jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
from collections.abc import Iterable
from typing import (
Any,
NamedTuple,
Never,
SupportsIndex,
SupportsInt,
TypeAlias,
TypeVar,
overload,
)
from typing import Literal as L
import numpy as np
from numpy import (
complex128,
complexfloating,
float64,
# other
floating,
int32,
object_,
signedinteger,
timedelta64,
unsignedinteger,
# re-exports
vecdot,
)
from numpy._core.fromnumeric import matrix_transpose
from numpy._core.numeric import tensordot
from numpy._typing import (
ArrayLike,
DTypeLike,
NDArray,
_ArrayLike,
_ArrayLikeBool_co,
_ArrayLikeComplex_co,
_ArrayLikeFloat_co,
_ArrayLikeInt_co,
_ArrayLikeObject_co,
_ArrayLikeTD64_co,
_ArrayLikeUInt_co,
)
from numpy.linalg import LinAlgError
__all__ = [
"matrix_power",
"solve",
"tensorsolve",
"tensorinv",
"inv",
"cholesky",
"eigvals",
"eigvalsh",
"pinv",
"slogdet",
"det",
"svd",
"svdvals",
"eig",
"eigh",
"lstsq",
"norm",
"qr",
"cond",
"matrix_rank",
"LinAlgError",
"multi_dot",
"trace",
"diagonal",
"cross",
"outer",
"tensordot",
"matmul",
"matrix_transpose",
"matrix_norm",
"vector_norm",
"vecdot",
]
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
###
fortran_int = np.intc
class EigResult(NamedTuple):
eigenvalues: NDArray[Any]
eigenvectors: NDArray[Any]
class EighResult(NamedTuple):
eigenvalues: NDArray[Any]
eigenvectors: NDArray[Any]
class QRResult(NamedTuple):
Q: NDArray[Any]
R: NDArray[Any]
class SlogdetResult(NamedTuple):
# TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
# a `(x.ndim - 2)`` dimensionl arrays otherwise
sign: Any
logabsdet: Any
class SVDResult(NamedTuple):
U: NDArray[Any]
S: NDArray[Any]
Vh: NDArray[Any]
@overload
def tensorsolve(
a: _ArrayLikeInt_co,
b: _ArrayLikeInt_co,
axes: Iterable[int] | None = ...,
) -> NDArray[float64]: ...
@overload
def tensorsolve(
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
axes: Iterable[int] | None = ...,
) -> NDArray[floating]: ...
@overload
def tensorsolve(
a: _ArrayLikeComplex_co,
b: _ArrayLikeComplex_co,
axes: Iterable[int] | None = ...,
) -> NDArray[complexfloating]: ...
@overload
def solve(
a: _ArrayLikeInt_co,
b: _ArrayLikeInt_co,
) -> NDArray[float64]: ...
@overload
def solve(
a: _ArrayLikeFloat_co,
b: _ArrayLikeFloat_co,
) -> NDArray[floating]: ...
@overload
def solve(
a: _ArrayLikeComplex_co,
b: _ArrayLikeComplex_co,
) -> NDArray[complexfloating]: ...
@overload
def tensorinv(
a: _ArrayLikeInt_co,
ind: int = ...,
) -> NDArray[float64]: ...
@overload
def tensorinv(
a: _ArrayLikeFloat_co,
ind: int = ...,
) -> NDArray[floating]: ...
@overload
def tensorinv(
a: _ArrayLikeComplex_co,
ind: int = ...,
) -> NDArray[complexfloating]: ...
@overload
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
@overload
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ...
@overload
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
# TODO: The supported input and output dtypes are dependent on the value of `n`.
# For example: `n < 0` always casts integer types to float64
def matrix_power(
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
n: SupportsIndex,
) -> NDArray[Any]: ...
@overload
def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ...
@overload
def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ...
@overload
def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ...
@overload
def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ...
@overload
def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
@overload
def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ...
@overload
def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ...
@overload
def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ...
@overload
def outer(
x1: _ArrayLikeComplex_co,
x2: _ArrayLikeComplex_co,
) -> NDArray[complexfloating]: ...
@overload
def outer(
x1: _ArrayLikeTD64_co,
x2: _ArrayLikeTD64_co,
out: None = ...,
) -> NDArray[timedelta64]: ...
@overload
def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
@overload
def outer(
x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
) -> _ArrayT: ...
@overload
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
@overload
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
@overload
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ...
@overload
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
@overload
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
@overload
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ...
@overload
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
@overload
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
@overload
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
@overload
def eigh(
a: _ArrayLikeInt_co,
UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def eigh(
a: _ArrayLikeFloat_co,
UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def eigh(
a: _ArrayLikeComplex_co,
UPLO: L["L", "U", "l", "u"] = ...,
) -> EighResult: ...
@overload
def svd(
a: _ArrayLikeInt_co,
full_matrices: bool = ...,
compute_uv: L[True] = ...,
hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
a: _ArrayLikeFloat_co,
full_matrices: bool = ...,
compute_uv: L[True] = ...,
hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
a: _ArrayLikeComplex_co,
full_matrices: bool = ...,
compute_uv: L[True] = ...,
hermitian: bool = ...,
) -> SVDResult: ...
@overload
def svd(
a: _ArrayLikeInt_co,
full_matrices: bool = ...,
compute_uv: L[False] = ...,
hermitian: bool = ...,
) -> NDArray[float64]: ...
@overload
def svd(
a: _ArrayLikeComplex_co,
full_matrices: bool = ...,
compute_uv: L[False] = ...,
hermitian: bool = ...,
) -> NDArray[floating]: ...
def svdvals(
x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
) -> NDArray[floating]: ...
# TODO: Returns a scalar for 2D arrays and
# a `(x.ndim - 2)`` dimensionl array otherwise
def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ...
# TODO: Returns `int` for <2D arrays and `intp` otherwise
def matrix_rank(
A: _ArrayLikeComplex_co,
tol: _ArrayLikeFloat_co | None = ...,
hermitian: bool = ...,
*,
rtol: _ArrayLikeFloat_co | None = ...,
) -> Any: ...
@overload
def pinv(
a: _ArrayLikeInt_co,
rcond: _ArrayLikeFloat_co = ...,
hermitian: bool = ...,
) -> NDArray[float64]: ...
@overload
def pinv(
a: _ArrayLikeFloat_co,
rcond: _ArrayLikeFloat_co = ...,
hermitian: bool = ...,
) -> NDArray[floating]: ...
@overload
def pinv(
a: _ArrayLikeComplex_co,
rcond: _ArrayLikeFloat_co = ...,
hermitian: bool = ...,
) -> NDArray[complexfloating]: ...
# TODO: Returns a 2-tuple of scalars for 2D arrays and
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
# TODO: Returns a 2-tuple of scalars for 2D arrays and
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
def det(a: _ArrayLikeComplex_co) -> Any: ...
@overload
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[
NDArray[float64],
NDArray[float64],
int32,
NDArray[float64],
]: ...
@overload
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[
NDArray[floating],
NDArray[floating],
int32,
NDArray[floating],
]: ...
@overload
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[
NDArray[complexfloating],
NDArray[floating],
int32,
NDArray[floating],
]: ...
@overload
def norm(
x: ArrayLike,
ord: float | L["fro", "nuc"] | None = ...,
axis: None = ...,
keepdims: bool = ...,
) -> floating: ...
@overload
def norm(
x: ArrayLike,
ord: float | L["fro", "nuc"] | None = ...,
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
keepdims: bool = ...,
) -> Any: ...
@overload
def matrix_norm(
x: ArrayLike,
/,
*,
ord: float | L["fro", "nuc"] | None = ...,
keepdims: bool = ...,
) -> floating: ...
@overload
def matrix_norm(
x: ArrayLike,
/,
*,
ord: float | L["fro", "nuc"] | None = ...,
keepdims: bool = ...,
) -> Any: ...
@overload
def vector_norm(
x: ArrayLike,
/,
*,
axis: None = ...,
ord: float | None = ...,
keepdims: bool = ...,
) -> floating: ...
@overload
def vector_norm(
x: ArrayLike,
/,
*,
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
ord: float | None = ...,
keepdims: bool = ...,
) -> Any: ...
# TODO: Returns a scalar or array
def multi_dot(
arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
*,
out: NDArray[Any] | None = ...,
) -> Any: ...
def diagonal(
x: ArrayLike, # >= 2D array
/,
*,
offset: SupportsIndex = ...,
) -> NDArray[Any]: ...
def trace(
x: ArrayLike, # >= 2D array
/,
*,
offset: SupportsIndex = ...,
dtype: DTypeLike = ...,
) -> Any: ...
@overload
def cross(
x1: _ArrayLikeUInt_co,
x2: _ArrayLikeUInt_co,
/,
*,
axis: int = ...,
) -> NDArray[unsignedinteger]: ...
@overload
def cross(
x1: _ArrayLikeInt_co,
x2: _ArrayLikeInt_co,
/,
*,
axis: int = ...,
) -> NDArray[signedinteger]: ...
@overload
def cross(
x1: _ArrayLikeFloat_co,
x2: _ArrayLikeFloat_co,
/,
*,
axis: int = ...,
) -> NDArray[floating]: ...
@overload
def cross(
x1: _ArrayLikeComplex_co,
x2: _ArrayLikeComplex_co,
/,
*,
axis: int = ...,
) -> NDArray[complexfloating]: ...
@overload
def matmul(
x1: _ArrayLikeInt_co,
x2: _ArrayLikeInt_co,
) -> NDArray[signedinteger]: ...
@overload
def matmul(
x1: _ArrayLikeUInt_co,
x2: _ArrayLikeUInt_co,
) -> NDArray[unsignedinteger]: ...
@overload
def matmul(
x1: _ArrayLikeFloat_co,
x2: _ArrayLikeFloat_co,
) -> NDArray[floating]: ...
@overload
def matmul(
x1: _ArrayLikeComplex_co,
x2: _ArrayLikeComplex_co,
) -> NDArray[complexfloating]: ...