jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
from collections.abc import Callable
from typing import Any, Literal, TypeAlias, TypeVar, overload
import numpy as np
from numpy import dtype, float32, float64, int64
from numpy._typing import (
ArrayLike,
DTypeLike,
NDArray,
_ArrayLikeFloat_co,
_ArrayLikeInt_co,
_BoolCodes,
_DoubleCodes,
_DTypeLike,
_DTypeLikeBool,
_Float32Codes,
_Float64Codes,
_FloatLike_co,
_Int8Codes,
_Int16Codes,
_Int32Codes,
_Int64Codes,
_IntPCodes,
_ShapeLike,
_SingleCodes,
_SupportsDType,
_UInt8Codes,
_UInt16Codes,
_UInt32Codes,
_UInt64Codes,
_UIntPCodes,
)
from numpy.random import BitGenerator, RandomState, SeedSequence
_IntegerT = TypeVar("_IntegerT", bound=np.integer)
_DTypeLikeFloat32: TypeAlias = (
dtype[float32]
| _SupportsDType[dtype[float32]]
| type[float32]
| _Float32Codes
| _SingleCodes
)
_DTypeLikeFloat64: TypeAlias = (
dtype[float64]
| _SupportsDType[dtype[float64]]
| type[float]
| type[float64]
| _Float64Codes
| _DoubleCodes
)
class Generator:
def __init__(self, bit_generator: BitGenerator) -> None: ...
def __repr__(self) -> str: ...
def __str__(self) -> str: ...
def __getstate__(self) -> None: ...
def __setstate__(self, state: dict[str, Any] | None) -> None: ...
def __reduce__(self) -> tuple[
Callable[[BitGenerator], Generator],
tuple[BitGenerator],
None]: ...
@property
def bit_generator(self) -> BitGenerator: ...
def spawn(self, n_children: int) -> list[Generator]: ...
def bytes(self, length: int) -> bytes: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
out: None = ...,
) -> float: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: _ShapeLike = ...,
) -> NDArray[float64]: ...
@overload
def standard_normal( # type: ignore[misc]
self,
*,
out: NDArray[float64] = ...,
) -> NDArray[float64]: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat32 = ...,
out: NDArray[float32] | None = ...,
) -> NDArray[float32]: ...
@overload
def standard_normal( # type: ignore[misc]
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat64 = ...,
out: NDArray[float64] | None = ...,
) -> NDArray[float64]: ...
@overload
def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ...
@overload
def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ...
@overload
def standard_exponential( # type: ignore[misc]
self,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
method: Literal["zig", "inv"] = ...,
out: None = ...,
) -> float: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
) -> NDArray[float64]: ...
@overload
def standard_exponential(
self,
*,
out: NDArray[float64] = ...,
) -> NDArray[float64]: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
*,
method: Literal["zig", "inv"] = ...,
out: NDArray[float64] | None = ...,
) -> NDArray[float64]: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat32 = ...,
method: Literal["zig", "inv"] = ...,
out: NDArray[float32] | None = ...,
) -> NDArray[float32]: ...
@overload
def standard_exponential(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat64 = ...,
method: Literal["zig", "inv"] = ...,
out: NDArray[float64] | None = ...,
) -> NDArray[float64]: ...
@overload
def random( # type: ignore[misc]
self,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
out: None = ...,
) -> float: ...
@overload
def random(
self,
*,
out: NDArray[float64] = ...,
) -> NDArray[float64]: ...
@overload
def random(
self,
size: _ShapeLike = ...,
*,
out: NDArray[float64] | None = ...,
) -> NDArray[float64]: ...
@overload
def random(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat32 = ...,
out: NDArray[float32] | None = ...,
) -> NDArray[float32]: ...
@overload
def random(
self,
size: _ShapeLike = ...,
dtype: _DTypeLikeFloat64 = ...,
out: NDArray[float64] | None = ...,
) -> NDArray[float64]: ...
@overload
def beta(
self,
a: _FloatLike_co,
b: _FloatLike_co,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def beta(
self,
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def exponential(self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...) -> NDArray[float64]: ...
#
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
endpoint: bool = False,
) -> np.int64: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: type[bool],
endpoint: bool = False,
) -> bool: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: type[int],
endpoint: bool = False,
) -> int: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _DTypeLike[np.bool] | _BoolCodes,
endpoint: bool = False,
) -> np.bool: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _DTypeLike[_IntegerT],
endpoint: bool = False,
) -> _IntegerT: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
endpoint: bool = False,
) -> NDArray[np.int64]: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _DTypeLikeBool,
endpoint: bool = False,
) -> NDArray[np.bool]: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _DTypeLike[_IntegerT],
endpoint: bool = False,
) -> NDArray[_IntegerT]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _Int8Codes,
endpoint: bool = False,
) -> np.int8: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _Int8Codes,
endpoint: bool = False,
) -> NDArray[np.int8]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _UInt8Codes,
endpoint: bool = False,
) -> np.uint8: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _UInt8Codes,
endpoint: bool = False,
) -> NDArray[np.uint8]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _Int16Codes,
endpoint: bool = False,
) -> np.int16: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _Int16Codes,
endpoint: bool = False,
) -> NDArray[np.int16]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _UInt16Codes,
endpoint: bool = False,
) -> np.uint16: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _UInt16Codes,
endpoint: bool = False,
) -> NDArray[np.uint16]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _Int32Codes,
endpoint: bool = False,
) -> np.int32: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _Int32Codes,
endpoint: bool = False,
) -> NDArray[np.int32]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _UInt32Codes,
endpoint: bool = False,
) -> np.uint32: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _UInt32Codes,
endpoint: bool = False,
) -> NDArray[np.uint32]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _UInt64Codes,
endpoint: bool = False,
) -> np.uint64: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _UInt64Codes,
endpoint: bool = False,
) -> NDArray[np.uint64]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _IntPCodes,
endpoint: bool = False,
) -> np.intp: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _IntPCodes,
endpoint: bool = False,
) -> NDArray[np.intp]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
*,
dtype: _UIntPCodes,
endpoint: bool = False,
) -> np.uintp: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
*,
dtype: _UIntPCodes,
endpoint: bool = False,
) -> NDArray[np.uintp]: ...
@overload
def integers(
self,
low: int,
high: int | None = None,
size: None = None,
dtype: DTypeLike = ...,
endpoint: bool = False,
) -> Any: ...
@overload
def integers(
self,
low: _ArrayLikeInt_co,
high: _ArrayLikeInt_co | None = None,
size: _ShapeLike | None = None,
dtype: DTypeLike = ...,
endpoint: bool = False,
) -> NDArray[Any]: ...
# TODO: Use a TypeVar _T here to get away from Any output?
# Should be int->NDArray[int64], ArrayLike[_T] -> _T | NDArray[Any]
@overload
def choice(
self,
a: int,
size: None = ...,
replace: bool = ...,
p: _ArrayLikeFloat_co | None = ...,
axis: int = ...,
shuffle: bool = ...,
) -> int: ...
@overload
def choice(
self,
a: int,
size: _ShapeLike = ...,
replace: bool = ...,
p: _ArrayLikeFloat_co | None = ...,
axis: int = ...,
shuffle: bool = ...,
) -> NDArray[int64]: ...
@overload
def choice(
self,
a: ArrayLike,
size: None = ...,
replace: bool = ...,
p: _ArrayLikeFloat_co | None = ...,
axis: int = ...,
shuffle: bool = ...,
) -> Any: ...
@overload
def choice(
self,
a: ArrayLike,
size: _ShapeLike = ...,
replace: bool = ...,
p: _ArrayLikeFloat_co | None = ...,
axis: int = ...,
shuffle: bool = ...,
) -> NDArray[Any]: ...
@overload
def uniform(
self,
low: _FloatLike_co = ...,
high: _FloatLike_co = ...,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def uniform(
self,
low: _ArrayLikeFloat_co = ...,
high: _ArrayLikeFloat_co = ...,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def normal(
self,
loc: _FloatLike_co = ...,
scale: _FloatLike_co = ...,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def normal(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def standard_gamma( # type: ignore[misc]
self,
shape: _FloatLike_co,
size: None = ...,
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
out: None = ...,
) -> float: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
*,
out: NDArray[float64] = ...,
) -> NDArray[float64]: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...,
dtype: _DTypeLikeFloat32 = ...,
out: NDArray[float32] | None = ...,
) -> NDArray[float32]: ...
@overload
def standard_gamma(
self,
shape: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...,
dtype: _DTypeLikeFloat64 = ...,
out: NDArray[float64] | None = ...,
) -> NDArray[float64]: ...
@overload
def gamma(
self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...
) -> float: ... # type: ignore[misc]
@overload
def gamma(
self,
shape: _ArrayLikeFloat_co,
scale: _ArrayLikeFloat_co = ...,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def f(
self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...
) -> float: ... # type: ignore[misc]
@overload
def f(
self,
dfnum: _ArrayLikeFloat_co,
dfden: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def noncentral_f(
self,
dfnum: _FloatLike_co,
dfden: _FloatLike_co,
nonc: _FloatLike_co, size: None = ...
) -> float: ... # type: ignore[misc]
@overload
def noncentral_f(
self,
dfnum: _ArrayLikeFloat_co,
dfden: _ArrayLikeFloat_co,
nonc: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def chisquare(
self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def noncentral_chisquare(
self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...
) -> float: ... # type: ignore[misc]
@overload
def noncentral_chisquare(
self,
df: _ArrayLikeFloat_co,
nonc: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def standard_t(
self, df: _ArrayLikeFloat_co, size: None = ...
) -> NDArray[float64]: ...
@overload
def standard_t(
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
) -> NDArray[float64]: ...
@overload
def vonmises(
self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...
) -> float: ... # type: ignore[misc]
@overload
def vonmises(
self,
mu: _ArrayLikeFloat_co,
kappa: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def pareto(
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def weibull(
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def power(
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
@overload
def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ...
@overload
def laplace(
self,
loc: _FloatLike_co = ...,
scale: _FloatLike_co = ...,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def laplace(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def gumbel(
self,
loc: _FloatLike_co = ...,
scale: _FloatLike_co = ...,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def gumbel(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def logistic(
self,
loc: _FloatLike_co = ...,
scale: _FloatLike_co = ...,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def logistic(
self,
loc: _ArrayLikeFloat_co = ...,
scale: _ArrayLikeFloat_co = ...,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def lognormal(
self,
mean: _FloatLike_co = ...,
sigma: _FloatLike_co = ...,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def lognormal(
self,
mean: _ArrayLikeFloat_co = ...,
sigma: _ArrayLikeFloat_co = ...,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
@overload
def rayleigh(
self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def wald(
self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...
) -> float: ... # type: ignore[misc]
@overload
def wald(
self,
mean: _ArrayLikeFloat_co,
scale: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
@overload
def triangular(
self,
left: _FloatLike_co,
mode: _FloatLike_co,
right: _FloatLike_co,
size: None = ...,
) -> float: ... # type: ignore[misc]
@overload
def triangular(
self,
left: _ArrayLikeFloat_co,
mode: _ArrayLikeFloat_co,
right: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...,
) -> NDArray[float64]: ...
@overload
def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def binomial(
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[int64]: ...
@overload
def negative_binomial(
self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...
) -> int: ... # type: ignore[misc]
@overload
def negative_binomial(
self,
n: _ArrayLikeFloat_co,
p: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...
) -> NDArray[int64]: ...
@overload
def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc]
@overload
def poisson(
self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
) -> NDArray[int64]: ...
@overload
def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def zipf(
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[int64]: ...
@overload
def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def geometric(
self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[int64]: ...
@overload
def hypergeometric(
self, ngood: int, nbad: int, nsample: int, size: None = ...
) -> int: ... # type: ignore[misc]
@overload
def hypergeometric(
self,
ngood: _ArrayLikeInt_co,
nbad: _ArrayLikeInt_co,
nsample: _ArrayLikeInt_co,
size: _ShapeLike | None = ...,
) -> NDArray[int64]: ...
@overload
def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
@overload
def logseries(
self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[int64]: ...
def multivariate_normal(
self,
mean: _ArrayLikeFloat_co,
cov: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...,
check_valid: Literal["warn", "raise", "ignore"] = ...,
tol: float = ...,
*,
method: Literal["svd", "eigh", "cholesky"] = ...,
) -> NDArray[float64]: ...
def multinomial(
self, n: _ArrayLikeInt_co,
pvals: _ArrayLikeFloat_co,
size: _ShapeLike | None = ...
) -> NDArray[int64]: ...
def multivariate_hypergeometric(
self,
colors: _ArrayLikeInt_co,
nsample: int,
size: _ShapeLike | None = ...,
method: Literal["marginals", "count"] = ...,
) -> NDArray[int64]: ...
def dirichlet(
self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
) -> NDArray[float64]: ...
def permuted(
self, x: ArrayLike, *, axis: int | None = ..., out: NDArray[Any] | None = ...
) -> NDArray[Any]: ...
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
def default_rng(
seed: _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator | RandomState | None = ...
) -> Generator: ...