|
|
|
|
|
from datetime import ( |
|
datetime, |
|
timedelta, |
|
) |
|
|
|
import numpy as np |
|
import pytest |
|
|
|
from pandas.errors import ( |
|
OutOfBoundsDatetime, |
|
PerformanceWarning, |
|
) |
|
|
|
import pandas as pd |
|
from pandas import ( |
|
DataFrame, |
|
DatetimeIndex, |
|
Index, |
|
NaT, |
|
Series, |
|
Timedelta, |
|
TimedeltaIndex, |
|
Timestamp, |
|
offsets, |
|
timedelta_range, |
|
) |
|
import pandas._testing as tm |
|
from pandas.core.arrays import NumpyExtensionArray |
|
from pandas.tests.arithmetic.common import ( |
|
assert_invalid_addsub_type, |
|
assert_invalid_comparison, |
|
get_upcast_box, |
|
) |
|
|
|
|
|
def assert_dtype(obj, expected_dtype): |
|
""" |
|
Helper to check the dtype for a Series, Index, or single-column DataFrame. |
|
""" |
|
dtype = tm.get_dtype(obj) |
|
|
|
assert dtype == expected_dtype |
|
|
|
|
|
def get_expected_name(box, names): |
|
if box is DataFrame: |
|
|
|
|
|
exname = names[0] |
|
elif box in [tm.to_array, pd.array]: |
|
exname = names[1] |
|
else: |
|
exname = names[2] |
|
return exname |
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestTimedelta64ArrayLikeComparisons: |
|
|
|
|
|
|
|
|
|
def test_compare_timedelta64_zerodim(self, box_with_array): |
|
|
|
box = box_with_array |
|
xbox = box_with_array if box_with_array not in [Index, pd.array] else np.ndarray |
|
|
|
tdi = timedelta_range("2h", periods=4) |
|
other = np.array(tdi.to_numpy()[0]) |
|
|
|
tdi = tm.box_expected(tdi, box) |
|
res = tdi <= other |
|
expected = np.array([True, False, False, False]) |
|
expected = tm.box_expected(expected, xbox) |
|
tm.assert_equal(res, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"td_scalar", |
|
[ |
|
timedelta(days=1), |
|
Timedelta(days=1), |
|
Timedelta(days=1).to_timedelta64(), |
|
offsets.Hour(24), |
|
], |
|
) |
|
def test_compare_timedeltalike_scalar(self, box_with_array, td_scalar): |
|
|
|
box = box_with_array |
|
xbox = box if box not in [Index, pd.array] else np.ndarray |
|
|
|
ser = Series([timedelta(days=1), timedelta(days=2)]) |
|
ser = tm.box_expected(ser, box) |
|
actual = ser > td_scalar |
|
expected = Series([False, True]) |
|
expected = tm.box_expected(expected, xbox) |
|
tm.assert_equal(actual, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"invalid", |
|
[ |
|
345600000000000, |
|
"a", |
|
Timestamp("2021-01-01"), |
|
Timestamp("2021-01-01").now("UTC"), |
|
Timestamp("2021-01-01").now().to_datetime64(), |
|
Timestamp("2021-01-01").now().to_pydatetime(), |
|
Timestamp("2021-01-01").date(), |
|
np.array(4), |
|
], |
|
) |
|
def test_td64_comparisons_invalid(self, box_with_array, invalid): |
|
|
|
box = box_with_array |
|
|
|
rng = timedelta_range("1 days", periods=10) |
|
obj = tm.box_expected(rng, box) |
|
|
|
assert_invalid_comparison(obj, invalid, box) |
|
|
|
@pytest.mark.parametrize( |
|
"other", |
|
[ |
|
list(range(10)), |
|
np.arange(10), |
|
np.arange(10).astype(np.float32), |
|
np.arange(10).astype(object), |
|
pd.date_range("1970-01-01", periods=10, tz="UTC").array, |
|
np.array(pd.date_range("1970-01-01", periods=10)), |
|
list(pd.date_range("1970-01-01", periods=10)), |
|
pd.date_range("1970-01-01", periods=10).astype(object), |
|
pd.period_range("1971-01-01", freq="D", periods=10).array, |
|
pd.period_range("1971-01-01", freq="D", periods=10).astype(object), |
|
], |
|
) |
|
def test_td64arr_cmp_arraylike_invalid(self, other, box_with_array): |
|
|
|
|
|
|
|
rng = timedelta_range("1 days", periods=10)._data |
|
rng = tm.box_expected(rng, box_with_array) |
|
assert_invalid_comparison(rng, other, box_with_array) |
|
|
|
def test_td64arr_cmp_mixed_invalid(self): |
|
rng = timedelta_range("1 days", periods=5)._data |
|
other = np.array([0, 1, 2, rng[3], Timestamp("2021-01-01")]) |
|
|
|
result = rng == other |
|
expected = np.array([False, False, False, True, False]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = rng != other |
|
tm.assert_numpy_array_equal(result, ~expected) |
|
|
|
msg = "Invalid comparison between|Cannot compare type|not supported between" |
|
with pytest.raises(TypeError, match=msg): |
|
rng < other |
|
with pytest.raises(TypeError, match=msg): |
|
rng > other |
|
with pytest.raises(TypeError, match=msg): |
|
rng <= other |
|
with pytest.raises(TypeError, match=msg): |
|
rng >= other |
|
|
|
|
|
class TestTimedelta64ArrayComparisons: |
|
|
|
|
|
@pytest.mark.parametrize("dtype", [None, object]) |
|
def test_comp_nat(self, dtype): |
|
left = TimedeltaIndex([Timedelta("1 days"), NaT, Timedelta("3 days")]) |
|
right = TimedeltaIndex([NaT, NaT, Timedelta("3 days")]) |
|
|
|
lhs, rhs = left, right |
|
if dtype is object: |
|
lhs, rhs = left.astype(object), right.astype(object) |
|
|
|
result = rhs == lhs |
|
expected = np.array([False, False, True]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = rhs != lhs |
|
expected = np.array([True, True, False]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
expected = np.array([False, False, False]) |
|
tm.assert_numpy_array_equal(lhs == NaT, expected) |
|
tm.assert_numpy_array_equal(NaT == rhs, expected) |
|
|
|
expected = np.array([True, True, True]) |
|
tm.assert_numpy_array_equal(lhs != NaT, expected) |
|
tm.assert_numpy_array_equal(NaT != lhs, expected) |
|
|
|
expected = np.array([False, False, False]) |
|
tm.assert_numpy_array_equal(lhs < NaT, expected) |
|
tm.assert_numpy_array_equal(NaT > lhs, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"idx2", |
|
[ |
|
TimedeltaIndex( |
|
["2 day", "2 day", NaT, NaT, "1 day 00:00:02", "5 days 00:00:03"] |
|
), |
|
np.array( |
|
[ |
|
np.timedelta64(2, "D"), |
|
np.timedelta64(2, "D"), |
|
np.timedelta64("nat"), |
|
np.timedelta64("nat"), |
|
np.timedelta64(1, "D") + np.timedelta64(2, "s"), |
|
np.timedelta64(5, "D") + np.timedelta64(3, "s"), |
|
] |
|
), |
|
], |
|
) |
|
def test_comparisons_nat(self, idx2): |
|
idx1 = TimedeltaIndex( |
|
[ |
|
"1 day", |
|
NaT, |
|
"1 day 00:00:01", |
|
NaT, |
|
"1 day 00:00:01", |
|
"5 day 00:00:03", |
|
] |
|
) |
|
|
|
result = idx1 < idx2 |
|
expected = np.array([True, False, False, False, True, False]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = idx2 > idx1 |
|
expected = np.array([True, False, False, False, True, False]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = idx1 <= idx2 |
|
expected = np.array([True, False, False, False, True, True]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = idx2 >= idx1 |
|
expected = np.array([True, False, False, False, True, True]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = idx1 == idx2 |
|
expected = np.array([False, False, False, False, False, True]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = idx1 != idx2 |
|
expected = np.array([True, True, True, True, True, False]) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
|
|
def test_comparisons_coverage(self): |
|
rng = timedelta_range("1 days", periods=10) |
|
|
|
result = rng < rng[3] |
|
expected = np.array([True, True, True] + [False] * 7) |
|
tm.assert_numpy_array_equal(result, expected) |
|
|
|
result = rng == list(rng) |
|
exp = rng == rng |
|
tm.assert_numpy_array_equal(result, exp) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestTimedelta64ArithmeticUnsorted: |
|
|
|
|
|
|
|
def test_ufunc_coercions(self): |
|
|
|
idx = TimedeltaIndex(["2h", "4h", "6h", "8h", "10h"], freq="2h", name="x") |
|
|
|
for result in [idx * 2, np.multiply(idx, 2)]: |
|
assert isinstance(result, TimedeltaIndex) |
|
exp = TimedeltaIndex(["4h", "8h", "12h", "16h", "20h"], freq="4h", name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "4h" |
|
|
|
for result in [idx / 2, np.divide(idx, 2)]: |
|
assert isinstance(result, TimedeltaIndex) |
|
exp = TimedeltaIndex(["1h", "2h", "3h", "4h", "5h"], freq="h", name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "h" |
|
|
|
for result in [-idx, np.negative(idx)]: |
|
assert isinstance(result, TimedeltaIndex) |
|
exp = TimedeltaIndex( |
|
["-2h", "-4h", "-6h", "-8h", "-10h"], freq="-2h", name="x" |
|
) |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "-2h" |
|
|
|
idx = TimedeltaIndex(["-2h", "-1h", "0h", "1h", "2h"], freq="h", name="x") |
|
for result in [abs(idx), np.absolute(idx)]: |
|
assert isinstance(result, TimedeltaIndex) |
|
exp = TimedeltaIndex(["2h", "1h", "0h", "1h", "2h"], freq=None, name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq is None |
|
|
|
def test_subtraction_ops(self): |
|
|
|
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") |
|
dti = pd.date_range("20130101", periods=3, name="bar") |
|
td = Timedelta("1 days") |
|
dt = Timestamp("20130101") |
|
|
|
msg = "cannot subtract a datelike from a TimedeltaArray" |
|
with pytest.raises(TypeError, match=msg): |
|
tdi - dt |
|
with pytest.raises(TypeError, match=msg): |
|
tdi - dti |
|
|
|
msg = r"unsupported operand type\(s\) for -" |
|
with pytest.raises(TypeError, match=msg): |
|
td - dt |
|
|
|
msg = "(bad|unsupported) operand type for unary" |
|
with pytest.raises(TypeError, match=msg): |
|
td - dti |
|
|
|
result = dt - dti |
|
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = dti - dt |
|
expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = tdi - td |
|
expected = TimedeltaIndex(["0 days", NaT, "1 days"], name="foo") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = td - tdi |
|
expected = TimedeltaIndex(["0 days", NaT, "-1 days"], name="foo") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = dti - td |
|
expected = DatetimeIndex( |
|
["20121231", "20130101", "20130102"], dtype="M8[ns]", freq="D", name="bar" |
|
) |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = dt - tdi |
|
expected = DatetimeIndex( |
|
["20121231", NaT, "20121230"], dtype="M8[ns]", name="foo" |
|
) |
|
tm.assert_index_equal(result, expected) |
|
|
|
def test_subtraction_ops_with_tz(self, box_with_array): |
|
|
|
dti = pd.date_range("20130101", periods=3) |
|
dti = tm.box_expected(dti, box_with_array) |
|
ts = Timestamp("20130101") |
|
dt = ts.to_pydatetime() |
|
dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern") |
|
dti_tz = tm.box_expected(dti_tz, box_with_array) |
|
ts_tz = Timestamp("20130101").tz_localize("US/Eastern") |
|
ts_tz2 = Timestamp("20130101").tz_localize("CET") |
|
dt_tz = ts_tz.to_pydatetime() |
|
td = Timedelta("1 days") |
|
|
|
def _check(result, expected): |
|
assert result == expected |
|
assert isinstance(result, Timedelta) |
|
|
|
|
|
result = ts - ts |
|
expected = Timedelta("0 days") |
|
_check(result, expected) |
|
|
|
result = dt_tz - ts_tz |
|
expected = Timedelta("0 days") |
|
_check(result, expected) |
|
|
|
result = ts_tz - dt_tz |
|
expected = Timedelta("0 days") |
|
_check(result, expected) |
|
|
|
|
|
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects." |
|
with pytest.raises(TypeError, match=msg): |
|
dt_tz - ts |
|
msg = "can't subtract offset-naive and offset-aware datetimes" |
|
with pytest.raises(TypeError, match=msg): |
|
dt_tz - dt |
|
msg = "can't subtract offset-naive and offset-aware datetimes" |
|
with pytest.raises(TypeError, match=msg): |
|
dt - dt_tz |
|
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects." |
|
with pytest.raises(TypeError, match=msg): |
|
ts - dt_tz |
|
with pytest.raises(TypeError, match=msg): |
|
ts_tz2 - ts |
|
with pytest.raises(TypeError, match=msg): |
|
ts_tz2 - dt |
|
|
|
msg = "Cannot subtract tz-naive and tz-aware" |
|
|
|
with pytest.raises(TypeError, match=msg): |
|
dti - ts_tz |
|
with pytest.raises(TypeError, match=msg): |
|
dti_tz - ts |
|
|
|
result = dti_tz - dt_tz |
|
expected = TimedeltaIndex(["0 days", "1 days", "2 days"]) |
|
expected = tm.box_expected(expected, box_with_array) |
|
tm.assert_equal(result, expected) |
|
|
|
result = dt_tz - dti_tz |
|
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"]) |
|
expected = tm.box_expected(expected, box_with_array) |
|
tm.assert_equal(result, expected) |
|
|
|
result = dti_tz - ts_tz |
|
expected = TimedeltaIndex(["0 days", "1 days", "2 days"]) |
|
expected = tm.box_expected(expected, box_with_array) |
|
tm.assert_equal(result, expected) |
|
|
|
result = ts_tz - dti_tz |
|
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"]) |
|
expected = tm.box_expected(expected, box_with_array) |
|
tm.assert_equal(result, expected) |
|
|
|
result = td - td |
|
expected = Timedelta("0 days") |
|
_check(result, expected) |
|
|
|
result = dti_tz - td |
|
expected = DatetimeIndex( |
|
["20121231", "20130101", "20130102"], tz="US/Eastern" |
|
).as_unit("ns") |
|
expected = tm.box_expected(expected, box_with_array) |
|
tm.assert_equal(result, expected) |
|
|
|
def test_dti_tdi_numeric_ops(self): |
|
|
|
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") |
|
dti = pd.date_range("20130101", periods=3, name="bar") |
|
|
|
result = tdi - tdi |
|
expected = TimedeltaIndex(["0 days", NaT, "0 days"], name="foo") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = tdi + tdi |
|
expected = TimedeltaIndex(["2 days", NaT, "4 days"], name="foo") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = dti - tdi |
|
expected = DatetimeIndex(["20121231", NaT, "20130101"], dtype="M8[ns]") |
|
tm.assert_index_equal(result, expected) |
|
|
|
def test_addition_ops(self): |
|
|
|
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") |
|
dti = pd.date_range("20130101", periods=3, name="bar") |
|
td = Timedelta("1 days") |
|
dt = Timestamp("20130101") |
|
|
|
result = tdi + dt |
|
expected = DatetimeIndex( |
|
["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo" |
|
) |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = dt + tdi |
|
expected = DatetimeIndex( |
|
["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo" |
|
) |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = td + tdi |
|
expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = tdi + td |
|
expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo") |
|
tm.assert_index_equal(result, expected) |
|
|
|
|
|
msg = "cannot add indices of unequal length" |
|
with pytest.raises(ValueError, match=msg): |
|
tdi + dti[0:1] |
|
with pytest.raises(ValueError, match=msg): |
|
tdi[0:1] + dti |
|
|
|
|
|
msg = "Addition/subtraction of integers and integer-arrays" |
|
with pytest.raises(TypeError, match=msg): |
|
tdi + Index([1, 2, 3], dtype=np.int64) |
|
|
|
|
|
|
|
|
|
|
|
result = tdi + dti |
|
expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = dti + tdi |
|
expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]") |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = dt + td |
|
expected = Timestamp("20130102") |
|
assert result == expected |
|
|
|
result = td + dt |
|
expected = Timestamp("20130102") |
|
assert result == expected |
|
|
|
|
|
|
|
@pytest.mark.parametrize("freq", ["D", "B"]) |
|
def test_timedelta(self, freq): |
|
index = pd.date_range("1/1/2000", periods=50, freq=freq) |
|
|
|
shifted = index + timedelta(1) |
|
back = shifted + timedelta(-1) |
|
back = back._with_freq("infer") |
|
tm.assert_index_equal(index, back) |
|
|
|
if freq == "D": |
|
expected = pd.tseries.offsets.Day(1) |
|
assert index.freq == expected |
|
assert shifted.freq == expected |
|
assert back.freq == expected |
|
else: |
|
assert index.freq == pd.tseries.offsets.BusinessDay(1) |
|
assert shifted.freq is None |
|
assert back.freq == pd.tseries.offsets.BusinessDay(1) |
|
|
|
result = index - timedelta(1) |
|
expected = index + timedelta(-1) |
|
tm.assert_index_equal(result, expected) |
|
|
|
def test_timedelta_tick_arithmetic(self): |
|
|
|
rng = pd.date_range("2013", "2014") |
|
s = Series(rng) |
|
result1 = rng - offsets.Hour(1) |
|
result2 = DatetimeIndex(s - np.timedelta64(100000000)) |
|
result3 = rng - np.timedelta64(100000000) |
|
result4 = DatetimeIndex(s - offsets.Hour(1)) |
|
|
|
assert result1.freq == rng.freq |
|
result1 = result1._with_freq(None) |
|
tm.assert_index_equal(result1, result4) |
|
|
|
assert result3.freq == rng.freq |
|
result3 = result3._with_freq(None) |
|
tm.assert_index_equal(result2, result3) |
|
|
|
def test_tda_add_sub_index(self): |
|
|
|
tdi = TimedeltaIndex(["1 days", NaT, "2 days"]) |
|
tda = tdi.array |
|
|
|
dti = pd.date_range("1999-12-31", periods=3, freq="D") |
|
|
|
result = tda + dti |
|
expected = tdi + dti |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = tda + tdi |
|
expected = tdi + tdi |
|
tm.assert_index_equal(result, expected) |
|
|
|
result = tda - tdi |
|
expected = tdi - tdi |
|
tm.assert_index_equal(result, expected) |
|
|
|
def test_tda_add_dt64_object_array(self, box_with_array, tz_naive_fixture): |
|
|
|
box = box_with_array |
|
|
|
dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture) |
|
dti = dti._with_freq(None) |
|
tdi = dti - dti |
|
|
|
obj = tm.box_expected(tdi, box) |
|
other = tm.box_expected(dti, box) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
result = obj + other.astype(object) |
|
tm.assert_equal(result, other.astype(object)) |
|
|
|
|
|
|
|
|
|
def test_tdi_iadd_timedeltalike(self, two_hours, box_with_array): |
|
|
|
rng = timedelta_range("1 days", "10 days") |
|
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D") |
|
|
|
rng = tm.box_expected(rng, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
orig_rng = rng |
|
rng += two_hours |
|
tm.assert_equal(rng, expected) |
|
if box_with_array is not Index: |
|
|
|
tm.assert_equal(orig_rng, expected) |
|
|
|
def test_tdi_isub_timedeltalike(self, two_hours, box_with_array): |
|
|
|
rng = timedelta_range("1 days", "10 days") |
|
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00") |
|
|
|
rng = tm.box_expected(rng, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
orig_rng = rng |
|
rng -= two_hours |
|
tm.assert_equal(rng, expected) |
|
if box_with_array is not Index: |
|
|
|
tm.assert_equal(orig_rng, expected) |
|
|
|
|
|
|
|
def test_tdi_ops_attributes(self): |
|
rng = timedelta_range("2 days", periods=5, freq="2D", name="x") |
|
|
|
result = rng + 1 * rng.freq |
|
exp = timedelta_range("4 days", periods=5, freq="2D", name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "2D" |
|
|
|
result = rng - 2 * rng.freq |
|
exp = timedelta_range("-2 days", periods=5, freq="2D", name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "2D" |
|
|
|
result = rng * 2 |
|
exp = timedelta_range("4 days", periods=5, freq="4D", name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "4D" |
|
|
|
result = rng / 2 |
|
exp = timedelta_range("1 days", periods=5, freq="D", name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "D" |
|
|
|
result = -rng |
|
exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x") |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq == "-2D" |
|
|
|
rng = timedelta_range("-2 days", periods=5, freq="D", name="x") |
|
|
|
result = abs(rng) |
|
exp = TimedeltaIndex( |
|
["2 days", "1 days", "0 days", "1 days", "2 days"], name="x" |
|
) |
|
tm.assert_index_equal(result, exp) |
|
assert result.freq is None |
|
|
|
|
|
class TestAddSubNaTMasking: |
|
|
|
|
|
@pytest.mark.parametrize("str_ts", ["1950-01-01", "1980-01-01"]) |
|
def test_tdarr_add_timestamp_nat_masking(self, box_with_array, str_ts): |
|
|
|
tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"]) |
|
tdobj = tm.box_expected(tdinat, box_with_array) |
|
|
|
ts = Timestamp(str_ts) |
|
ts_variants = [ |
|
ts, |
|
ts.to_pydatetime(), |
|
ts.to_datetime64().astype("datetime64[ns]"), |
|
ts.to_datetime64().astype("datetime64[D]"), |
|
] |
|
|
|
for variant in ts_variants: |
|
res = tdobj + variant |
|
if box_with_array is DataFrame: |
|
assert res.iloc[1, 1] is NaT |
|
else: |
|
assert res[1] is NaT |
|
|
|
def test_tdi_add_overflow(self): |
|
|
|
|
|
|
|
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"): |
|
pd.to_timedelta(106580, "D") + Timestamp("2000") |
|
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"): |
|
Timestamp("2000") + pd.to_timedelta(106580, "D") |
|
|
|
_NaT = NaT._value + 1 |
|
msg = "Overflow in int64 addition" |
|
with pytest.raises(OverflowError, match=msg): |
|
pd.to_timedelta([106580], "D") + Timestamp("2000") |
|
with pytest.raises(OverflowError, match=msg): |
|
Timestamp("2000") + pd.to_timedelta([106580], "D") |
|
with pytest.raises(OverflowError, match=msg): |
|
pd.to_timedelta([_NaT]) - Timedelta("1 days") |
|
with pytest.raises(OverflowError, match=msg): |
|
pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days") |
|
with pytest.raises(OverflowError, match=msg): |
|
( |
|
pd.to_timedelta([_NaT, "5 days", "1 hours"]) |
|
- pd.to_timedelta(["7 seconds", _NaT, "4 hours"]) |
|
) |
|
|
|
|
|
exp = TimedeltaIndex([NaT]) |
|
result = pd.to_timedelta([NaT]) - Timedelta("1 days") |
|
tm.assert_index_equal(result, exp) |
|
|
|
exp = TimedeltaIndex(["4 days", NaT]) |
|
result = pd.to_timedelta(["5 days", NaT]) - Timedelta("1 days") |
|
tm.assert_index_equal(result, exp) |
|
|
|
exp = TimedeltaIndex([NaT, NaT, "5 hours"]) |
|
result = pd.to_timedelta([NaT, "5 days", "1 hours"]) + pd.to_timedelta( |
|
["7 seconds", NaT, "4 hours"] |
|
) |
|
tm.assert_index_equal(result, exp) |
|
|
|
|
|
class TestTimedeltaArraylikeAddSubOps: |
|
|
|
|
|
def test_sub_nat_retain_unit(self): |
|
ser = pd.to_timedelta(Series(["00:00:01"])).astype("m8[s]") |
|
|
|
result = ser - NaT |
|
expected = Series([NaT], dtype="m8[s]") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
|
|
def test_timedelta_ops_with_missing_values(self): |
|
|
|
s1 = pd.to_timedelta(Series(["00:00:01"])) |
|
s2 = pd.to_timedelta(Series(["00:00:02"])) |
|
|
|
sn = pd.to_timedelta(Series([NaT], dtype="m8[ns]")) |
|
|
|
df1 = DataFrame(["00:00:01"]).apply(pd.to_timedelta) |
|
df2 = DataFrame(["00:00:02"]).apply(pd.to_timedelta) |
|
|
|
dfn = DataFrame([NaT._value]).apply(pd.to_timedelta) |
|
|
|
scalar1 = pd.to_timedelta("00:00:01") |
|
scalar2 = pd.to_timedelta("00:00:02") |
|
timedelta_NaT = pd.to_timedelta("NaT") |
|
|
|
actual = scalar1 + scalar1 |
|
assert actual == scalar2 |
|
actual = scalar2 - scalar1 |
|
assert actual == scalar1 |
|
|
|
actual = s1 + s1 |
|
tm.assert_series_equal(actual, s2) |
|
actual = s2 - s1 |
|
tm.assert_series_equal(actual, s1) |
|
|
|
actual = s1 + scalar1 |
|
tm.assert_series_equal(actual, s2) |
|
actual = scalar1 + s1 |
|
tm.assert_series_equal(actual, s2) |
|
actual = s2 - scalar1 |
|
tm.assert_series_equal(actual, s1) |
|
actual = -scalar1 + s2 |
|
tm.assert_series_equal(actual, s1) |
|
|
|
actual = s1 + timedelta_NaT |
|
tm.assert_series_equal(actual, sn) |
|
actual = timedelta_NaT + s1 |
|
tm.assert_series_equal(actual, sn) |
|
actual = s1 - timedelta_NaT |
|
tm.assert_series_equal(actual, sn) |
|
actual = -timedelta_NaT + s1 |
|
tm.assert_series_equal(actual, sn) |
|
|
|
msg = "unsupported operand type" |
|
with pytest.raises(TypeError, match=msg): |
|
s1 + np.nan |
|
with pytest.raises(TypeError, match=msg): |
|
np.nan + s1 |
|
with pytest.raises(TypeError, match=msg): |
|
s1 - np.nan |
|
with pytest.raises(TypeError, match=msg): |
|
-np.nan + s1 |
|
|
|
actual = s1 + NaT |
|
tm.assert_series_equal(actual, sn) |
|
actual = s2 - NaT |
|
tm.assert_series_equal(actual, sn) |
|
|
|
actual = s1 + df1 |
|
tm.assert_frame_equal(actual, df2) |
|
actual = s2 - df1 |
|
tm.assert_frame_equal(actual, df1) |
|
actual = df1 + s1 |
|
tm.assert_frame_equal(actual, df2) |
|
actual = df2 - s1 |
|
tm.assert_frame_equal(actual, df1) |
|
|
|
actual = df1 + df1 |
|
tm.assert_frame_equal(actual, df2) |
|
actual = df2 - df1 |
|
tm.assert_frame_equal(actual, df1) |
|
|
|
actual = df1 + scalar1 |
|
tm.assert_frame_equal(actual, df2) |
|
actual = df2 - scalar1 |
|
tm.assert_frame_equal(actual, df1) |
|
|
|
actual = df1 + timedelta_NaT |
|
tm.assert_frame_equal(actual, dfn) |
|
actual = df1 - timedelta_NaT |
|
tm.assert_frame_equal(actual, dfn) |
|
|
|
msg = "cannot subtract a datelike from|unsupported operand type" |
|
with pytest.raises(TypeError, match=msg): |
|
df1 + np.nan |
|
with pytest.raises(TypeError, match=msg): |
|
df1 - np.nan |
|
|
|
actual = df1 + NaT |
|
tm.assert_frame_equal(actual, dfn) |
|
actual = df1 - NaT |
|
tm.assert_frame_equal(actual, dfn) |
|
|
|
|
|
|
|
def test_operators_timedelta64(self): |
|
|
|
v1 = pd.date_range("2012-1-1", periods=3, freq="D") |
|
v2 = pd.date_range("2012-1-2", periods=3, freq="D") |
|
rs = Series(v2) - Series(v1) |
|
xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]") |
|
tm.assert_series_equal(rs, xp) |
|
assert rs.dtype == "timedelta64[ns]" |
|
|
|
df = DataFrame({"A": v1}) |
|
td = Series([timedelta(days=i) for i in range(3)]) |
|
assert td.dtype == "timedelta64[ns]" |
|
|
|
|
|
result = df["A"] - df["A"].shift() |
|
assert result.dtype == "timedelta64[ns]" |
|
|
|
result = df["A"] + td |
|
assert result.dtype == "M8[ns]" |
|
|
|
|
|
maxa = df["A"].max() |
|
assert isinstance(maxa, Timestamp) |
|
|
|
resultb = df["A"] - df["A"].max() |
|
assert resultb.dtype == "timedelta64[ns]" |
|
|
|
|
|
result = resultb + df["A"] |
|
values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] |
|
expected = Series(values, dtype="M8[ns]", name="A") |
|
tm.assert_series_equal(result, expected) |
|
|
|
|
|
result = df["A"] - datetime(2001, 1, 1) |
|
expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A") |
|
tm.assert_series_equal(result, expected) |
|
assert result.dtype == "m8[ns]" |
|
|
|
d = datetime(2001, 1, 1, 3, 4) |
|
resulta = df["A"] - d |
|
assert resulta.dtype == "m8[ns]" |
|
|
|
|
|
resultb = resulta + d |
|
tm.assert_series_equal(df["A"], resultb) |
|
|
|
|
|
td = timedelta(days=1) |
|
resulta = df["A"] + td |
|
resultb = resulta - td |
|
tm.assert_series_equal(resultb, df["A"]) |
|
assert resultb.dtype == "M8[ns]" |
|
|
|
|
|
td = timedelta(minutes=5, seconds=3) |
|
resulta = df["A"] + td |
|
resultb = resulta - td |
|
tm.assert_series_equal(df["A"], resultb) |
|
assert resultb.dtype == "M8[ns]" |
|
|
|
|
|
value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) |
|
rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) |
|
assert rs[2] == value |
|
|
|
def test_timedelta64_ops_nat(self): |
|
|
|
timedelta_series = Series([NaT, Timedelta("1s")]) |
|
nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") |
|
single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") |
|
|
|
|
|
tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) |
|
tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) |
|
|
|
tm.assert_series_equal( |
|
timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta |
|
) |
|
tm.assert_series_equal( |
|
-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta |
|
) |
|
|
|
|
|
tm.assert_series_equal( |
|
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta |
|
) |
|
tm.assert_series_equal( |
|
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta |
|
) |
|
|
|
tm.assert_series_equal( |
|
nat_series_dtype_timedelta + single_nat_dtype_timedelta, |
|
nat_series_dtype_timedelta, |
|
) |
|
tm.assert_series_equal( |
|
single_nat_dtype_timedelta + nat_series_dtype_timedelta, |
|
nat_series_dtype_timedelta, |
|
) |
|
|
|
tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) |
|
tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) |
|
|
|
tm.assert_series_equal( |
|
timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta |
|
) |
|
tm.assert_series_equal( |
|
single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta |
|
) |
|
|
|
tm.assert_series_equal( |
|
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta |
|
) |
|
tm.assert_series_equal( |
|
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta |
|
) |
|
|
|
tm.assert_series_equal( |
|
nat_series_dtype_timedelta + single_nat_dtype_timedelta, |
|
nat_series_dtype_timedelta, |
|
) |
|
tm.assert_series_equal( |
|
single_nat_dtype_timedelta + nat_series_dtype_timedelta, |
|
nat_series_dtype_timedelta, |
|
) |
|
|
|
|
|
tm.assert_series_equal( |
|
nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta |
|
) |
|
tm.assert_series_equal( |
|
1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta |
|
) |
|
|
|
tm.assert_series_equal(timedelta_series * 1, timedelta_series) |
|
tm.assert_series_equal(1 * timedelta_series, timedelta_series) |
|
|
|
tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")])) |
|
tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")])) |
|
|
|
tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) |
|
tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) |
|
|
|
|
|
tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")])) |
|
tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")])) |
|
tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) |
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("cls", [Timestamp, datetime, np.datetime64]) |
|
def test_td64arr_add_sub_datetimelike_scalar( |
|
self, cls, box_with_array, tz_naive_fixture |
|
): |
|
|
|
tz = tz_naive_fixture |
|
|
|
dt_scalar = Timestamp("2012-01-01", tz=tz) |
|
if cls is datetime: |
|
ts = dt_scalar.to_pydatetime() |
|
elif cls is np.datetime64: |
|
if tz_naive_fixture is not None: |
|
pytest.skip(f"{cls} doesn support {tz_naive_fixture}") |
|
ts = dt_scalar.to_datetime64() |
|
else: |
|
ts = dt_scalar |
|
|
|
tdi = timedelta_range("1 day", periods=3) |
|
expected = pd.date_range("2012-01-02", periods=3, tz=tz) |
|
|
|
tdarr = tm.box_expected(tdi, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
tm.assert_equal(ts + tdarr, expected) |
|
tm.assert_equal(tdarr + ts, expected) |
|
|
|
expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D", tz=tz) |
|
expected2 = tm.box_expected(expected2, box_with_array) |
|
|
|
tm.assert_equal(ts - tdarr, expected2) |
|
tm.assert_equal(ts + (-tdarr), expected2) |
|
|
|
msg = "cannot subtract a datelike" |
|
with pytest.raises(TypeError, match=msg): |
|
tdarr - ts |
|
|
|
def test_td64arr_add_datetime64_nat(self, box_with_array): |
|
|
|
other = np.datetime64("NaT") |
|
|
|
tdi = timedelta_range("1 day", periods=3) |
|
expected = DatetimeIndex(["NaT", "NaT", "NaT"], dtype="M8[ns]") |
|
|
|
tdser = tm.box_expected(tdi, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
tm.assert_equal(tdser + other, expected) |
|
tm.assert_equal(other + tdser, expected) |
|
|
|
def test_td64arr_sub_dt64_array(self, box_with_array): |
|
dti = pd.date_range("2016-01-01", periods=3) |
|
tdi = TimedeltaIndex(["-1 Day"] * 3) |
|
dtarr = dti.values |
|
expected = DatetimeIndex(dtarr) - tdi |
|
|
|
tdi = tm.box_expected(tdi, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
msg = "cannot subtract a datelike from" |
|
with pytest.raises(TypeError, match=msg): |
|
tdi - dtarr |
|
|
|
|
|
result = dtarr - tdi |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_add_dt64_array(self, box_with_array): |
|
dti = pd.date_range("2016-01-01", periods=3) |
|
tdi = TimedeltaIndex(["-1 Day"] * 3) |
|
dtarr = dti.values |
|
expected = DatetimeIndex(dtarr) + tdi |
|
|
|
tdi = tm.box_expected(tdi, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = tdi + dtarr |
|
tm.assert_equal(result, expected) |
|
result = dtarr + tdi |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("pi_freq", ["D", "W", "Q", "h"]) |
|
@pytest.mark.parametrize("tdi_freq", [None, "h"]) |
|
def test_td64arr_sub_periodlike( |
|
self, box_with_array, box_with_array2, tdi_freq, pi_freq |
|
): |
|
|
|
tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq) |
|
dti = Timestamp("2018-03-07 17:16:40") + tdi |
|
pi = dti.to_period(pi_freq) |
|
per = pi[0] |
|
|
|
tdi = tm.box_expected(tdi, box_with_array) |
|
pi = tm.box_expected(pi, box_with_array2) |
|
msg = "cannot subtract|unsupported operand type" |
|
with pytest.raises(TypeError, match=msg): |
|
tdi - pi |
|
|
|
|
|
with pytest.raises(TypeError, match=msg): |
|
tdi - per |
|
|
|
@pytest.mark.parametrize( |
|
"other", |
|
[ |
|
|
|
"a", |
|
|
|
1, |
|
1.5, |
|
np.array(2), |
|
], |
|
) |
|
def test_td64arr_addsub_numeric_scalar_invalid(self, box_with_array, other): |
|
|
|
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") |
|
tdarr = tm.box_expected(tdser, box_with_array) |
|
|
|
assert_invalid_addsub_type(tdarr, other) |
|
|
|
@pytest.mark.parametrize( |
|
"vec", |
|
[ |
|
np.array([1, 2, 3]), |
|
Index([1, 2, 3]), |
|
Series([1, 2, 3]), |
|
DataFrame([[1, 2, 3]]), |
|
], |
|
ids=lambda x: type(x).__name__, |
|
) |
|
def test_td64arr_addsub_numeric_arr_invalid( |
|
self, box_with_array, vec, any_real_numpy_dtype |
|
): |
|
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") |
|
tdarr = tm.box_expected(tdser, box_with_array) |
|
|
|
vector = vec.astype(any_real_numpy_dtype) |
|
assert_invalid_addsub_type(tdarr, vector) |
|
|
|
def test_td64arr_add_sub_int(self, box_with_array, one): |
|
|
|
rng = timedelta_range("1 days 09:00:00", freq="h", periods=10) |
|
tdarr = tm.box_expected(rng, box_with_array) |
|
|
|
msg = "Addition/subtraction of integers" |
|
assert_invalid_addsub_type(tdarr, one, msg) |
|
|
|
|
|
with pytest.raises(TypeError, match=msg): |
|
tdarr += one |
|
with pytest.raises(TypeError, match=msg): |
|
tdarr -= one |
|
|
|
def test_td64arr_add_sub_integer_array(self, box_with_array): |
|
|
|
|
|
|
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
rng = timedelta_range("1 days 09:00:00", freq="h", periods=3) |
|
tdarr = tm.box_expected(rng, box) |
|
other = tm.box_expected([4, 3, 2], xbox) |
|
|
|
msg = "Addition/subtraction of integers and integer-arrays" |
|
assert_invalid_addsub_type(tdarr, other, msg) |
|
|
|
def test_td64arr_addsub_integer_array_no_freq(self, box_with_array): |
|
|
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"]) |
|
tdarr = tm.box_expected(tdi, box) |
|
other = tm.box_expected([14, -1, 16], xbox) |
|
|
|
msg = "Addition/subtraction of integers" |
|
assert_invalid_addsub_type(tdarr, other, msg) |
|
|
|
|
|
|
|
|
|
def test_td64arr_add_sub_td64_array(self, box_with_array): |
|
box = box_with_array |
|
dti = pd.date_range("2016-01-01", periods=3) |
|
tdi = dti - dti.shift(1) |
|
tdarr = tdi.values |
|
|
|
expected = 2 * tdi |
|
tdi = tm.box_expected(tdi, box) |
|
expected = tm.box_expected(expected, box) |
|
|
|
result = tdi + tdarr |
|
tm.assert_equal(result, expected) |
|
result = tdarr + tdi |
|
tm.assert_equal(result, expected) |
|
|
|
expected_sub = 0 * tdi |
|
result = tdi - tdarr |
|
tm.assert_equal(result, expected_sub) |
|
result = tdarr - tdi |
|
tm.assert_equal(result, expected_sub) |
|
|
|
def test_td64arr_add_sub_tdi(self, box_with_array, names): |
|
|
|
|
|
box = box_with_array |
|
exname = get_expected_name(box, names) |
|
|
|
tdi = TimedeltaIndex(["0 days", "1 day"], name=names[1]) |
|
tdi = np.array(tdi) if box in [tm.to_array, pd.array] else tdi |
|
ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[0]) |
|
expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=exname) |
|
|
|
ser = tm.box_expected(ser, box) |
|
expected = tm.box_expected(expected, box) |
|
|
|
result = tdi + ser |
|
tm.assert_equal(result, expected) |
|
assert_dtype(result, "timedelta64[ns]") |
|
|
|
result = ser + tdi |
|
tm.assert_equal(result, expected) |
|
assert_dtype(result, "timedelta64[ns]") |
|
|
|
expected = Series( |
|
[Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=exname |
|
) |
|
expected = tm.box_expected(expected, box) |
|
|
|
result = tdi - ser |
|
tm.assert_equal(result, expected) |
|
assert_dtype(result, "timedelta64[ns]") |
|
|
|
result = ser - tdi |
|
tm.assert_equal(result, -expected) |
|
assert_dtype(result, "timedelta64[ns]") |
|
|
|
@pytest.mark.parametrize("tdnat", [np.timedelta64("NaT"), NaT]) |
|
def test_td64arr_add_sub_td64_nat(self, box_with_array, tdnat): |
|
|
|
box = box_with_array |
|
tdi = TimedeltaIndex([NaT, Timedelta("1s")]) |
|
expected = TimedeltaIndex(["NaT"] * 2) |
|
|
|
obj = tm.box_expected(tdi, box) |
|
expected = tm.box_expected(expected, box) |
|
|
|
result = obj + tdnat |
|
tm.assert_equal(result, expected) |
|
result = tdnat + obj |
|
tm.assert_equal(result, expected) |
|
result = obj - tdnat |
|
tm.assert_equal(result, expected) |
|
result = tdnat - obj |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_add_timedeltalike(self, two_hours, box_with_array): |
|
|
|
|
|
box = box_with_array |
|
rng = timedelta_range("1 days", "10 days") |
|
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D") |
|
rng = tm.box_expected(rng, box) |
|
expected = tm.box_expected(expected, box) |
|
|
|
result = rng + two_hours |
|
tm.assert_equal(result, expected) |
|
|
|
result = two_hours + rng |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_sub_timedeltalike(self, two_hours, box_with_array): |
|
|
|
|
|
box = box_with_array |
|
rng = timedelta_range("1 days", "10 days") |
|
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00") |
|
|
|
rng = tm.box_expected(rng, box) |
|
expected = tm.box_expected(expected, box) |
|
|
|
result = rng - two_hours |
|
tm.assert_equal(result, expected) |
|
|
|
result = two_hours - rng |
|
tm.assert_equal(result, -expected) |
|
|
|
|
|
|
|
|
|
def test_td64arr_add_sub_offset_index(self, names, box_with_array): |
|
|
|
box = box_with_array |
|
exname = get_expected_name(box, names) |
|
|
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0]) |
|
other = Index([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1]) |
|
other = np.array(other) if box in [tm.to_array, pd.array] else other |
|
|
|
expected = TimedeltaIndex( |
|
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=exname |
|
) |
|
expected_sub = TimedeltaIndex( |
|
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=exname |
|
) |
|
|
|
tdi = tm.box_expected(tdi, box) |
|
expected = tm.box_expected(expected, box).astype(object, copy=False) |
|
expected_sub = tm.box_expected(expected_sub, box).astype(object, copy=False) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res = tdi + other |
|
tm.assert_equal(res, expected) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res2 = other + tdi |
|
tm.assert_equal(res2, expected) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res_sub = tdi - other |
|
tm.assert_equal(res_sub, expected_sub) |
|
|
|
def test_td64arr_add_sub_offset_array(self, box_with_array): |
|
|
|
box = box_with_array |
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"]) |
|
other = np.array([offsets.Hour(n=1), offsets.Minute(n=-2)]) |
|
|
|
expected = TimedeltaIndex( |
|
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer" |
|
) |
|
expected_sub = TimedeltaIndex( |
|
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer" |
|
) |
|
|
|
tdi = tm.box_expected(tdi, box) |
|
expected = tm.box_expected(expected, box).astype(object) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res = tdi + other |
|
tm.assert_equal(res, expected) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res2 = other + tdi |
|
tm.assert_equal(res2, expected) |
|
|
|
expected_sub = tm.box_expected(expected_sub, box_with_array).astype(object) |
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res_sub = tdi - other |
|
tm.assert_equal(res_sub, expected_sub) |
|
|
|
def test_td64arr_with_offset_series(self, names, box_with_array): |
|
|
|
box = box_with_array |
|
box2 = Series if box in [Index, tm.to_array, pd.array] else box |
|
exname = get_expected_name(box, names) |
|
|
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0]) |
|
other = Series([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1]) |
|
|
|
expected_add = Series( |
|
[tdi[n] + other[n] for n in range(len(tdi))], name=exname, dtype=object |
|
) |
|
obj = tm.box_expected(tdi, box) |
|
expected_add = tm.box_expected(expected_add, box2).astype(object) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res = obj + other |
|
tm.assert_equal(res, expected_add) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res2 = other + obj |
|
tm.assert_equal(res2, expected_add) |
|
|
|
expected_sub = Series( |
|
[tdi[n] - other[n] for n in range(len(tdi))], name=exname, dtype=object |
|
) |
|
expected_sub = tm.box_expected(expected_sub, box2).astype(object) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
res3 = obj - other |
|
tm.assert_equal(res3, expected_sub) |
|
|
|
@pytest.mark.parametrize("obox", [np.array, Index, Series]) |
|
def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): |
|
|
|
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"]) |
|
tdi = tm.box_expected(tdi, box_with_array) |
|
|
|
anchored = obox([offsets.MonthEnd(), offsets.Day(n=2)]) |
|
|
|
|
|
|
|
msg = "has incorrect type|cannot add the type MonthEnd" |
|
with pytest.raises(TypeError, match=msg): |
|
with tm.assert_produces_warning(PerformanceWarning): |
|
tdi + anchored |
|
with pytest.raises(TypeError, match=msg): |
|
with tm.assert_produces_warning(PerformanceWarning): |
|
anchored + tdi |
|
with pytest.raises(TypeError, match=msg): |
|
with tm.assert_produces_warning(PerformanceWarning): |
|
tdi - anchored |
|
with pytest.raises(TypeError, match=msg): |
|
with tm.assert_produces_warning(PerformanceWarning): |
|
anchored - tdi |
|
|
|
|
|
|
|
|
|
def test_td64arr_add_sub_object_array(self, box_with_array): |
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
tdi = timedelta_range("1 day", periods=3, freq="D") |
|
tdarr = tm.box_expected(tdi, box) |
|
|
|
other = np.array([Timedelta(days=1), offsets.Day(2), Timestamp("2000-01-04")]) |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
result = tdarr + other |
|
|
|
expected = Index( |
|
[Timedelta(days=2), Timedelta(days=4), Timestamp("2000-01-07")] |
|
) |
|
expected = tm.box_expected(expected, xbox).astype(object) |
|
tm.assert_equal(result, expected) |
|
|
|
msg = "unsupported operand type|cannot subtract a datelike" |
|
with pytest.raises(TypeError, match=msg): |
|
with tm.assert_produces_warning(PerformanceWarning): |
|
tdarr - other |
|
|
|
with tm.assert_produces_warning(PerformanceWarning): |
|
result = other - tdarr |
|
|
|
expected = Index([Timedelta(0), Timedelta(0), Timestamp("2000-01-01")]) |
|
expected = tm.box_expected(expected, xbox).astype(object) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
class TestTimedeltaArraylikeMulDivOps: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_td64arr_mul_int(self, box_with_array): |
|
idx = TimedeltaIndex(np.arange(5, dtype="int64")) |
|
idx = tm.box_expected(idx, box_with_array) |
|
|
|
result = idx * 1 |
|
tm.assert_equal(result, idx) |
|
|
|
result = 1 * idx |
|
tm.assert_equal(result, idx) |
|
|
|
def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array): |
|
rng = timedelta_range("1 days", "10 days", name="foo") |
|
rng = tm.box_expected(rng, box_with_array) |
|
msg = "|".join( |
|
[ |
|
"argument must be an integer", |
|
"cannot use operands with types dtype", |
|
"Cannot multiply with", |
|
] |
|
) |
|
with pytest.raises(TypeError, match=msg): |
|
rng * two_hours |
|
|
|
def test_tdi_mul_int_array_zerodim(self, box_with_array): |
|
rng5 = np.arange(5, dtype="int64") |
|
idx = TimedeltaIndex(rng5) |
|
expected = TimedeltaIndex(rng5 * 5) |
|
|
|
idx = tm.box_expected(idx, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = idx * np.array(5, dtype="int64") |
|
tm.assert_equal(result, expected) |
|
|
|
def test_tdi_mul_int_array(self, box_with_array): |
|
rng5 = np.arange(5, dtype="int64") |
|
idx = TimedeltaIndex(rng5) |
|
expected = TimedeltaIndex(rng5**2) |
|
|
|
idx = tm.box_expected(idx, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = idx * rng5 |
|
tm.assert_equal(result, expected) |
|
|
|
def test_tdi_mul_int_series(self, box_with_array): |
|
box = box_with_array |
|
xbox = Series if box in [Index, tm.to_array, pd.array] else box |
|
|
|
idx = TimedeltaIndex(np.arange(5, dtype="int64")) |
|
expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2) |
|
|
|
idx = tm.box_expected(idx, box) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = idx * Series(np.arange(5, dtype="int64")) |
|
tm.assert_equal(result, expected) |
|
|
|
def test_tdi_mul_float_series(self, box_with_array): |
|
box = box_with_array |
|
xbox = Series if box in [Index, tm.to_array, pd.array] else box |
|
|
|
idx = TimedeltaIndex(np.arange(5, dtype="int64")) |
|
idx = tm.box_expected(idx, box) |
|
|
|
rng5f = np.arange(5, dtype="float64") |
|
expected = TimedeltaIndex(rng5f * (rng5f + 1.0)) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = idx * Series(rng5f + 1.0) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
@pytest.mark.parametrize( |
|
"other", |
|
[ |
|
np.arange(1, 11), |
|
Index(np.arange(1, 11), np.int64), |
|
Index(range(1, 11), np.uint64), |
|
Index(range(1, 11), np.float64), |
|
pd.RangeIndex(1, 11), |
|
], |
|
ids=lambda x: type(x).__name__, |
|
) |
|
def test_tdi_rmul_arraylike(self, other, box_with_array): |
|
box = box_with_array |
|
|
|
tdi = TimedeltaIndex(["1 Day"] * 10) |
|
expected = timedelta_range("1 days", "10 days")._with_freq(None) |
|
|
|
tdi = tm.box_expected(tdi, box) |
|
xbox = get_upcast_box(tdi, other) |
|
|
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = other * tdi |
|
tm.assert_equal(result, expected) |
|
commute = tdi * other |
|
tm.assert_equal(commute, expected) |
|
|
|
|
|
|
|
|
|
def test_td64arr_div_nat_invalid(self, box_with_array): |
|
|
|
rng = timedelta_range("1 days", "10 days", name="foo") |
|
rng = tm.box_expected(rng, box_with_array) |
|
|
|
with pytest.raises(TypeError, match="unsupported operand type"): |
|
rng / NaT |
|
with pytest.raises(TypeError, match="Cannot divide NaTType by"): |
|
NaT / rng |
|
|
|
dt64nat = np.datetime64("NaT", "ns") |
|
msg = "|".join( |
|
[ |
|
|
|
"ufunc '(true_divide|divide)' cannot use operands", |
|
"cannot perform __r?truediv__", |
|
"Cannot divide datetime64 by TimedeltaArray", |
|
] |
|
) |
|
with pytest.raises(TypeError, match=msg): |
|
rng / dt64nat |
|
with pytest.raises(TypeError, match=msg): |
|
dt64nat / rng |
|
|
|
def test_td64arr_div_td64nat(self, box_with_array): |
|
|
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
rng = timedelta_range("1 days", "10 days") |
|
rng = tm.box_expected(rng, box) |
|
|
|
other = np.timedelta64("NaT") |
|
|
|
expected = np.array([np.nan] * 10) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = rng / other |
|
tm.assert_equal(result, expected) |
|
|
|
result = other / rng |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_div_int(self, box_with_array): |
|
idx = TimedeltaIndex(np.arange(5, dtype="int64")) |
|
idx = tm.box_expected(idx, box_with_array) |
|
|
|
result = idx / 1 |
|
tm.assert_equal(result, idx) |
|
|
|
with pytest.raises(TypeError, match="Cannot divide"): |
|
|
|
1 / idx |
|
|
|
def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array): |
|
|
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
rng = timedelta_range("1 days", "10 days", name="foo") |
|
expected = Index((np.arange(10) + 1) * 12, dtype=np.float64, name="foo") |
|
|
|
rng = tm.box_expected(rng, box) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = rng / two_hours |
|
tm.assert_equal(result, expected) |
|
|
|
result = two_hours / rng |
|
expected = 1 / expected |
|
tm.assert_equal(result, expected) |
|
|
|
@pytest.mark.parametrize("m", [1, 3, 10]) |
|
@pytest.mark.parametrize("unit", ["D", "h", "m", "s", "ms", "us", "ns"]) |
|
def test_td64arr_div_td64_scalar(self, m, unit, box_with_array): |
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
ser = Series([Timedelta(days=59)] * 3) |
|
ser[2] = np.nan |
|
flat = ser |
|
ser = tm.box_expected(ser, box) |
|
|
|
|
|
expected = Series([x / np.timedelta64(m, unit) for x in flat]) |
|
expected = tm.box_expected(expected, xbox) |
|
result = ser / np.timedelta64(m, unit) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in flat]) |
|
expected = tm.box_expected(expected, xbox) |
|
result = np.timedelta64(m, unit) / ser |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array): |
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
rng = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") |
|
expected = Index([12, np.nan, 24], dtype=np.float64, name="foo") |
|
|
|
rng = tm.box_expected(rng, box) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = rng / two_hours |
|
tm.assert_equal(result, expected) |
|
|
|
result = two_hours / rng |
|
expected = 1 / expected |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_div_td64_ndarray(self, box_with_array): |
|
|
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
rng = TimedeltaIndex(["1 days", NaT, "2 days"]) |
|
expected = Index([12, np.nan, 24], dtype=np.float64) |
|
|
|
rng = tm.box_expected(rng, box) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
other = np.array([2, 4, 2], dtype="m8[h]") |
|
result = rng / other |
|
tm.assert_equal(result, expected) |
|
|
|
result = rng / tm.box_expected(other, box) |
|
tm.assert_equal(result, expected) |
|
|
|
result = rng / other.astype(object) |
|
tm.assert_equal(result, expected.astype(object)) |
|
|
|
result = rng / list(other) |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
expected = 1 / expected |
|
result = other / rng |
|
tm.assert_equal(result, expected) |
|
|
|
result = tm.box_expected(other, box) / rng |
|
tm.assert_equal(result, expected) |
|
|
|
result = other.astype(object) / rng |
|
tm.assert_equal(result, expected) |
|
|
|
result = list(other) / rng |
|
tm.assert_equal(result, expected) |
|
|
|
def test_tdarr_div_length_mismatch(self, box_with_array): |
|
rng = TimedeltaIndex(["1 days", NaT, "2 days"]) |
|
mismatched = [1, 2, 3, 4] |
|
|
|
rng = tm.box_expected(rng, box_with_array) |
|
msg = "Cannot divide vectors|Unable to coerce to Series" |
|
for obj in [mismatched, mismatched[:2]]: |
|
|
|
for other in [obj, np.array(obj), Index(obj)]: |
|
with pytest.raises(ValueError, match=msg): |
|
rng / other |
|
with pytest.raises(ValueError, match=msg): |
|
other / rng |
|
|
|
def test_td64_div_object_mixed_result(self, box_with_array): |
|
|
|
|
|
orig = timedelta_range("1 Day", periods=3).insert(1, NaT) |
|
tdi = tm.box_expected(orig, box_with_array, transpose=False) |
|
|
|
other = np.array([orig[0], 1.5, 2.0, orig[2]], dtype=object) |
|
other = tm.box_expected(other, box_with_array, transpose=False) |
|
|
|
res = tdi / other |
|
|
|
expected = Index([1.0, np.timedelta64("NaT", "ns"), orig[0], 1.5], dtype=object) |
|
expected = tm.box_expected(expected, box_with_array, transpose=False) |
|
if isinstance(expected, NumpyExtensionArray): |
|
expected = expected.to_numpy() |
|
tm.assert_equal(res, expected) |
|
if box_with_array is DataFrame: |
|
|
|
assert isinstance(res.iloc[1, 0], np.timedelta64) |
|
|
|
res = tdi // other |
|
|
|
expected = Index([1, np.timedelta64("NaT", "ns"), orig[0], 1], dtype=object) |
|
expected = tm.box_expected(expected, box_with_array, transpose=False) |
|
if isinstance(expected, NumpyExtensionArray): |
|
expected = expected.to_numpy() |
|
tm.assert_equal(res, expected) |
|
if box_with_array is DataFrame: |
|
|
|
assert isinstance(res.iloc[1, 0], np.timedelta64) |
|
|
|
|
|
|
|
|
|
def test_td64arr_floordiv_td64arr_with_nat( |
|
self, box_with_array, using_array_manager |
|
): |
|
|
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
|
|
left = Series([1000, 222330, 30], dtype="timedelta64[ns]") |
|
right = Series([1000, 222330, None], dtype="timedelta64[ns]") |
|
|
|
left = tm.box_expected(left, box) |
|
right = tm.box_expected(right, box) |
|
|
|
expected = np.array([1.0, 1.0, np.nan], dtype=np.float64) |
|
expected = tm.box_expected(expected, xbox) |
|
if box is DataFrame and using_array_manager: |
|
|
|
|
|
|
|
expected[[0, 1]] = expected[[0, 1]].astype("int64") |
|
|
|
with tm.maybe_produces_warning( |
|
RuntimeWarning, box is pd.array, check_stacklevel=False |
|
): |
|
result = left // right |
|
|
|
tm.assert_equal(result, expected) |
|
|
|
|
|
with tm.maybe_produces_warning( |
|
RuntimeWarning, box is pd.array, check_stacklevel=False |
|
): |
|
result = np.asarray(left) // right |
|
tm.assert_equal(result, expected) |
|
|
|
@pytest.mark.filterwarnings("ignore:invalid value encountered:RuntimeWarning") |
|
def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td): |
|
|
|
box = box_with_array |
|
xbox = np.ndarray if box is pd.array else box |
|
td = Timedelta("5m3s") |
|
|
|
td1 = Series([td, td, NaT], dtype="m8[ns]") |
|
td1 = tm.box_expected(td1, box, transpose=False) |
|
|
|
expected = Series([0, 0, np.nan]) |
|
expected = tm.box_expected(expected, xbox, transpose=False) |
|
|
|
result = td1 // scalar_td |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
expected = Series([2, 2, np.nan]) |
|
expected = tm.box_expected(expected, xbox, transpose=False) |
|
|
|
result = scalar_td // td1 |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
result = td1.__rfloordiv__(scalar_td) |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_floordiv_int(self, box_with_array): |
|
idx = TimedeltaIndex(np.arange(5, dtype="int64")) |
|
idx = tm.box_expected(idx, box_with_array) |
|
result = idx // 1 |
|
tm.assert_equal(result, idx) |
|
|
|
pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*" |
|
with pytest.raises(TypeError, match=pattern): |
|
1 // idx |
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_td64arr_mod_tdscalar(self, box_with_array, three_days): |
|
tdi = timedelta_range("1 Day", "9 days") |
|
tdarr = tm.box_expected(tdi, box_with_array) |
|
|
|
expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = tdarr % three_days |
|
tm.assert_equal(result, expected) |
|
|
|
warn = None |
|
if box_with_array is DataFrame and isinstance(three_days, pd.DateOffset): |
|
warn = PerformanceWarning |
|
|
|
|
|
|
|
expected = expected.astype(object) |
|
|
|
with tm.assert_produces_warning(warn): |
|
result = divmod(tdarr, three_days) |
|
|
|
tm.assert_equal(result[1], expected) |
|
tm.assert_equal(result[0], tdarr // three_days) |
|
|
|
def test_td64arr_mod_int(self, box_with_array): |
|
tdi = timedelta_range("1 ns", "10 ns", periods=10) |
|
tdarr = tm.box_expected(tdi, box_with_array) |
|
|
|
expected = TimedeltaIndex(["1 ns", "0 ns"] * 5) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = tdarr % 2 |
|
tm.assert_equal(result, expected) |
|
|
|
msg = "Cannot divide int by" |
|
with pytest.raises(TypeError, match=msg): |
|
2 % tdarr |
|
|
|
result = divmod(tdarr, 2) |
|
tm.assert_equal(result[1], expected) |
|
tm.assert_equal(result[0], tdarr // 2) |
|
|
|
def test_td64arr_rmod_tdscalar(self, box_with_array, three_days): |
|
tdi = timedelta_range("1 Day", "9 days") |
|
tdarr = tm.box_expected(tdi, box_with_array) |
|
|
|
expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6 |
|
expected = TimedeltaIndex(expected) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = three_days % tdarr |
|
tm.assert_equal(result, expected) |
|
|
|
result = divmod(three_days, tdarr) |
|
tm.assert_equal(result[1], expected) |
|
tm.assert_equal(result[0], three_days // tdarr) |
|
|
|
|
|
|
|
|
|
def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td): |
|
td1 = Series([timedelta(minutes=5, seconds=3)] * 3) |
|
td1.iloc[2] = np.nan |
|
|
|
td1 = tm.box_expected(td1, box_with_array) |
|
|
|
|
|
|
|
|
|
pattern = "operate|unsupported|cannot|not supported" |
|
with pytest.raises(TypeError, match=pattern): |
|
td1 * scalar_td |
|
with pytest.raises(TypeError, match=pattern): |
|
scalar_td * td1 |
|
|
|
def test_td64arr_mul_too_short_raises(self, box_with_array): |
|
idx = TimedeltaIndex(np.arange(5, dtype="int64")) |
|
idx = tm.box_expected(idx, box_with_array) |
|
msg = "|".join( |
|
[ |
|
"cannot use operands with types dtype", |
|
"Cannot multiply with unequal lengths", |
|
"Unable to coerce to Series", |
|
] |
|
) |
|
with pytest.raises(TypeError, match=msg): |
|
|
|
idx * idx[:3] |
|
with pytest.raises(ValueError, match=msg): |
|
idx * np.array([1, 2]) |
|
|
|
def test_td64arr_mul_td64arr_raises(self, box_with_array): |
|
idx = TimedeltaIndex(np.arange(5, dtype="int64")) |
|
idx = tm.box_expected(idx, box_with_array) |
|
msg = "cannot use operands with types dtype" |
|
with pytest.raises(TypeError, match=msg): |
|
idx * idx |
|
|
|
|
|
|
|
|
|
def test_td64arr_mul_numeric_scalar(self, box_with_array, one): |
|
|
|
|
|
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") |
|
expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]") |
|
|
|
tdser = tm.box_expected(tdser, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = tdser * (-one) |
|
tm.assert_equal(result, expected) |
|
result = (-one) * tdser |
|
tm.assert_equal(result, expected) |
|
|
|
expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]") |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = tdser * (2 * one) |
|
tm.assert_equal(result, expected) |
|
result = (2 * one) * tdser |
|
tm.assert_equal(result, expected) |
|
|
|
@pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)]) |
|
def test_td64arr_div_numeric_scalar(self, box_with_array, two): |
|
|
|
|
|
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") |
|
expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]") |
|
|
|
tdser = tm.box_expected(tdser, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = tdser / two |
|
tm.assert_equal(result, expected) |
|
|
|
with pytest.raises(TypeError, match="Cannot divide"): |
|
two / tdser |
|
|
|
@pytest.mark.parametrize("two", [2, 2.0, np.array(2), np.array(2.0)]) |
|
def test_td64arr_floordiv_numeric_scalar(self, box_with_array, two): |
|
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") |
|
expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]") |
|
|
|
tdser = tm.box_expected(tdser, box_with_array) |
|
expected = tm.box_expected(expected, box_with_array) |
|
|
|
result = tdser // two |
|
tm.assert_equal(result, expected) |
|
|
|
with pytest.raises(TypeError, match="Cannot divide"): |
|
two // tdser |
|
|
|
@pytest.mark.parametrize( |
|
"vector", |
|
[np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])], |
|
ids=lambda x: type(x).__name__, |
|
) |
|
def test_td64arr_rmul_numeric_array( |
|
self, |
|
box_with_array, |
|
vector, |
|
any_real_numpy_dtype, |
|
): |
|
|
|
|
|
|
|
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") |
|
vector = vector.astype(any_real_numpy_dtype) |
|
|
|
expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]") |
|
|
|
tdser = tm.box_expected(tdser, box_with_array) |
|
xbox = get_upcast_box(tdser, vector) |
|
|
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = tdser * vector |
|
tm.assert_equal(result, expected) |
|
|
|
result = vector * tdser |
|
tm.assert_equal(result, expected) |
|
|
|
@pytest.mark.parametrize( |
|
"vector", |
|
[np.array([20, 30, 40]), Index([20, 30, 40]), Series([20, 30, 40])], |
|
ids=lambda x: type(x).__name__, |
|
) |
|
def test_td64arr_div_numeric_array( |
|
self, box_with_array, vector, any_real_numpy_dtype |
|
): |
|
|
|
|
|
|
|
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") |
|
vector = vector.astype(any_real_numpy_dtype) |
|
|
|
expected = Series(["2.95D", "1D 23h 12m", "NaT"], dtype="timedelta64[ns]") |
|
|
|
tdser = tm.box_expected(tdser, box_with_array) |
|
xbox = get_upcast_box(tdser, vector) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = tdser / vector |
|
tm.assert_equal(result, expected) |
|
|
|
pattern = "|".join( |
|
[ |
|
"true_divide'? cannot use operands", |
|
"cannot perform __div__", |
|
"cannot perform __truediv__", |
|
"unsupported operand", |
|
"Cannot divide", |
|
"ufunc 'divide' cannot use operands with types", |
|
] |
|
) |
|
with pytest.raises(TypeError, match=pattern): |
|
vector / tdser |
|
|
|
result = tdser / vector.astype(object) |
|
if box_with_array is DataFrame: |
|
expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))] |
|
expected = tm.box_expected(expected, xbox).astype(object) |
|
|
|
msg = "The 'downcast' keyword in fillna" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
expected[2] = expected[2].fillna( |
|
np.timedelta64("NaT", "ns"), downcast=False |
|
) |
|
else: |
|
expected = [tdser[n] / vector[n] for n in range(len(tdser))] |
|
expected = [ |
|
x if x is not NaT else np.timedelta64("NaT", "ns") for x in expected |
|
] |
|
if xbox is tm.to_array: |
|
expected = tm.to_array(expected).astype(object) |
|
else: |
|
expected = xbox(expected, dtype=object) |
|
|
|
tm.assert_equal(result, expected) |
|
|
|
with pytest.raises(TypeError, match=pattern): |
|
vector.astype(object) / tdser |
|
|
|
def test_td64arr_mul_int_series(self, box_with_array, names): |
|
|
|
box = box_with_array |
|
exname = get_expected_name(box, names) |
|
|
|
tdi = TimedeltaIndex( |
|
["0days", "1day", "2days", "3days", "4days"], name=names[0] |
|
) |
|
|
|
ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1]) |
|
|
|
expected = Series( |
|
["0days", "1day", "4days", "9days", "16days"], |
|
dtype="timedelta64[ns]", |
|
name=exname, |
|
) |
|
|
|
tdi = tm.box_expected(tdi, box) |
|
xbox = get_upcast_box(tdi, ser) |
|
|
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = ser * tdi |
|
tm.assert_equal(result, expected) |
|
|
|
result = tdi * ser |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
def test_float_series_rdiv_td64arr(self, box_with_array, names): |
|
|
|
box = box_with_array |
|
tdi = TimedeltaIndex( |
|
["0days", "1day", "2days", "3days", "4days"], name=names[0] |
|
) |
|
ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1]) |
|
|
|
xname = names[2] if box not in [tm.to_array, pd.array] else names[1] |
|
expected = Series( |
|
[tdi[n] / ser[n] for n in range(len(ser))], |
|
dtype="timedelta64[ns]", |
|
name=xname, |
|
) |
|
|
|
tdi = tm.box_expected(tdi, box) |
|
xbox = get_upcast_box(tdi, ser) |
|
expected = tm.box_expected(expected, xbox) |
|
|
|
result = ser.__rtruediv__(tdi) |
|
if box is DataFrame: |
|
assert result is NotImplemented |
|
else: |
|
tm.assert_equal(result, expected) |
|
|
|
def test_td64arr_all_nat_div_object_dtype_numeric(self, box_with_array): |
|
|
|
tdi = TimedeltaIndex([NaT, NaT]) |
|
|
|
left = tm.box_expected(tdi, box_with_array) |
|
right = np.array([2, 2.0], dtype=object) |
|
|
|
tdnat = np.timedelta64("NaT", "ns") |
|
expected = Index([tdnat] * 2, dtype=object) |
|
if box_with_array is not Index: |
|
expected = tm.box_expected(expected, box_with_array).astype(object) |
|
if box_with_array in [Series, DataFrame]: |
|
msg = "The 'downcast' keyword in fillna is deprecated" |
|
with tm.assert_produces_warning(FutureWarning, match=msg): |
|
expected = expected.fillna(tdnat, downcast=False) |
|
|
|
result = left / right |
|
tm.assert_equal(result, expected) |
|
|
|
result = left // right |
|
tm.assert_equal(result, expected) |
|
|
|
|
|
class TestTimedelta64ArrayLikeArithmetic: |
|
|
|
|
|
|
|
|
|
def test_td64arr_pow_invalid(self, scalar_td, box_with_array): |
|
td1 = Series([timedelta(minutes=5, seconds=3)] * 3) |
|
td1.iloc[2] = np.nan |
|
|
|
td1 = tm.box_expected(td1, box_with_array) |
|
|
|
|
|
|
|
|
|
pattern = "operate|unsupported|cannot|not supported" |
|
with pytest.raises(TypeError, match=pattern): |
|
scalar_td**td1 |
|
|
|
with pytest.raises(TypeError, match=pattern): |
|
td1**scalar_td |
|
|
|
|
|
def test_add_timestamp_to_timedelta(): |
|
|
|
timestamp = Timestamp("2021-01-01") |
|
result = timestamp + timedelta_range("0s", "1s", periods=31) |
|
expected = DatetimeIndex( |
|
[ |
|
timestamp |
|
+ ( |
|
pd.to_timedelta("0.033333333s") * i |
|
+ pd.to_timedelta("0.000000001s") * divmod(i, 3)[0] |
|
) |
|
for i in range(31) |
|
] |
|
) |
|
tm.assert_index_equal(result, expected) |
|
|