2 = [10, 20, 30, 40, 50, 60, 70, None, 90]
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.int32()),
pa.array(arr2, type=pa.float32()),
], ["a", "b"]
)
with pytest.raises(
pa.ArrowTypeError,
match="Can only convert a RecordBatch with no nulls."
):
batch.to_tensor()
result = batch.to_tensor(null_to_nan=True, row_major=False)
x = np.column_stack([arr1, arr2]).astype(np.float64, order="F")
expected = pa.Tensor.from_numpy(x)
np.testing.assert_equal(result.to_numpy(), x)
assert result.size == 18
assert result.type == pa.float64()
assert result.shape == expected.shape
assert result.strides == expected.strides
# int32 -> float64
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.int32()),
pa.array(arr2, type=pa.int32()),
], ["a", "b"]
)
result = batch.to_tensor(null_to_nan=True, row_major=False)
np.testing.assert_equal(result.to_numpy(), x)
assert result.size == 18
assert result.type == pa.float64()
assert result.shape == expected.shape
assert result.strides == expected.strides
# int8 -> float32
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.int8()),
pa.array(arr2, type=pa.int8()),
], ["a", "b"]
)
result = batch.to_tensor(null_to_nan=True, row_major=False)
x = np.column_stack([arr1, arr2]).astype(np.float32, order="F")
expected = pa.Tensor.from_numpy(x)
np.testing.assert_equal(result.to_numpy(), x)
assert result.size == 18
assert result.type == pa.float32()
assert result.shape == expected.shape
assert result.strides == expected.strides
@pytest.mark.numpy
def test_recordbatch_to_tensor_empty():
batch = pa.RecordBatch.from_arrays(
[
pa.array([], type=pa.float32()),
pa.array([], type=pa.float32()),
], ["a", "b"]
)
result = batch.to_tensor()
x = np.column_stack([[], []]).astype(np.float32, order="F")
expected = pa.Tensor.from_numpy(x)
assert result.size == expected.size
assert result.type == pa.float32()
assert result.shape == expected.shape
assert result.strides == (4, 4)
def test_recordbatch_to_tensor_unsupported():
arr1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
# Unsupported data type
arr2 = ["a", "b", "c", "a", "b", "c", "a", "b", "c"]
batch = pa.RecordBatch.from_arrays(
[
pa.array(arr1, type=pa.int32()),
pa.array(arr2, type=pa.utf8()),
], ["a", "b"]
)
with pytest.raises(
pa.ArrowTypeError,
match="DataType is not supported"
):
batch.to_tensor()
def _table_like_slice_tests(factory):
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10])
]
names = ['c0', 'c1']
obj = factory(data, names=names)
sliced = obj.slice(2)
assert sliced.num_rows == 3
expected = factory([x.slice(2) for x in data], names=names)
assert sliced.equals(expected)
sliced2 = obj.slice(2, 2)
expected2 = factory([x.slice(2, 2) for x in data], names=names)
assert sliced2.equals(expected2)
# 0 offset
assert obj.slice(0).equals(obj)
# Slice past end of array
assert len(obj.slice(len(obj))) == 0
with pytest.raises(IndexError):
obj.slice(-1)
# Check __getitem__-based slicing
assert obj.slice(0, 0).equals(obj[:0])
assert obj.slice(0, 2).equals(obj[:2])
assert obj.slice(2, 2).equals(obj[2:4])
assert obj.slice(2, len(obj) - 2).equals(obj[2:])
assert obj.slice(len(obj) - 2, 2).equals(obj[-2:])
assert obj.slice(len(obj) - 4, 2).equals(obj[-4:-2])
def test_recordbatch_slice_getitem():
return _table_like_slice_tests(pa.RecordBatch.from_arrays)
def test_table_slice_getitem():
return _table_like_slice_tests(pa.table)
@pytest.mark.pandas
def test_slice_zero_length_table():
# ARROW-7907: a segfault on this code was fixed after 0.16.0
table = pa.table({'a': pa.array([], type=pa.timestamp('us'))})
table_slice = table.slice(0, 0)
table_slice.to_pandas()
table = pa.table({'a': pa.chunked_array([], type=pa.string())})
table.to_pandas()
@pytest.mark.numpy
def test_recordbatchlist_schema_equals():
a1 = np.array([1], dtype='uint32')
a2 = np.array([4.0, 5.0], dtype='float64')
batch1 = pa.record_batch([pa.array(a1)], ['c1'])
batch2 = pa.record_batch([pa.array(a2)], ['c1'])
with pytest.raises(pa.ArrowInvalid):
pa.Table.from_batches([batch1, batch2])
def test_table_column_sets_private_name():
# ARROW-6429
t = pa.table([pa.array([1, 2, 3, 4])], names=['a0'])
assert t[0]._name == 'a0'
def test_table_equals():
table = pa.Table.from_arrays([], names=[])
assert table.equals(table)
# ARROW-4822
assert not table.equals(None)
other = pa.Table.from_arrays([], names=[], metadata={'key': 'value'})
assert not table.equals(other, check_metadata=True)
assert table.equals(other)
def test_table_from_batches_and_schema():
schema = pa.schema([
pa.field('a', pa.int64()),
pa.field('b', pa.float64()),
])
batch = pa.record_batch([pa.array([1]), pa.array([3.14])],
names=['a', 'b'])
table = pa.Table.from_batches([batch], schema)
assert table.schema.equals(schema)
assert table.column(0) == pa.chunked_array([[1]])
assert table.column(1) == pa.chunked_array([[3.14]])
incompatible_schema = pa.schema([pa.field('a', pa.int64())])
with pytest.raises(pa.ArrowInvalid):
pa.Table.from_batches([batch], incompatible_schema)
incompatible_batch = pa.record_batch([pa.array([1])], ['a'])
with pytest.raises(pa.ArrowInvalid):
pa.Table.from_batches([incompatible_batch], schema)
@pytest.mark.pandas
def test_table_to_batches():
from pandas.testing import assert_frame_equal
import pandas as pd
df1 = pd.DataFrame({'a': list(range(10))})
df2 = pd.DataFrame({'a': list(range(10, 30))})
batch1 = pa.RecordBatch.from_pandas(df1, preserve_index=False)
batch2 = pa.RecordBatch.from_pandas(df2, preserve_index=False)
table = pa.Table.from_batches([batch1, batch2, batch1])
expected_df = pd.concat([df1, df2, df1], ignore_index=True)
batches = table.to_batches()
assert len(batches) == 3
assert_frame_equal(pa.Table.from_batches(batches).to_pandas(),
expected_df)
batches = table.to_batches(max_chunksize=15)
assert list(map(len, batches)) == [10, 15, 5, 10]
assert_frame_equal(table.to_pandas(), expected_df)
assert_frame_equal(pa.Table.from_batches(batches).to_pandas(),
expected_df)
table_from_iter = pa.Table.from_batches(iter([batch1, batch2, batch1]))
assert table.equals(table_from_iter)
with pytest.raises(ValueError):
table.to_batches(max_chunksize=0)
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_basics(cls):
data = [
pa.array(range(5), type='int16'),
pa.array([-10, -5, 0, None, 10], type='int32')
]
table = cls.from_arrays(data, names=('a', 'b'))
table.validate()
assert not table.schema.metadata
assert len(table) == 5
assert table.num_rows == 5
assert table.num_columns == len(data)
assert table.shape == (5, 2)
# (only the second array has a null bitmap)
assert table.get_total_buffer_size() == (5 * 2) + (5 * 4 + 1)
assert table.nbytes == (5 * 2) + (5 * 4 + 1)
assert sys.getsizeof(table) >= object.__sizeof__(
table) + table.get_total_buffer_size()
pydict = table.to_pydict()
assert pydict == OrderedDict([
('a', [0, 1, 2, 3, 4]),
('b', [-10, -5, 0, None, 10])
])
assert isinstance(pydict, dict)
assert table == cls.from_pydict(pydict, schema=table.schema)
with pytest.raises(IndexError):
# bounds checking
table[2]
columns = []
for col in table.itercolumns():
if cls is pa.Table:
assert type(col) is pa.ChunkedArray
for chunk in col.iterchunks():
assert chunk is not None
with pytest.raises(IndexError):
col.chunk(-1)
with pytest.raises(IndexError):
col.chunk(col.num_chunks)
else:
assert issubclass(type(col), pa.Array)
columns.append(col)
assert table.columns == columns
assert table == cls.from_arrays(columns, names=table.column_names)
assert table != cls.from_arrays(columns[1:], names=table.column_names[1:])
assert table != columns
# Schema passed explicitly
schema = pa.schema([pa.field('c0', pa.int16(),
metadata={'key': 'value'}),
pa.field('c1', pa.int32())],
metadata={b'foo': b'bar'})
table = cls.from_arrays(data, schema=schema)
assert table.schema == schema
wr = weakref.ref(table)
assert wr() is not None
del table
assert wr() is None
def test_table_dunder_init():
with pytest.raises(TypeError, match='Table'):
pa.Table()
def test_table_from_arrays_preserves_column_metadata():
# Added to test https://issues.apache.org/jira/browse/ARROW-3866
arr0 = pa.array([1, 2])
arr1 = pa.array([3, 4])
field0 = pa.field('field1', pa.int64(), metadata=dict(a="A", b="B"))
field1 = pa.field('field2', pa.int64(), nullable=False)
table = pa.Table.from_arrays([arr0, arr1],
schema=pa.schema([field0, field1]))
assert b"a" in table.field(0).metadata
assert table.field(1).nullable is False
def test_table_from_arrays_invalid_names():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10])
]
with pytest.raises(ValueError):
pa.Table.from_arrays(data, names=['a', 'b', 'c'])
with pytest.raises(ValueError):
pa.Table.from_arrays(data, names=['a'])
def test_table_from_lists():
data = [
list(range(5)),
[-10, -5, 0, 5, 10]
]
result = pa.table(data, names=['a', 'b'])
expected = pa.Table.from_arrays(data, names=['a', 'b'])
assert result.equals(expected)
schema = pa.schema([
pa.field('a', pa.uint16()),
pa.field('b', pa.int64())
])
result = pa.table(data, schema=schema)
expected = pa.Table.from_arrays(data, schema=schema)
assert result.equals(expected)
def test_table_pickle(pickle_module):
data = [
pa.chunked_array([[1, 2], [3, 4]], type=pa.uint32()),
pa.chunked_array([["some", "strings", None, ""]], type=pa.string()),
]
schema = pa.schema([pa.field('ints', pa.uint32()),
pa.field('strs', pa.string())],
metadata={b'foo': b'bar'})
table = pa.Table.from_arrays(data, schema=schema)
result = pickle_module.loads(pickle_module.dumps(table))
result.validate()
assert result.equals(table)
def test_table_get_field():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
table = pa.Table.from_arrays(data, names=('a', 'b', 'c'))
assert table.field('a').equals(table.schema.field('a'))
assert table.field(0).equals(table.schema.field('a'))
with pytest.raises(KeyError):
table.field('d')
with pytest.raises(TypeError):
table.field(None)
with pytest.raises(IndexError):
table.field(4)
def test_table_select_column():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
table = pa.Table.from_arrays(data, names=('a', 'b', 'c'))
assert table.column('a').equals(table.column(0))
with pytest.raises(KeyError,
match='Field "d" does not exist in schema'):
table.column('d')
with pytest.raises(TypeError):
table.column(None)
with pytest.raises(IndexError):
table.column(4)
def test_table_column_with_duplicates():
# ARROW-8209
table = pa.table([pa.array([1, 2, 3]),
pa.array([4, 5, 6]),
pa.array([7, 8, 9])], names=['a', 'b', 'a'])
with pytest.raises(KeyError,
match='Field "a" exists 2 times in schema'):
table.column('a')
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_add_column(cls):
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
table = cls.from_arrays(data, names=('a', 'b', 'c'))
new_field = pa.field('d', data[1].type)
t2 = table.add_column(3, new_field, data[1])
t3 = table.append_column(new_field, data[1])
expected = cls.from_arrays(data + [data[1]],
names=('a', 'b', 'c', 'd'))
assert t2.equals(expected)
assert t3.equals(expected)
t4 = table.add_column(0, new_field, data[1])
expected = cls.from_arrays([data[1]] + data,
names=('d', 'a', 'b', 'c'))
assert t4.equals(expected)
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_set_column(cls):
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
table = cls.from_arrays(data, names=('a', 'b', 'c'))
new_field = pa.field('d', data[1].type)
t2 = table.set_column(0, new_field, data[1])
expected_data = list(data)
expected_data[0] = data[1]
expected = cls.from_arrays(expected_data,
names=('d', 'b', 'c'))
assert t2.equals(expected)
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_drop_columns(cls):
""" drop one or more columns given labels"""
a = pa.array(range(5))
b = pa.array([-10, -5, 0, 5, 10])
c = pa.array(range(5, 10))
table = cls.from_arrays([a, b, c], names=('a', 'b', 'c'))
t2 = table.drop_columns(['a', 'b'])
t3 = table.drop_columns('a')
exp_t2 = cls.from_arrays([c], names=('c',))
assert exp_t2.equals(t2)
exp_t3 = cls.from_arrays([b, c], names=('b', 'c',))
assert exp_t3.equals(t3)
# -- raise KeyError if column not in Table
with pytest.raises(KeyError, match="Column 'd' not found"):
table.drop_columns(['d'])
def test_table_drop():
""" verify the alias of drop_columns is working"""
a = pa.array(range(5))
b = pa.array([-10, -5, 0, 5, 10])
c = pa.array(range(5, 10))
table = pa.Table.from_arrays([a, b, c], names=('a', 'b', 'c'))
t2 = table.drop(['a', 'b'])
t3 = table.drop('a')
exp_t2 = pa.Table.from_arrays([c], names=('c',))
assert exp_t2.equals(t2)
exp_t3 = pa.Table.from_arrays([b, c], names=('b', 'c',))
assert exp_t3.equals(t3)
# -- raise KeyError if column not in Table
with pytest.raises(KeyError, match="Column 'd' not found"):
table.drop(['d'])
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_remove_column(cls):
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
table = cls.from_arrays(data, names=('a', 'b', 'c'))
t2 = table.remove_column(0)
t2.validate()
expected = cls.from_arrays(data[1:], names=('b', 'c'))
assert t2.equals(expected)
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_remove_column_empty(cls):
# ARROW-1865
data = [
pa.array(range(5)),
]
table = cls.from_arrays(data, names=['a'])
t2 = table.remove_column(0)
t2.validate()
assert len(t2) == len(table)
t3 = t2.add_column(0, table.field(0), table[0])
t3.validate()
assert t3.equals(table)
def test_empty_table_with_names():
# ARROW-13784
data = []
names = ["a", "b"]
message = (
'Length of names [(]2[)] does not match length of arrays [(]0[)]')
with pytest.raises(ValueError, match=message):
pa.Table.from_arrays(data, names=names)
def test_empty_table():
table = pa.table([])
assert table.column_names == []
assert table.equals(pa.Table.from_arrays([], []))
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_rename_columns(cls):
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
table = cls.from_arrays(data, names=['a', 'b', 'c'])
assert table.column_names == ['a', 'b', 'c']
expected = cls.from_arrays(data, names=['eh', 'bee', 'sea'])
# Testing with list
t2 = table.rename_columns(['eh', 'bee', 'sea'])
t2.validate()
assert t2.column_names == ['eh', 'bee', 'sea']
assert t2.equals(expected)
# Testing with tuple
t3 = table.rename_columns(('eh', 'bee', 'sea'))
t3.validate()
assert t3.column_names == ['eh', 'bee', 'sea']
assert t3.equals(expected)
message = "names must be a list or dict not <class 'str'>"
with pytest.raises(TypeError, match=message):
table.rename_columns('not a list')
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_rename_columns_mapping(cls):
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array(range(5, 10))
]
table = cls.from_arrays(data, names=['a', 'b', 'c'])
assert table.column_names == ['a', 'b', 'c']
expected = cls.from_arrays(data, names=['eh', 'b', 'sea'])
t1 = table.rename_columns({'a': 'eh', 'c': 'sea'})
t1.validate()
assert t1 == expected
# Test renaming duplicate column names
table = cls.from_arrays(data, names=['a', 'a', 'c'])
expected = cls.from_arrays(data, names=['eh', 'eh', 'sea'])
t2 = table.rename_columns({'a': 'eh', 'c': 'sea'})
t2.validate()
assert t2 == expected
# Test column not found
with pytest.raises(KeyError, match=r"Column 'd' not found"):
table.rename_columns({'a': 'eh', 'd': 'sea'})
def test_table_flatten():
ty1 = pa.struct([pa.field('x', pa.int16()),
pa.field('y', pa.float32())])
ty2 = pa.struct([pa.field('nest', ty1)])
a = pa.array([(1, 2.5), (3, 4.5)], type=ty1)
b = pa.array([((11, 12.5),), ((13, 14.5),)], type=ty2)
c = pa.array([False, True], type=pa.bool_())
table = pa.Table.from_arrays([a, b, c], names=['a', 'b', 'c'])
t2 = table.flatten()
t2.validate()
expected = pa.Table.from_arrays([
pa.array([1, 3], type=pa.int16()),
pa.array([2.5, 4.5], type=pa.float32()),
pa.array([(11, 12.5), (13, 14.5)], type=ty1),
c],
names=['a.x', 'a.y', 'b.nest', 'c'])
assert t2.equals(expected)
def test_table_combine_chunks():
batch1 = pa.record_batch([pa.array([1]), pa.array(["a"])],
names=['f1', 'f2'])
batch2 = pa.record_batch([pa.array([2]), pa.array(["b"])],
names=['f1', 'f2'])
table = pa.Table.from_batches([batch1, batch2])
combined = table.combine_chunks()
combined.validate()
assert combined.equals(table)
for c in combined.columns:
assert c.num_chunks == 1
def test_table_unify_dictionaries():
batch1 = pa.record_batch([
pa.array(["foo", "bar", None, "foo"]).dictionary_encode(),
pa.array([123, 456, 456, 789]).dictionary_encode(),
pa.array([True, False, None, None])], names=['a', 'b', 'c'])
batch2 = pa.record_batch([
pa.array(["quux", "foo", None, "quux"]).dictionary_encode(),
pa.array([456, 789, 789, None]).dictionary_encode(),
pa.array([False, None, None, True])], names=['a', 'b', 'c'])
table = pa.Table.from_batches([batch1, batch2])
table = table.replace_schema_metadata({b"key1": b"value1"})
assert table.column(0).chunk(0).dictionary.equals(
pa.array(["foo", "bar"]))
assert table.column(0).chunk(1).dictionary.equals(
pa.array(["quux", "foo"]))
assert table.column(1).chunk(0).dictionary.equals(
pa.array([123, 456, 789]))
assert table.column(1).chunk(1).dictionary.equals(
pa.array([456, 789]))
table = table.unify_dictionaries(pa.default_memory_pool())
expected_dict_0 = pa.array(["foo", "bar", "quux"])
expected_dict_1 = pa.array([123, 456, 789])
assert table.column(0).chunk(0).dictionary.equals(expected_dict_0)
assert table.column(0).chunk(1).dictionary.equals(expected_dict_0)
assert table.column(1).chunk(0).dictionary.equals(expected_dict_1)
assert table.column(1).chunk(1).dictionary.equals(expected_dict_1)
assert table.to_pydict() == {
'a': ["foo", "bar", None, "foo", "quux", "foo", None, "quux"],
'b': [123, 456, 456, 789, 456, 789, 789, None],
'c': [True, False, None, None, False, None, None, True],
}
assert table.schema.metadata == {b"key1": b"value1"}
def test_table_maps_as_pydicts():
arrays = [
pa.array(
[{'x': 1, 'y': 2}, {'z': 3}],
type=pa.map_(pa.string(), pa.int32())
)
]
table = pa.Table.from_arrays(arrays, names=['a'])
table_dict = table.to_pydict(maps_as_pydicts="strict")
assert 'a' in table_dict
column_list = table_dict['a']
assert len(column_list) == 2
assert column_list == [{'x': 1, 'y': 2}, {'z': 3}]
table_list = table.to_pylist(maps_as_pydicts="strict")
assert len(table_list) == 2
assert table_list == [{'a': {'x': 1, 'y': 2}}, {'a': {'z': 3}}]
def test_concat_tables():
data = [
list(range(5)),
[-10., -5., 0., 5., 10.]
]
data2 = [
list(range(5, 10)),
[1., 2., 3., 4., 5.]
]
t1 = pa.Table.from_arrays([pa.array(x) for x in data],
names=('a', 'b'))
t2 = pa.Table.from_arrays([pa.array(x) for x in data2],
names=('a', 'b'))
result = pa.concat_tables([t1, t2])
result.validate()
assert len(result) == 10
expected = pa.Table.from_arrays([pa.array(x + y)
for x, y in zip(data, data2)],
names=('a', 'b'))
assert result.equals(expected)
def test_concat_tables_permissive():
t1 = pa.Table.from_arrays([list(range(10))], names=('a',))
t2 = pa.Table.from_arrays([list(('a', 'b', 'c'))], names=('a',))
with pytest.raises(
pa.ArrowTypeError,
match="Unable to merge: Field a has incompatible types: int64 vs string"):
_ = pa.concat_tables([t1, t2], promote_options="permissive")
def test_concat_tables_invalid_option():
t = pa.Table.from_arrays([list(range(10))], names=('a',))
with pytest.raises(ValueError, match="Invalid promote options: invalid"):
pa.concat_tables([t, t], promote_options="invalid")
def test_concat_tables_none_table():
# ARROW-11997
with pytest.raises(AttributeError):
pa.concat_tables([None])
@pytest.mark.pandas
def test_concat_tables_with_different_schema_metadata():
import pandas as pd
schema = pa.schema([
pa.field('a', pa.string()),
pa.field('b', pa.string()),
])
values = list('abcdefgh')
df1 = pd.DataFrame({'a': values, 'b': values})
df2 = pd.DataFrame({'a': [np.nan] * 8, 'b': values})
table1 = pa.Table.from_pandas(df1, schema=schema, preserve_index=False)
table2 = pa.Table.from_pandas(df2, schema=schema, preserve_index=False)
assert table1.schema.equals(table2.schema)
assert not table1.schema.equals(table2.schema, check_metadata=True)
table3 = pa.concat_tables([table1, table2])
assert table1.schema.equals(table3.schema, check_metadata=True)
assert table2.schema.equals(table3.schema)
def test_concat_tables_with_promote_option():
t1 = pa.Table.from_arrays(
[pa.array([1, 2], type=pa.int64())], ["int64_field"])
t2 = pa.Table.from_arrays(
[pa.array([1.0, 2.0], type=pa.float32())], ["float_field"])
with pytest.warns(FutureWarning):
result = pa.concat_tables([t1, t2], promote=True)
assert result.equals(pa.Table.from_arrays([
pa.array([1, 2, None, None], type=pa.int64()),
pa.array([None, None, 1.0, 2.0], type=pa.float32()),
], ["int64_field", "float_field"]))
t1 = pa.Table.from_arrays(
[pa.array([1, 2], type=pa.int64())], ["f"])
t2 = pa.Table.from_arrays(
[pa.array([1, 2], type=pa.float32())], ["f"])
with pytest.raises(pa.ArrowInvalid, match="Schema at index 1 was different:"):
with pytest.warns(FutureWarning):
pa.concat_tables([t1, t2], promote=False)
def test_concat_tables_with_promotion():
t1 = pa.Table.from_arrays(
[pa.array([1, 2], type=pa.int64())], ["int64_field"])
t2 = pa.Table.from_arrays(
[pa.array([1.0, 2.0], type=pa.float32())], ["float_field"])
result = pa.concat_tables([t1, t2], promote_options="default")
assert result.equals(pa.Table.from_arrays([
pa.array([1, 2, None, None], type=pa.int64()),
pa.array([None, None, 1.0, 2.0], type=pa.float32()),
], ["int64_field", "float_field"]))
t3 = pa.Table.from_arrays(
[pa.array([1, 2], type=pa.int32())], ["int64_field"])
result = pa.concat_tables(
[t1, t3], promote_options="permissive")
assert result.equals(pa.Table.from_arrays([
pa.array([1, 2, 1, 2], type=pa.int64()),
], ["int64_field"]))
def test_concat_tables_with_promotion_error():
t1 = pa.Table.from_arrays(
[pa.array([1, 2], type=pa.int64())], ["f"])
t2 = pa.Table.from_arrays(
[pa.array([1, 2], type=pa.float32())], ["f"])
with pytest.raises(pa.ArrowTypeError, match="Unable to merge:"):
pa.concat_tables([t1, t2], promote_options="default")
def test_table_negative_indexing():
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
pa.array([1.0, 2.0, 3.0, 4.0, 5.0]),
pa.array(['ab', 'bc', 'cd', 'de', 'ef']),
]
table = pa.Table.from_arrays(data, names=tuple('abcd'))
assert table[-1].equals(table[3])
assert table[-2].equals(table[2])
assert table[-3].equals(table[1])
assert table[-4].equals(table[0])
with pytest.raises(IndexError):
table[-5]
with pytest.raises(IndexError):
table[4]
def test_concat_batches():
data = [
list(range(5)),
[-10., -5., 0., 5., 10.]
]
data2 = [
list(range(5, 10)),
[1., 2., 3., 4., 5.]
]
t1 = pa.RecordBatch.from_arrays([pa.array(x) for x in data],
names=('a', 'b'))
t2 = pa.RecordBatch.from_arrays([pa.array(x) for x in data2],
names=('a', 'b'))
result = pa.concat_batches([t1, t2])
result.validate()
assert len(result) == 10
expected = pa.RecordBatch.from_arrays([pa.array(x + y)
for x, y in zip(data, data2)],
names=('a', 'b'))
assert result.equals(expected)
def test_concat_batches_different_schema():
t1 = pa.RecordBatch.from_arrays(
[pa.array([1, 2], type=pa.int64())], ["f"])
t2 = pa.RecordBatch.from_arrays(
[pa.array([1, 2], type=pa.float32())], ["f"])
with pytest.raises(pa.ArrowInvalid,
match="not match index 0 recordbatch schema"):
pa.concat_batches([t1, t2])
def test_concat_batches_none_batches():
# ARROW-11997
with pytest.raises(AttributeError):
pa.concat_batches([None])
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_cast_to_incompatible_schema(cls):
data = [
pa.array(range(5)),
pa.array([-10, -5, 0, 5, 10]),
]
table = cls.from_arrays(data, names=tuple('ab'))
target_schema1 = pa.schema([
pa.field('A', pa.int32()),
pa.field('b', pa.int16()),
])
target_schema2 = pa.schema([
pa.field('a', pa.int32()),
])
if cls is pa.Table:
cls_name = 'table'
else:
cls_name = 'record batch'
message = ("Target schema's field names are not matching the "
f"{cls_name}'s field names:.*")
with pytest.raises(ValueError, match=message):
table.cast(target_schema1)
with pytest.raises(ValueError, match=message):
table.cast(target_schema2)
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_safe_casting(cls):
data = [
pa.array(range(5), type=pa.int64()),
pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
pa.array([1.0, 2.0, 3.0, 4.0, 5.0], type=pa.float64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
table = cls.from_arrays(data, names=tuple('abcd'))
expected_data = [
pa.array(range(5), type=pa.int32()),
pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
pa.array([1, 2, 3, 4, 5], type=pa.int64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
expected_table = cls.from_arrays(expected_data, names=tuple('abcd'))
target_schema = pa.schema([
pa.field('a', pa.int32()),
pa.field('b', pa.int16()),
pa.field('c', pa.int64()),
pa.field('d', pa.string())
])
casted_table = table.cast(target_schema)
assert casted_table.equals(expected_table)
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_unsafe_casting(cls):
data = [
pa.array(range(5), type=pa.int64()),
pa.array([-10, -5, 0, 5, 10], type=pa.int32()),
pa.array([1.1, 2.2, 3.3, 4.4, 5.5], type=pa.float64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
table = cls.from_arrays(data, names=tuple('abcd'))
expected_data = [
pa.array(range(5), type=pa.int32()),
pa.array([-10, -5, 0, 5, 10], type=pa.int16()),
pa.array([1, 2, 3, 4, 5], type=pa.int64()),
pa.array(['ab', 'bc', 'cd', 'de', 'ef'], type=pa.string())
]
expected_table = cls.from_arrays(expected_data, names=tuple('abcd'))
target_schema = pa.schema([
pa.field('a', pa.int32()),
pa.field('b', pa.int16()),
pa.field('c', pa.int64()),
pa.field('d', pa.string())
])
with pytest.raises(pa.ArrowInvalid, match='truncated'):
table.cast(target_schema)
casted_table = table.cast(target_schema, safe=False)
assert casted_table.equals(expected_table)
@pytest.mark.numpy
def test_invalid_table_construct():
array = np.array([0, 1], dtype=np.uint8)
u8 = pa.uint8()
arrays = [pa.array(array, type=u8), pa.array(array[1:], type=u8)]
with pytest.raises(pa.lib.ArrowInvalid):
pa.Table.from_arrays(arrays, names=["a1", "a2"])
@pytest.mark.parametrize('data, klass', [
((['', 'foo', 'bar'], [4.5, 5, None]), list),
((['', 'foo', 'bar'], [4.5, 5, None]), pa.array),
(([[''], ['foo', 'bar']], [[4.5], [5., None]]), pa.chunked_array),
])
def test_from_arrays_schema(data, klass):
data = [klass(data[0]), klass(data[1])]
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())])
table = pa.Table.from_arrays(data, schema=schema)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.schema == schema
# length of data and schema not matching
schema = pa.schema([('strs', pa.utf8())])
with pytest.raises(ValueError):
pa.Table.from_arrays(data, schema=schema)
# with different but compatible schema
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())])
table = pa.Table.from_arrays(data, schema=schema)
assert pa.types.is_float32(table.column('floats').type)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.schema == schema
# with different and incompatible schema
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.timestamp('s'))])
with pytest.raises((NotImplementedError, TypeError)):
pa.Table.from_pydict(data, schema=schema)
# Cannot pass both schema and metadata / names
with pytest.raises(ValueError):
pa.Table.from_arrays(data, schema=schema, names=['strs', 'floats'])
with pytest.raises(ValueError):
pa.Table.from_arrays(data, schema=schema, metadata={b'foo': b'bar'})
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_from_pydict(cls):
table = cls.from_pydict({})
assert table.num_columns == 0
assert table.num_rows == 0
assert table.schema == pa.schema([])
assert table.to_pydict() == {}
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64())])
# With lists as values
data = OrderedDict([('strs', ['', 'foo', 'bar']),
('floats', [4.5, 5, None])])
table = cls.from_pydict(data)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.schema == schema
assert table.to_pydict() == data
# With metadata and inferred schema
metadata = {b'foo': b'bar'}
schema = schema.with_metadata(metadata)
table = cls.from_pydict(data, metadata=metadata)
assert table.schema == schema
assert table.schema.metadata == metadata
assert table.to_pydict() == data
# With explicit schema
table = cls.from_pydict(data, schema=schema)
assert table.schema == schema
assert table.schema.metadata == metadata
assert table.to_pydict() == data
# Cannot pass both schema and metadata
with pytest.raises(ValueError):
cls.from_pydict(data, schema=schema, metadata=metadata)
# Non-convertible values given schema
with pytest.raises(TypeError):
cls.from_pydict({'c0': [0, 1, 2]},
schema=pa.schema([("c0", pa.string())]))
# Missing schema fields from the passed mapping
with pytest.raises(KeyError, match="doesn\'t contain.* c, d"):
cls.from_pydict(
{'a': [1, 2, 3], 'b': [3, 4, 5]},
schema=pa.schema([
('a', pa.int64()),
('c', pa.int32()),
('d', pa.int16())
])
)
# Passed wrong schema type
with pytest.raises(TypeError):
cls.from_pydict({'a': [1, 2, 3]}, schema={})
@pytest.mark.parametrize('data, klass', [
((['', 'foo', 'bar'], [4.5, 5, None]), pa.array),
(([[''], ['foo', 'bar']], [[4.5], [5., None]]), pa.chunked_array),
])
def test_table_from_pydict_arrow_arrays(data, klass):
data = OrderedDict([('strs', klass(data[0])), ('floats', klass(data[1]))])
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64())])
# With arrays as values
table = pa.Table.from_pydict(data)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.schema == schema
# With explicit (matching) schema
table = pa.Table.from_pydict(data, schema=schema)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.schema == schema
# with different but compatible schema
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())])
table = pa.Table.from_pydict(data, schema=schema)
assert pa.types.is_float32(table.column('floats').type)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.schema == schema
# with different and incompatible schema
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.timestamp('s'))])
with pytest.raises((NotImplementedError, TypeError)):
pa.Table.from_pydict(data, schema=schema)
@pytest.mark.parametrize('data, klass', [
((['', 'foo', 'bar'], [4.5, 5, None]), list),
((['', 'foo', 'bar'], [4.5, 5, None]), pa.array),
(([[''], ['foo', 'bar']], [[4.5], [5., None]]), pa.chunked_array),
])
def test_table_from_pydict_schema(data, klass):
# passed schema is source of truth for the columns
data = OrderedDict([('strs', klass(data[0])), ('floats', klass(data[1]))])
# schema has columns not present in data -> error
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64()),
('ints', pa.int64())])
with pytest.raises(KeyError, match='ints'):
pa.Table.from_pydict(data, schema=schema)
# data has columns not present in schema -> ignored
schema = pa.schema([('strs', pa.utf8())])
table = pa.Table.from_pydict(data, schema=schema)
assert table.num_columns == 1
assert table.schema == schema
assert table.column_names == ['strs']
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_from_pylist(cls):
table = cls.from_pylist([])
assert table.num_columns == 0
assert table.num_rows == 0
assert table.schema == pa.schema([])
assert table.to_pylist() == []
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64())])
# With lists as values
data = [{'strs': '', 'floats': 4.5},
{'strs': 'foo', 'floats': 5},
{'strs': 'bar', 'floats': None}]
table = cls.from_pylist(data)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.schema == schema
assert table.to_pylist() == data
# With metadata and inferred schema
metadata = {b'foo': b'bar'}
schema = schema.with_metadata(metadata)
table = cls.from_pylist(data, metadata=metadata)
assert table.schema == schema
assert table.schema.metadata == metadata
assert table.to_pylist() == data
# With explicit schema
table = cls.from_pylist(data, schema=schema)
assert table.schema == schema
assert table.schema.metadata == metadata
assert table.to_pylist() == data
# Cannot pass both schema and metadata
with pytest.raises(ValueError):
cls.from_pylist(data, schema=schema, metadata=metadata)
# Non-convertible values given schema
with pytest.raises(TypeError):
cls.from_pylist([{'c0': 0}, {'c0': 1}, {'c0': 2}],
schema=pa.schema([("c0", pa.string())]))
# Missing schema fields in the passed mapping translate to None
schema = pa.schema([('a', pa.int64()),
('c', pa.int32()),
('d', pa.int16())
])
table = cls.from_pylist(
[{'a': 1, 'b': 3}, {'a': 2, 'b': 4}, {'a': 3, 'b': 5}],
schema=schema
)
data = [{'a': 1, 'c': None, 'd': None},
{'a': 2, 'c': None, 'd': None},
{'a': 3, 'c': None, 'd': None}]
assert table.schema == schema
assert table.to_pylist() == data
# Passed wrong schema type
with pytest.raises(TypeError):
cls.from_pylist([{'a': 1}, {'a': 2}, {'a': 3}], schema={})
# If the dictionaries of rows are not same length
data = [{'strs': '', 'floats': 4.5},
{'floats': 5},
{'strs': 'bar'}]
data2 = [{'strs': '', 'floats': 4.5},
{'strs': None, 'floats': 5},
{'strs': 'bar', 'floats': None}]
table = cls.from_pylist(data)
assert table.num_columns == 2
assert table.num_rows == 3
assert table.to_pylist() == data2
data = [{'strs': ''},
{'strs': 'foo', 'floats': 5},
{'floats': None}]
data2 = [{'strs': ''},
{'strs': 'foo'},
{'strs': None}]
table = cls.from_pylist(data)
assert table.num_columns == 1
assert table.num_rows == 3
assert table.to_pylist() == data2
@pytest.mark.pandas
def test_table_from_pandas_schema():
# passed schema is source of truth for the columns
import pandas as pd
df = pd.DataFrame(OrderedDict([('strs', ['', 'foo', 'bar']),
('floats', [4.5, 5, None])]))
# with different but compatible schema
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float32())])
table = pa.Table.from_pandas(df, schema=schema)
assert pa.types.is_float32(table.column('floats').type)
assert table.schema.remove_metadata() == schema
# with different and incompatible schema
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.timestamp('s'))])
with pytest.raises((NotImplementedError, TypeError)):
pa.Table.from_pandas(df, schema=schema)
# schema has columns not present in data -> error
schema = pa.schema([('strs', pa.utf8()), ('floats', pa.float64()),
('ints', pa.int64())])
with pytest.raises(KeyError, match='ints'):
pa.Table.from_pandas(df, schema=schema)
# data has columns not present in schema -> ignored
schema = pa.schema([('strs', pa.utf8())])
table = pa.Table.from_pandas(df, schema=schema)
assert table.num_columns == 1
assert table.schema.remove_metadata() == schema
assert table.column_names == ['strs']
@pytest.mark.pandas
def test_table_factory_function():
import pandas as pd
# Put in wrong order to make sure that lines up with schema
d = OrderedDict([('b', ['a', 'b', 'c']), ('a', [1, 2, 3])])
d_explicit = {'b': pa.array(['a', 'b', 'c'], type='string'),
'a': pa.array([1, 2, 3], type='int32')}
schema = pa.schema([('a', pa.int32()), ('b', pa.string())])
df = pd.DataFrame(d)
table1 = pa.table(df)
table2 = pa.Table.from_pandas(df)
assert table1.equals(table2)
table1 = pa.table(df, schema=schema)
table2 = pa.Table.from_pandas(df, schema=schema)
assert table1.equals(table2)
table1 = pa.table(d_explicit)
table2 = pa.Table.from_pydict(d_explicit)
assert table1.equals(table2)
# schema coerces type
table1 = pa.table(d, schema=schema)
table2 = pa.Table.from_pydict(d, schema=schema)
assert table1.equals(table2)
def test_table_factory_function_args():
# from_pydict not accepting names:
with pytest.raises(ValueError):
pa.table({'a': [1, 2, 3]}, names=['a'])
# backwards compatibility for schema as first positional argument
schema = pa.schema([('a', pa.int32())])
table = pa.table({'a': pa.array([1, 2, 3], type=pa.int64())}, schema)
assert table.column('a').type == pa.int32()
# from_arrays: accept both names and schema as positional first argument
data = [pa.array([1, 2, 3], type='int64')]
names = ['a']
table = pa.table(data, names)
assert table.column_names == names
schema = pa.schema([('a', pa.int64())])
table = pa.table(data, schema)
assert table.column_names == names
@pytest.mark.pandas
def test_table_factory_function_args_pandas():
import pandas as pd
# from_pandas not accepting names or metadata:
with pytest.raises(ValueError):
pa.table(pd.DataFrame({'a': [1, 2, 3]}), names=['a'])
with pytest.raises(ValueError):
pa.table(pd.DataFrame({'a': [1, 2, 3]}), metadata={b'foo': b'bar'})
# backwards compatibility for schema as first positional argument
schema = pa.schema([('a', pa.int32())])
table = pa.table(pd.DataFrame({'a': [1, 2, 3]}), schema)
assert table.column('a').type == pa.int32()
def test_factory_functions_invalid_input():
with pytest.raises(TypeError, match="Expected pandas DataFrame, python"):
pa.table("invalid input")
with pytest.raises(TypeError, match="Expected pandas DataFrame"):
pa.record_batch("invalid input")
def test_table_repr_to_string():
# Schema passed explicitly
schema = pa.schema([pa.field('c0', pa.int16(),
metadata={'key': 'value'}),
pa.field('c1', pa.int32())],
metadata={b'foo': b'bar'})
tab = pa.table([pa.array([1, 2, 3, 4], type='int16'),
pa.array([10, 20, 30, 40], type='int32')], schema=schema)
assert str(tab) == """pyarrow.Table
c0: int16
c1: int32
----
c0: [[1,2,3,4]]
c1: [[10,20,30,40]]"""
assert tab.to_string(show_metadata=True) == """\
pyarrow.Table
c0: int16
-- field metadata --
key: 'value'
c1: int32
-- schema metadata --
foo: 'bar'"""
assert tab.to_string(preview_cols=5) == """\
pyarrow.Table
c0: int16
c1: int32
----
c0: [[1,2,3,4]]
c1: [[10,20,30,40]]"""
assert tab.to_string(preview_cols=1) == """\
pyarrow.Table
c0: int16
c1: int32
----
c0: [[1,2,3,4]]
..."""
def test_table_repr_to_string_ellipsis():
# Schema passed explicitly
schema = pa.schema([pa.field('c0', pa.int16(),
metadata={'key': 'value'}),
pa.field('c1', pa.int32())],
metadata={b'foo': b'bar'})
tab = pa.table([pa.array([1, 2, 3, 4]*10, type='int16'),
pa.array([10, 20, 30, 40]*10, type='int32')],
schema=schema)
assert str(tab) == """pyarrow.Table
c0: int16
c1: int32
----
c0: [[1,2,3,4,1,...,4,1,2,3,4]]
c1: [[10,20,30,40,10,...,40,10,20,30,40]]"""
def test_record_batch_repr_to_string():
# Schema passed explicitly
schema = pa.schema([pa.field('c0', pa.int16(),
metadata={'key': 'value'}),
pa.field('c1', pa.int32())],
metadata={b'foo': b'bar'})
batch = pa.record_batch([pa.array([1, 2, 3, 4], type='int16'),
pa.array([10, 20, 30, 40], type='int32')],
schema=schema)
assert str(batch) == """pyarrow.RecordBatch
c0: int16
c1: int32
----
c0: [1,2,3,4]
c1: [10,20,30,40]"""
assert batch.to_string(show_metadata=True) == """\
pyarrow.RecordBatch
c0: int16
-- field metadata --
key: 'value'
c1: int32
-- schema metadata --
foo: 'bar'"""
assert batch.to_string(preview_cols=5) == """\
pyarrow.RecordBatch
c0: int16
c1: int32
----
c0: [1,2,3,4]
c1: [10,20,30,40]"""
assert batch.to_string(preview_cols=1) == """\
pyarrow.RecordBatch
c0: int16
c1: int32
----
c0: [1,2,3,4]
..."""
def test_record_batch_repr_to_string_ellipsis():
# Schema passed explicitly
schema = pa.schema([pa.field('c0', pa.int16(),
metadata={'key': 'value'}),
pa.field('c1', pa.int32())],
metadata={b'foo': b'bar'})
batch = pa.record_batch([pa.array([1, 2, 3, 4]*10, type='int16'),
pa.array([10, 20, 30, 40]*10, type='int32')],
schema=schema)
assert str(batch) == """pyarrow.RecordBatch
c0: int16
c1: int32
----
c0: [1,2,3,4,1,2,3,4,1,2,...,3,4,1,2,3,4,1,2,3,4]
c1: [10,20,30,40,10,20,30,40,10,20,...,30,40,10,20,30,40,10,20,30,40]"""
def test_table_function_unicode_schema():
col_a = "ÀÀÀh"
col_b = "ΓΆΓΆΓΆf"
# Put in wrong order to make sure that lines up with schema
d = OrderedDict([(col_b, ['a', 'b', 'c']), (col_a, [1, 2, 3])])
schema = pa.schema([(col_a, pa.int32()), (col_b, pa.string())])
result = pa.table(d, schema=schema)
assert result[0].chunk(0).equals(pa.array([1, 2, 3], type='int32'))
assert result[1].chunk(0).equals(pa.array(['a', 'b', 'c'], type='string'))
def test_table_take_vanilla_functionality():
table = pa.table(
[pa.array([1, 2, 3, None, 5]),
pa.array(['a', 'b', 'c', 'd', 'e'])],
['f1', 'f2'])
assert table.take(pa.array([2, 3])).equals(table.slice(2, 2))
def test_table_take_null_index():
table = pa.table(
[pa.array([1, 2, 3, None, 5]),
pa.array(['a', 'b', 'c', 'd', 'e'])],
['f1', 'f2'])
result_with_null_index = pa.table(
[pa.array([1, None]),
pa.array(['a', None])],
['f1', 'f2'])
assert table.take(pa.array([0, None])).equals(result_with_null_index)
def test_table_take_non_consecutive():
table = pa.table(
[pa.array([1, 2, 3, None, 5]),
pa.array(['a', 'b', 'c', 'd', 'e'])],
['f1', 'f2'])
result_non_consecutive = pa.table(
[pa.array([2, None]),
pa.array(['b', 'd'])],
['f1', 'f2'])
assert table.take(pa.array([1, 3])).equals(result_non_consecutive)
def test_table_select():
a1 = pa.array([1, 2, 3, None, 5])
a2 = pa.array(['a', 'b', 'c', 'd', 'e'])
a3 = pa.array([[1, 2], [3, 4], [5, 6], None, [9, 10]])
table = pa.table([a1, a2, a3], ['f1', 'f2', 'f3'])
# selecting with string names
result = table.select(['f1'])
expected = pa.table([a1], ['f1'])
assert result.equals(expected)
result = table.select(['f3', 'f2'])
expected = pa.table([a3, a2], ['f3', 'f2'])
assert result.equals(expected)
# selecting with integer indices
result = table.select([0])
expected = pa.table([a1], ['f1'])
assert result.equals(expected)
result = table.select([2, 1])
expected = pa.table([a3, a2], ['f3', 'f2'])
assert result.equals(expected)
# preserve metadata
table2 = table.replace_schema_metadata({"a": "test"})
result = table2.select(["f1", "f2"])
assert b"a" in result.schema.metadata
# selecting non-existing column raises
with pytest.raises(KeyError, match='Field "f5" does not exist'):
table.select(['f5'])
with pytest.raises(IndexError, match="index out of bounds"):
table.select([5])
# duplicate selection gives duplicated names in resulting table
result = table.select(['f2', 'f2'])
expected = pa.table([a2, a2], ['f2', 'f2'])
assert result.equals(expected)
# selection duplicated column raises
table = pa.table([a1, a2, a3], ['f1', 'f2', 'f1'])
with pytest.raises(KeyError, match='Field "f1" exists 2 times'):
table.select(['f1'])
result = table.select(['f2'])
expected = pa.table([a2], ['f2'])
assert result.equals(expected)
@pytest.mark.acero
def test_table_group_by():
def sorted_by_keys(d):
# Ensure a guaranteed order of keys for aggregation results.
if "keys2" in d:
keys = tuple(zip(d["keys"], d["keys2"]))
else:
keys = d["keys"]
sorted_keys = sorted(keys)
sorted_d = {"keys": sorted(d["keys"])}
for entry in d:
if entry == "keys":
continue
values = dict(zip(keys, d[entry]))
for k in sorted_keys:
sorted_d.setdefault(entry, []).append(values[k])
return sorted_d
table = pa.table([
pa.array(["a", "a", "b", "b", "c"]),
pa.array(["X", "X", "Y", "Z", "Z"]),
pa.array([1, 2, 3, 4, 5]),
pa.array([10, 20, 30, 40, 50])
], names=["keys", "keys2", "values", "bigvalues"])
r = table.group_by("keys").aggregate([
("values", "hash_sum")
])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b", "c"],
"values_sum": [3, 7, 5]
}
r = table.group_by("keys").aggregate([
("values", "hash_sum"),
("values", "hash_count")
])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b", "c"],
"values_sum": [3, 7, 5],
"values_count": [2, 2, 1]
}
# Test without hash_ prefix
r = table.group_by("keys").aggregate([
("values", "sum")
])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b", "c"],
"values_sum": [3, 7, 5]
}
r = table.group_by("keys").aggregate([
("values", "max"),
("bigvalues", "sum")
])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b", "c"],
"values_max": [2, 4, 5],
"bigvalues_sum": [30, 70, 50]
}
r = table.group_by("keys").aggregate([
("bigvalues", "max"),
("values", "sum")
])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b", "c"],
"values_sum": [3, 7, 5],
"bigvalues_max": [20, 40, 50]
}
r = table.group_by(["keys", "keys2"]).aggregate([
("values", "sum")
])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b", "b", "c"],
"keys2": ["X", "Y", "Z", "Z"],
"values_sum": [3, 3, 4, 5]
}
# Test many arguments
r = table.group_by("keys").aggregate([
("values", "max"),
("bigvalues", "sum"),
("bigvalues", "max"),
([], "count_all"),
("values", "sum")
])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b", "c"],
"values_max": [2, 4, 5],
"bigvalues_sum": [30, 70, 50],
"bigvalues_max": [20, 40, 50],
"count_all": [2, 2, 1],
"values_sum": [3, 7, 5]
}
table_with_nulls = pa.table([
pa.array(["a", "a", "a"]),
pa.array([1, None, None])
], names=["keys", "values"])
r = table_with_nulls.group_by(["keys"]).aggregate([
("values", "count", pc.CountOptions(mode="all"))
])
assert r.to_pydict() == {
"keys": ["a"],
"values_count": [3]
}
r = table_with_nulls.group_by(["keys"]).aggregate([
("values", "count", pc.CountOptions(mode="only_null"))
])
assert r.to_pydict() == {
"keys": ["a"],
"values_count": [2]
}
r = table_with_nulls.group_by(["keys"]).aggregate([
("values", "count", pc.CountOptions(mode="only_valid"))
])
assert r.to_pydict() == {
"keys": ["a"],
"values_count": [1]
}
r = table_with_nulls.group_by(["keys"]).aggregate([
([], "count_all"), # nullary count that takes no parameters
("values", "count", pc.CountOptions(mode="only_valid"))
])
assert r.to_pydict() == {
"keys": ["a"],
"count_all": [3],
"values_count": [1]
}
r = table_with_nulls.group_by(["keys"]).aggregate([
([], "count_all")
])
assert r.to_pydict() == {
"keys": ["a"],
"count_all": [3]
}
table = pa.table({
'keys': ['a', 'b', 'a', 'b', 'a', 'b'],
'values': range(6)})
table_with_chunks = pa.Table.from_batches(
table.to_batches(max_chunksize=3))
r = table_with_chunks.group_by('keys').aggregate([('values', 'sum')])
assert sorted_by_keys(r.to_pydict()) == {
"keys": ["a", "b"],
"values_sum": [6, 9]
}
@pytest.mark.acero
def test_table_group_by_first():
# "first" is an ordered aggregation -> requires to specify use_threads=False
table1 = pa.table({'a': [1, 2, 3, 4], 'b': ['a', 'b'] * 2})
table2 = pa.table({'a': [1, 2, 3, 4], 'b': ['b', 'a'] * 2})
table = pa.concat_tables([table1, table2])
with pytest.raises(NotImplementedError):
table.group_by("b").aggregate([("a", "first")])
result = table.group_by("b", use_threads=False).aggregate([("a", "first")])
expected = pa.table({"b": ["a", "b"], "a_first": [1, 2]})
assert result.equals(expected)
@pytest.mark.acero
def test_table_group_by_pivot_wider():
table = pa.table({'group': [1, 2, 3, 1, 2, 3],
'key': ['h', 'h', 'h', 'w', 'w', 'w'],
'value': [10, 20, 30, 40, 50, 60]})
with pytest.raises(ValueError, match='accepts 3 arguments but 2 passed'):
table.group_by("group").aggregate([("key", "pivot_wider")])
# GH-45739: calling hash_pivot_wider without options shouldn't crash
# (even though it's not very useful as key_names=[])
result = table.group_by("group").aggregate([(("key", "value"), "pivot_wider")])
expected = pa.table({'group': [1, 2, 3],
'key_value_pivot_wider': [{}, {}, {}]})
assert result.equals(expected)
options = pc.PivotWiderOptions(key_names=('h', 'w'))
result = table.group_by("group").aggregate(
[(("key", "value"), "pivot_wider", options)])
expected = pa.table(
{'group': [1, 2, 3],
'key_value_pivot_wider': [
{'h': 10, 'w': 40}, {'h': 20, 'w': 50}, {'h': 30, 'w': 60}]})
assert result.equals(expected)
def test_table_to_recordbatchreader():
table = pa.Table.from_pydict({'x': [1, 2, 3]})
reader = table.to_reader()
assert table.schema == reader.schema
assert table == reader.read_all()
reader = table.to_reader(max_chunksize=2)
assert reader.read_next_batch().num_rows == 2
assert reader.read_next_batch().num_rows == 1
@pytest.mark.acero
def test_table_join():
t1 = pa.table({
"colA": [1, 2, 6],
"col2": ["a", "b", "f"]
})
t2 = pa.table({
"colB": [99, 2, 1],
"col3": ["Z", "B", "A"]
})
result = t1.join(t2, "colA", "colB")
assert result.combine_chunks() == pa.table({
"colA": [1, 2, 6],
"col2": ["a", "b", "f"],
"col3": ["A", "B", None]
})
result = t1.join(t2, "colA", "colB", join_type="full outer")
assert result.combine_chunks().sort_by("colA") == pa.table({
"colA": [1, 2, 6, 99],
"col2": ["a", "b", "f", None],
"col3": ["A", "B", None, "Z"]
})
@pytest.mark.acero
def test_table_join_unique_key():
t1 = pa.table({
"colA": [1, 2, 6],
"col2": ["a", "b", "f"]
})
t2 = pa.table({
"colA": [99, 2, 1],
"col3": ["Z", "B", "A"]
})
result = t1.join(t2, "colA")
assert result.combine_chunks() == pa.table({
"colA": [1, 2, 6],
"col2": ["a", "b", "f"],
"col3": ["A", "B", None]
})
result = t1.join(t2, "colA", join_type="full outer", right_suffix="_r")
assert result.combine_chunks().sort_by("colA") == pa.table({
"colA": [1, 2, 6, 99],
"col2": ["a", "b", "f", None],
"col3": ["A", "B", None, "Z"]
})
@pytest.mark.acero
def test_table_join_collisions():
t1 = pa.table({
"colA": [1, 2, 6],
"colB": [10, 20, 60],
"colVals": ["a", "b", "f"]
})
t2 = pa.table({
"colA": [99, 2, 1],
"colB": [99, 20, 10],
"colVals": ["Z", "B", "A"]
})
result = t1.join(t2, "colA", join_type="full outer")
assert result.combine_chunks().sort_by("colA") == pa.table([
[1, 2, 6, 99],
[10, 20, 60, None],
["a", "b", "f", None],
[10, 20, None, 99],
["A", "B", None, "Z"],
], names=["colA", "colB", "colVals", "colB", "colVals"])
@pytest.mark.acero
@pytest.mark.parametrize('cls', [(pa.Table), (pa.RecordBatch)])
def test_table_filter_expression(cls):
t1 = cls.from_pydict({
"colA": [1, 2, 3, 6],
"colB": [10, 20, None, 60],
"colVals": ["a", "b", "c", "f"]
})
result = t1.filter(pc.field("colB") < 50)
assert result == cls.from_pydict({
"colA": [1, 2],
"colB": [10, 20],
"colVals": ["a", "b"]
})
@pytest.mark.acero
def test_table_filter_expression_chunks():
t1 = pa.table({
"colA": [1, 2, 6],
"colB": [10, 20, 60],
"colVals": ["a", "b", "f"]
})
t2 = pa.table({
"colA": [99, 2, 1],
"colB": [99, 20, 10],
"colVals": ["Z", "B", "A"]
})
t3 = pa.concat_tables([t1, t2])
result = t3.filter(pc.field("colA") < 10)
assert result.combine_chunks() == pa.table({
"colA": [1, 2, 6, 2, 1],
"colB": [10, 20, 60, 20, 10],
"colVals": ["a", "b", "f", "B", "A"]
})
@pytest.mark.acero
def test_table_join_many_columns():
t1 = pa.table({
"colA": [1, 2, 6],
"col2": ["a", "b", "f"]
})
t2 = pa.table({
"colB": [99, 2, 1],
"col3": ["Z", "B", "A"],
"col4": ["Z", "B", "A"],
"col5": ["Z", "B", "A"],
"col6": ["Z", "B", "A"],
"col7": ["Z", "B", "A"]
})
result = t1.join(t2, "colA", "colB")
assert result.combine_chunks() == pa.table({
"colA": [1, 2, 6],
"col2": ["a", "b", "f"],
"col3": ["A", "B", None],
"col4": ["A", "B", None],
"col5": ["A", "B", None],
"col6": ["A", "B", None],
"col7": ["A", "B", None]
})
result = t1.join(t2, "colA", "colB", join_type="full outer")
assert result.combine_chunks().sort_by("colA") == pa.table({
"colA": [1, 2, 6, 99],
"col2": ["a", "b", "f", None],
"col3": ["A", "B", None, "Z"],
"col4": ["A", "B", None, "Z"],
"col5": ["A", "B", None, "Z"],
"col6": ["A", "B", None, "Z"],
"col7": ["A", "B", None, "Z"],
})
@pytest.mark.dataset
def test_table_join_asof():
t1 = pa.Table.from_pydict({
"colA": [1, 1, 5, 6, 7],
"col2": ["a", "b", "a", "b", "f"]
})
t2 = pa.Table.from_pydict({
"colB": [2, 9, 15],
"col3": ["a", "b", "g"],
"colC": [1., 3., 5.]
})
r = t1.join_asof(
t2, on="colA", by="col2", tolerance=1,
right_on="colB", right_by="col3",
)
assert r.combine_chunks() == pa.table({
"colA": [1, 1, 5, 6, 7],
"col2": ["a", "b", "a", "b", "f"],
"colC": [1., None, None, None, None],
})
@pytest.mark.dataset
def test_table_join_asof_multiple_by():
t1 = pa.table({
"colA": [1, 2, 6],
"colB": [10, 20, 60],
"on": [1, 2, 3],
})
t2 = pa.table({
"colB": [99, 20, 10],
"colVals": ["Z", "B", "A"],
"colA": [99, 2, 1],
"on": [2, 3, 4],
})
result = t1.join_asof(
t2, on="on", by=["colA", "colB"], tolerance=1
)
assert result.sort_by("colA") == pa.table({
"colA": [1, 2, 6],
"colB": [10, 20, 60],
"on": [1, 2, 3],
"colVals": [None, "B", None],
})
@pytest.mark.dataset
def test_table_join_asof_empty_by():
t1 = pa.table({
"on": [1, 2, 3],
})
t2 = pa.table({
"colVals": ["Z", "B", "A"],
"on": [2, 3, 4],
})
result = t1.join_asof(
t2, on="on", by=[], tolerance=1
)
assert result == pa.table({
"on": [1, 2, 3],
"colVals": ["Z", "Z", "B"],
})
@pytest.mark.dataset
def test_table_join_asof_collisions():
t1 = pa.table({
"colA": [1, 2, 6],
"colB": [10, 20, 60],
"on": [1, 2, 3],
"colVals": ["a", "b", "f"]
})
t2 = pa.table({
"colB": [99, 20, 10],
"colVals": ["Z", "B", "A"],
"colUniq": [100, 200, 300],
"colA": [99, 2, 1],
"on": [2, 3, 4],
})
msg = (
"Columns {'colVals'} present in both tables. "
"AsofJoin does not support column collisions."
)
with pytest.raises(ValueError, match=msg):
t1.join_asof(
t2, on="on", by=["colA", "colB"], tolerance=1,
right_on="on", right_by=["colA", "colB"],
)
@pytest.mark.dataset
def test_table_join_asof_by_length_mismatch():
t1 = pa.table({
"colA": [1, 2, 6],
"colB": [10, 20, 60],
"on": [1, 2, 3],
})
t2 = pa.table({
"colVals": ["Z", "B", "A"],
"colUniq": [100, 200, 300],
"colA": [99, 2, 1],
"on": [2, 3, 4],
})
msg = "inconsistent size of by-key across inputs"
with pytest.raises(pa.lib.ArrowInvalid, match=msg):
t1.join_asof(
t2, on="on", by=["colA", "colB"], tolerance=1,
right_on="on", right_by=["colA"],
)
@pytest.mark.dataset
def test_table_join_asof_by_type_mismatch():
t1 = pa.table({
"colA": [1, 2, 6],
"on": [1, 2, 3],
})
t2 = pa.table({
"colVals": ["Z", "B", "A"],
"colUniq": [100, 200, 300],
"colA": [99., 2., 1.],
"on": [2, 3, 4],
})
msg = "Expected by-key type int64 but got double for field colA in input 1"
with pytest.raises(pa.lib.ArrowInvalid, match=msg):
t1.join_asof(
t2, on="on", by=["colA"], tolerance=1,
right_on="on", right_by=["colA"],
)
@pytest.mark.dataset
def test_table_join_asof_on_type_mismatch():
t1 = pa.table({
"colA": [1, 2, 6],
"on": [1, 2, 3],
})
t2 = pa.table({
"colVals": ["Z", "B", "A"],
"colUniq": [100, 200, 300],
"colA": [99, 2, 1],
"on": [2., 3., 4.],
})
msg = "Expected on-key type int64 but got double for field on in input 1"
with pytest.raises(pa.lib.ArrowInvalid, match=msg):
t1.join_asof(
t2, on="on", by=["colA"], tolerance=1,
right_on="on", right_by=["colA"],
)
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_cast_invalid(cls):
# Casting a nullable field to non-nullable should be invalid!
table = cls.from_pydict({'a': [None, 1], 'b': [None, True]})
new_schema = pa.schema([pa.field("a", "int64", nullable=True),
pa.field("b", "bool", nullable=False)])
with pytest.raises(ValueError):
table.cast(new_schema)
table = cls.from_pydict({'a': [None, 1], 'b': [False, True]})
assert table.cast(new_schema).schema == new_schema
@pytest.mark.parametrize(
('cls'),
[
(pa.Table),
(pa.RecordBatch)
]
)
def test_table_sort_by(cls):
table = cls.from_arrays([
pa.array([3, 1, 4, 2, 5]),
pa.array(["b", "a", "b", "a", "c"]),
], names=["values", "keys"])
assert table.sort_by("values").to_pydict() == {
"keys": ["a", "a", "b", "b", "c"],
"values": [1, 2, 3, 4, 5]
}
assert table.sort_by([("values", "descending")]).to_pydict() == {
"keys": ["c", "b", "b", "a", "a"],
"values": [5, 4, 3, 2, 1]
}
tab = cls.from_arrays([
pa.array([5, 7, 7, 35], type=pa.int64()),
pa.array(["foo", "car", "bar", "foobar"])
], names=["a", "b"])
sorted_tab = tab.sort_by([("a", "descending")])
sorted_tab_dict = sorted_tab.to_pydict()
assert sorted_tab_dict["a"] == [35, 7, 7, 5]
assert sorted_tab_dict["b"] == ["foobar", "car", "bar", "foo"]
sorted_tab = tab.sort_by([("a", "ascending")])
sorted_tab_dict = sorted_tab.to_pydict()
assert sorted_tab_dict["a"] == [5, 7, 7, 35]
assert sorted_tab_dict["b"] == ["foo", "car", "bar", "foobar"]
@pytest.mark.numpy
@pytest.mark.parametrize("constructor", [pa.table, pa.record_batch])
def test_numpy_asarray(constructor):
table = constructor([[1, 2, 3], [4.0, 5.0, 6.0]], names=["a", "b"])
result = np.asarray(table)
expected = np.array([[1, 4], [2, 5], [3, 6]], dtype="float64")
np.testing.assert_allclose(result, expected)
result = np.asarray(table, dtype="int32")
np.testing.assert_allclose(result, expected)
assert result.dtype == "int32"
# no columns
table2 = table.select([])
result = np.asarray(table2)
expected = np.empty((3, 0))
np.testing.assert_allclose(result, expected)
assert result.dtype == "float64"
result = np.asarray(table2, dtype="int32")
np.testing.assert_allclose(result, expected)
assert result.dtype == "int32"
# no rows
table3 = table.slice(0, 0)
result = np.asarray(table3)
expected = np.empty((0, 2))
np.testing.assert_allclose(result, expected)
assert result.dtype == "float64"
result = np.asarray(table3, dtype="int32")
np.testing.assert_allclose(result, expected)
assert result.dtype == "int32"
@pytest.mark.numpy
@pytest.mark.parametrize("constructor", [pa.table, pa.record_batch])
def test_numpy_array_protocol(constructor):
table = constructor([[1, 2, 3], [4.0, 5.0, 6.0]], names=["a", "b"])
expected = np.array([[1, 4], [2, 5], [3, 6]], dtype="float64")
if Version(np.__version__) < Version("2.0.0.dev0"):
# copy keyword is not strict and not passed down to __array__
result = np.array(table, copy=False)
np.testing.assert_array_equal(result, expected)
else:
# starting with numpy 2.0, the copy=False keyword is assumed to be strict
with pytest.raises(ValueError, match="Unable to avoid a copy"):
np.array(table, copy=False)
@pytest.mark.acero
def test_invalid_non_join_column():
NUM_ITEMS = 30
t1 = pa.Table.from_pydict({
'id': range(NUM_ITEMS),
'array_column': [[z for z in range(3)] for x in range(NUM_ITEMS)],
})
t2 = pa.Table.from_pydict({
'id': range(NUM_ITEMS),
'value': [x for x in range(NUM_ITEMS)]
})
# check as left table
with pytest.raises(pa.lib.ArrowInvalid) as excinfo:
t1.join(t2, 'id', join_type='inner')
exp_error_msg = "Data type list<item: int64> is not supported " \
+ "in join non-key field array_column"
assert exp_error_msg in str(excinfo.value)
# check as right table
with pytest.raises(pa.lib.ArrowInvalid) as excinfo:
t2.join(t1, 'id', join_type='inner')
assert exp_error_msg in str(excinfo.value)
@pytest.fixture
def cuda_context():
cuda = pytest.importorskip("pyarrow.cuda")
return cuda.Context(0)
@pytest.fixture
def schema():
return pa.schema([pa.field('c0', pa.int32()), pa.field('c1', pa.int32())])
@pytest.fixture
def cpu_arrays(schema):
return [pa.array([1, 2, 3, 4, 5], schema.field(0).type),
pa.array([-10, -5, 0, None, 10], schema.field(1).type)]
@pytest.fixture
def cuda_arrays(cuda_context, cpu_arrays):
return [arr.copy_to(cuda_context.memory_manager) for arr in cpu_arrays]
@pytest.fixture
def cpu_chunked_array(cpu_arrays):
chunked_array = pa.chunked_array(cpu_arrays)
assert chunked_array.is_cpu is True
return chunked_array
@pytest.fixture
def cuda_chunked_array(cuda_arrays):
chunked_array = pa.chunked_array(cuda_arrays)
assert chunked_array.is_cpu is False
return chunked_array
@pytest.fixture
def cpu_and_cuda_chunked_array(cpu_arrays, cuda_arrays):
chunked_array = pa.chunked_array(cpu_arrays + cuda_arrays)
assert chunked_array.is_cpu is False
return chunked_array
@pytest.fixture
def cpu_recordbatch(cpu_arrays, schema):
return pa.record_batch(cpu_arrays, schema=schema)
@pytest.fixture
def cuda_recordbatch(cuda_context, cpu_recordbatch):
return cpu_recordbatch.copy_to(cuda_context.memory_manager)
@pytest.fixture
def cpu_table(schema, cpu_chunked_array):
return pa.table([cpu_chunked_array, cpu_chunked_array], schema=schema)
@pytest.fixture
def cuda_table(schema, cuda_chunked_array):
return pa.table([cuda_chunked_array, cuda_chunked_array], schema=schema)
@pytest.fixture
def cpu_and_cuda_table(schema, cpu_chunked_array, cuda_chunked_array):
return pa.table([cpu_chunked_array, cuda_chunked_array], schema=schema)
def test_chunked_array_non_cpu(cuda_context, cpu_chunked_array, cuda_chunked_array,
cpu_and_cuda_chunked_array):
# type test
assert cuda_chunked_array.type == cpu_chunked_array.type
# length() test
assert cuda_chunked_array.length() == cpu_chunked_array.length()
# str() test
assert str(cuda_chunked_array) == str(cpu_chunked_array)
# repr() test
assert str(cuda_chunked_array) in repr(cuda_chunked_array)
# validate() test
cuda_chunked_array.validate()
with pytest.raises(NotImplementedError):
cuda_chunked_array.validate(full=True)
# null_count test
with pytest.raises(NotImplementedError):
cuda_chunked_array.null_count
# nbytes() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.nbytes
# get_total_buffer_size() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.get_total_buffer_size()
# getitem() test
with pytest.raises(NotImplementedError):
cuda_chunked_array[0]
# is_null() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.is_null()
# is_nan() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.is_nan()
# is_valid() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.is_valid()
# fill_null() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.fill_null(0)
# equals() test
with pytest.raises(NotImplementedError):
cuda_chunked_array == cuda_chunked_array
# to_pandas() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.to_pandas()
# to_numpy() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.to_numpy()
# __array__() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.__array__()
# cast() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.cast()
# dictionary_encode() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.dictionary_encode()
# flatten() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.flatten()
# combine_chunks() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.combine_chunks()
# unique() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.unique()
# value_counts() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.value_counts()
# filter() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.filter([True, False, True, False, True])
# index() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.index(5)
# slice() test
cuda_chunked_array.slice(2, 2)
# take() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.take([1])
# drop_null() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.drop_null()
# sort() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.sort()
# unify_dictionaries() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.unify_dictionaries()
# num_chunks test
assert cuda_chunked_array.num_chunks == cpu_chunked_array.num_chunks
# chunks test
assert len(cuda_chunked_array.chunks) == len(cpu_chunked_array.chunks)
# chunk() test
chunk = cuda_chunked_array.chunk(0)
assert chunk.device_type == pa.DeviceAllocationType.CUDA
# to_pylist() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.to_pylist()
# __arrow_c_stream__() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.__arrow_c_stream__()
# __reduce__() test
with pytest.raises(NotImplementedError):
cuda_chunked_array.__reduce__()
def verify_cuda_recordbatch(batch, expected_schema):
batch.validate()
assert batch.device_type == pa.DeviceAllocationType.CUDA
assert batch.is_cpu is False
assert batch.num_columns == len(expected_schema.names)
assert batch.column_names == expected_schema.names
assert str(batch) in repr(batch)
for c in batch.columns:
assert c.device_type == pa.DeviceAllocationType.CUDA
assert batch.schema == expected_schema
def test_recordbatch_non_cpu(cuda_context, cpu_recordbatch, cuda_recordbatch,
cuda_arrays, schema):
verify_cuda_recordbatch(cuda_recordbatch, expected_schema=schema)
N = cuda_recordbatch.num_rows
# shape test
assert cuda_recordbatch.shape == (5, 2)
# columns() test
assert len(cuda_recordbatch.columns) == 2
# add_column(), set_column() test
for fn in [cuda_recordbatch.add_column, cuda_recordbatch.set_column]:
col = pa.array([-2, -1, 0, 1, 2], pa.int8()
).copy_to(cuda_context.memory_manager)
new_batch = fn(2, 'c2', col)
verify_cuda_recordbatch(
new_batch, expected_schema=schema.append(pa.field('c2', pa.int8())))
err_msg = ("Got column on device <DeviceAllocationType.CPU: 1>, "
"but expected <DeviceAllocationType.CUDA: 2>.")
with pytest.raises(TypeError, match=err_msg):
fn(2, 'c2', [1] * N)
# remove_column() test
new_batch = cuda_recordbatch.remove_column(1)
verify_cuda_recordbatch(new_batch, expected_schema=schema.remove(1))
# drop_columns() test
new_batch = cuda_recordbatch.drop_columns(['c1'])
verify_cuda_recordbatch(new_batch, expected_schema=schema.remove(1))
empty_batch = cuda_recordbatch.drop_columns(['c0', 'c1'])
assert len(empty_batch.columns) == 0
assert empty_batch.device_type == pa.DeviceAllocationType.CUDA
# select() test
new_batch = cuda_recordbatch.select(['c0'])
verify_cuda_recordbatch(new_batch, expected_schema=schema.remove(1))
# cast() test
new_schema = pa.schema([pa.field('c0', pa.int64()), pa.field('c1', pa.int64())])
with pytest.raises(NotImplementedError):
cuda_recordbatch.cast(new_schema)
# drop_null() test
null_col = pa.array([1] * N, mask=[True, False, True, False, True]).copy_to(
cuda_context.memory_manager)
cuda_recordbatch_with_nulls = cuda_recordbatch.add_column(2, 'c2', null_col)
with pytest.raises(NotImplementedError):
cuda_recordbatch_with_nulls.drop_null()
# filter() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.filter([True] * N)
# take() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.take([0])
# sort_by() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.sort_by('c0')
# field() test
assert cuda_recordbatch.field(0) == schema.field(0)
assert cuda_recordbatch.field(1) == schema.field(1)
# equals() test
new_batch = cpu_recordbatch.copy_to(cuda_context.memory_manager)
with pytest.raises(NotImplementedError):
assert cuda_recordbatch.equals(new_batch) is True
# from_arrays() test
new_batch = pa.RecordBatch.from_arrays(cuda_arrays, ['c0', 'c1'])
verify_cuda_recordbatch(new_batch, expected_schema=schema)
assert new_batch.copy_to(pa.default_cpu_memory_manager()).equals(cpu_recordbatch)
# from_pydict() test
new_batch = pa.RecordBatch.from_pydict({'c0': cuda_arrays[0], 'c1': cuda_arrays[1]})
verify_cuda_recordbatch(new_batch, expected_schema=schema)
assert new_batch.copy_to(pa.default_cpu_memory_manager()).equals(cpu_recordbatch)
# from_struct_array() test
fields = [schema.field(i) for i in range(len(schema.names))]
struct_array = pa.StructArray.from_arrays(cuda_arrays, fields=fields)
with pytest.raises(NotImplementedError):
pa.RecordBatch.from_struct_array(struct_array)
# nbytes test
with pytest.raises(NotImplementedError):
assert cuda_recordbatch.nbytes
# get_total_buffer_size() test
with pytest.raises(NotImplementedError):
assert cuda_recordbatch.get_total_buffer_size()
# to_pydict() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.to_pydict()
# to_pylist() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.to_pylist()
# to_pandas() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.to_pandas()
# to_tensor() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.to_tensor()
# to_struct_array() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.to_struct_array()
# serialize() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.serialize()
# slice() test
new_batch = cuda_recordbatch.slice(1, 3)
verify_cuda_recordbatch(new_batch, expected_schema=schema)
assert new_batch.num_rows == 3
cpu_batch = new_batch.copy_to(pa.default_cpu_memory_manager())
assert cpu_batch == cpu_recordbatch.slice(1, 3)
# replace_schema_metadata() test
new_batch = cuda_recordbatch.replace_schema_metadata({b'key': b'value'})
verify_cuda_recordbatch(new_batch, expected_schema=schema)
assert new_batch.schema.metadata == {b'key': b'value'}
# rename_columns() test
new_batch = cuda_recordbatch.rename_columns(['col0', 'col1'])
expected_schema = pa.schema(
[pa.field('col0', schema.field(0).type),
pa.field('col1', schema.field(1).type)])
verify_cuda_recordbatch(new_batch, expected_schema=expected_schema)
# validate() test
cuda_recordbatch.validate()
with pytest.raises(NotImplementedError):
cuda_recordbatch.validate(full=True)
# __array__() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.__array__()
# __arrow_c_array__() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.__arrow_c_array__()
# __arrow_c_stream__() test
with pytest.raises(NotImplementedError):
cuda_recordbatch.__arrow_c_stream__()
# __dataframe__() test
with pytest.raises(NotImplementedError):
from_dataframe(cuda_recordbatch.__dataframe__())
def verify_cuda_table(table, expected_schema):
table.validate()
assert table.is_cpu is False
assert table.num_columns == len(expected_schema.names)
assert table.column_names == expected_schema.names
assert str(table) in repr(table)
for c in table.columns:
assert c.is_cpu is False
for chunk in c.iterchunks():
assert chunk.is_cpu is False
assert chunk.device_type == pa.DeviceAllocationType.CUDA
assert table.schema == expected_schema
def test_table_non_cpu(cuda_context, cpu_table, cuda_table,
cuda_arrays, cuda_recordbatch, schema):
verify_cuda_table(cuda_table, expected_schema=schema)
N = cuda_table.num_rows
# shape test
assert cuda_table.shape == (10, 2)
# columns() test
assert len(cuda_table.columns) == 2
# add_column(), set_column() test
for fn in [cuda_table.add_column, cuda_table.set_column]:
cpu_col = pa.array([1] * N, pa.int8())
cuda_col = cpu_col.copy_to(cuda_context.memory_manager)
new_table = fn(2, 'c2', cuda_col)
verify_cuda_table(new_table, expected_schema=schema.append(
pa.field('c2', pa.int8())))
new_table = fn(2, 'c2', cpu_col)
assert new_table.is_cpu is False
assert new_table.column(0).is_cpu is False
assert new_table.column(1).is_cpu is False
assert new_table.column(2).is_cpu is True
# remove_column() test
new_table = cuda_table.remove_column(1)
verify_cuda_table(new_table, expected_schema=schema.remove(1))
# drop_columns() test
new_table = cuda_table.drop_columns(['c1'])
verify_cuda_table(new_table, expected_schema=schema.remove(1))
new_table = cuda_table.drop_columns(['c0', 'c1'])
assert len(new_table.columns) == 0
assert new_table.is_cpu
# select() test
new_table = cuda_table.select(['c0'])
verify_cuda_table(new_table, expected_schema=schema.remove(1))
# cast() test
new_schema = pa.schema([pa.field('c0', pa.int64()), pa.field('c1', pa.int64())])
with pytest.raises(NotImplementedError):
cuda_table.cast(new_schema)
# drop_null() test
null_col = pa.array([1] * N, mask=[True] * N).copy_to(cuda_context.memory_manager)
cuda_table_with_nulls = cuda_table.add_column(2, 'c2', null_col)
with pytest.raises(NotImplementedError):
cuda_table_with_nulls.drop_null()
# filter() test
with pytest.raises(NotImplementedError):
cuda_table.filter([True] * N)
# take() test
with pytest.raises(NotImplementedError):
cuda_table.take([0])
# sort_by() test
with pytest.raises(NotImplementedError):
cuda_table.sort_by('c0')
# field() test
assert cuda_table.field(0) == schema.field(0)
assert cuda_table.field(1) == schema.field(1)
# equals() test
with pytest.raises(NotImplementedError):
assert cuda_table.equals(cpu_table)
# from_arrays() test
new_table = pa.Table.from_arrays(cuda_arrays, ['c0', 'c1'])
verify_cuda_table(new_table, expected_schema=schema)
# from_pydict() test
new_table = pa.Table.from_pydict({'c0': cuda_arrays[0], 'c1': cuda_arrays[1]})
verify_cuda_table(new_table, expected_schema=schema)
# from_struct_array() test
fields = [schema.field(i) for i in range(len(schema.names))]
struct_array = pa.StructArray.from_arrays(cuda_arrays, fields=fields)
with pytest.raises(NotImplementedError):
pa.Table.from_struct_array(struct_array)
# from_batches() test
new_table = pa.Table.from_batches([cuda_recordbatch, cuda_recordbatch], schema)
verify_cuda_table(new_table, expected_schema=schema)
# nbytes test
with pytest.raises(NotImplementedError):
assert cuda_table.nbytes
# get_total_buffer_size() test
with pytest.raises(NotImplementedError):
assert cuda_table.get_total_buffer_size()
# to_pydict() test
with pytest.raises(NotImplementedError):
cuda_table.to_pydict()
# to_pylist() test
with pytest.raises(NotImplementedError):
cuda_table.to_pylist()
# to_pandas() test
with pytest.raises(NotImplementedError):
cuda_table.to_pandas()
# to_struct_array() test
with pytest.raises(NotImplementedError):
cuda_table.to_struct_array()
# to_batches() test
batches = cuda_table.to_batches(max_chunksize=5)
for batch in batches:
# GH-44049
with pytest.raises(AssertionError):
verify_cuda_recordbatch(batch, expected_schema=schema)
# to_reader() test
reader = cuda_table.to_reader(max_chunksize=5)
for batch in reader:
# GH-44049
with pytest.raises(AssertionError):
verify_cuda_recordbatch(batch, expected_schema=schema)
# slice() test
new_table = cuda_table.slice(1, 3)
verify_cuda_table(new_table, expected_schema=schema)
assert new_table.num_rows == 3
# replace_schema_metadata() test
new_table = cuda_table.replace_schema_metadata({b'key': b'value'})
verify_cuda_table(new_table, expected_schema=schema)
assert new_table.schema.metadata == {b'key': b'value'}
# rename_columns() test
new_table = cuda_table.rename_columns(['col0', 'col1'])
expected_schema = pa.schema(
[pa.field('col0', schema.field(0).type),
pa.field('col1', schema.field(1).type)])
verify_cuda_table(new_table, expected_schema=expected_schema)
# validate() test
cuda_table.validate()
with pytest.raises(NotImplementedError):
cuda_table.validate(full=True)
# flatten() test
with pytest.raises(NotImplementedError):
cuda_table.flatten()
# combine_chunks() test
with pytest.raises(NotImplementedError):
cuda_table.flatten()
# unify_dictionaries() test
with pytest.raises(NotImplementedError):
cuda_table.unify_dictionaries()
# group_by() test
with pytest.raises(NotImplementedError):
cuda_table.group_by('c0')
# join() test
with pytest.raises(NotImplementedError):
cuda_table.join(cuda_table, 'c0')
# join_asof() test
with pytest.raises(NotImplementedError):
cuda_table.join_asof(cuda_table, 'c0', 'c0', 0)
# __array__() test
with pytest.raises(NotImplementedError):
cuda_table.__array__()
# __arrow_c_stream__() test
with pytest.raises(NotImplementedError):
cuda_table.__arrow_c_stream__()
# __dataframe__() test
with pytest.raises(NotImplementedError):
from_dataframe(cuda_table.__dataframe__())
# __reduce__() test
with pytest.raises(NotImplementedError):
cuda_table.__reduce__()