|
"""Bethe Hessian or deformed Laplacian matrix of graphs.""" |
|
|
|
import networkx as nx |
|
from networkx.utils import not_implemented_for |
|
|
|
__all__ = ["bethe_hessian_matrix"] |
|
|
|
|
|
@not_implemented_for("directed") |
|
@not_implemented_for("multigraph") |
|
@nx._dispatchable |
|
def bethe_hessian_matrix(G, r=None, nodelist=None): |
|
r"""Returns the Bethe Hessian matrix of G. |
|
|
|
The Bethe Hessian is a family of matrices parametrized by r, defined as |
|
H(r) = (r^2 - 1) I - r A + D where A is the adjacency matrix, D is the |
|
diagonal matrix of node degrees, and I is the identify matrix. It is equal |
|
to the graph laplacian when the regularizer r = 1. |
|
|
|
The default choice of regularizer should be the ratio [2]_ |
|
|
|
.. math:: |
|
r_m = \left(\sum k_i \right)^{-1}\left(\sum k_i^2 \right) - 1 |
|
|
|
Parameters |
|
---------- |
|
G : Graph |
|
A NetworkX graph |
|
r : float |
|
Regularizer parameter |
|
nodelist : list, optional |
|
The rows and columns are ordered according to the nodes in nodelist. |
|
If nodelist is None, then the ordering is produced by ``G.nodes()``. |
|
|
|
Returns |
|
------- |
|
H : scipy.sparse.csr_array |
|
The Bethe Hessian matrix of `G`, with parameter `r`. |
|
|
|
Examples |
|
-------- |
|
>>> k = [3, 2, 2, 1, 0] |
|
>>> G = nx.havel_hakimi_graph(k) |
|
>>> H = nx.bethe_hessian_matrix(G) |
|
>>> H.toarray() |
|
array([[ 3.5625, -1.25 , -1.25 , -1.25 , 0. ], |
|
[-1.25 , 2.5625, -1.25 , 0. , 0. ], |
|
[-1.25 , -1.25 , 2.5625, 0. , 0. ], |
|
[-1.25 , 0. , 0. , 1.5625, 0. ], |
|
[ 0. , 0. , 0. , 0. , 0.5625]]) |
|
|
|
See Also |
|
-------- |
|
bethe_hessian_spectrum |
|
adjacency_matrix |
|
laplacian_matrix |
|
|
|
References |
|
---------- |
|
.. [1] A. Saade, F. Krzakala and L. Zdeborová |
|
"Spectral Clustering of Graphs with the Bethe Hessian", |
|
Advances in Neural Information Processing Systems, 2014. |
|
.. [2] C. M. Le, E. Levina |
|
"Estimating the number of communities in networks by spectral methods" |
|
arXiv:1507.00827, 2015. |
|
""" |
|
import scipy as sp |
|
|
|
if nodelist is None: |
|
nodelist = list(G) |
|
if r is None: |
|
r = sum(d**2 for v, d in nx.degree(G)) / sum(d for v, d in nx.degree(G)) - 1 |
|
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, format="csr") |
|
n, m = A.shape |
|
|
|
D = sp.sparse.csr_array(sp.sparse.spdiags(A.sum(axis=1), 0, m, n, format="csr")) |
|
|
|
I = sp.sparse.csr_array(sp.sparse.eye(m, n, format="csr")) |
|
return (r**2 - 1) * I - r * A + D |
|
|