|
""" |
|
********** |
|
Matplotlib |
|
********** |
|
|
|
Draw networks with matplotlib. |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.complete_graph(5) |
|
>>> nx.draw(G) |
|
|
|
See Also |
|
-------- |
|
- :doc:`matplotlib <matplotlib:index>` |
|
- :func:`matplotlib.pyplot.scatter` |
|
- :obj:`matplotlib.patches.FancyArrowPatch` |
|
""" |
|
|
|
import collections |
|
import itertools |
|
from numbers import Number |
|
|
|
import networkx as nx |
|
|
|
__all__ = [ |
|
"display", |
|
"apply_matplotlib_colors", |
|
"draw", |
|
"draw_networkx", |
|
"draw_networkx_nodes", |
|
"draw_networkx_edges", |
|
"draw_networkx_labels", |
|
"draw_networkx_edge_labels", |
|
"draw_bipartite", |
|
"draw_circular", |
|
"draw_kamada_kawai", |
|
"draw_random", |
|
"draw_spectral", |
|
"draw_spring", |
|
"draw_planar", |
|
"draw_shell", |
|
"draw_forceatlas2", |
|
] |
|
|
|
|
|
def apply_matplotlib_colors( |
|
G, src_attr, dest_attr, map, vmin=None, vmax=None, nodes=True |
|
): |
|
""" |
|
Apply colors from a matplotlib colormap to a graph. |
|
|
|
Reads values from the `src_attr` and use a matplotlib colormap |
|
to produce a color. Write the color to `dest_attr`. |
|
|
|
Parameters |
|
---------- |
|
G : nx.Graph |
|
The graph to read and compute colors for. |
|
|
|
src_attr : str or other attribute name |
|
The name of the attribute to read from the graph. |
|
|
|
dest_attr : str or other attribute name |
|
The name of the attribute to write to on the graph. |
|
|
|
map : matplotlib.colormap |
|
The matplotlib colormap to use. |
|
|
|
vmin : float, default None |
|
The minimum value for scaling the colormap. If `None`, find the |
|
minimum value of `src_attr`. |
|
|
|
vmax : float, default None |
|
The maximum value for scaling the colormap. If `None`, find the |
|
maximum value of `src_attr`. |
|
|
|
nodes : bool, default True |
|
Whether the attribute names are edge attributes or node attributes. |
|
""" |
|
import matplotlib as mpl |
|
|
|
if nodes: |
|
type_iter = G.nodes() |
|
elif G.is_multigraph(): |
|
type_iter = G.edges(keys=True) |
|
else: |
|
type_iter = G.edges() |
|
|
|
if vmin is None or vmax is None: |
|
vals = [type_iter[a][src_attr] for a in type_iter] |
|
if vmin is None: |
|
vmin = min(vals) |
|
if vmax is None: |
|
vmax = max(vals) |
|
|
|
mapper = mpl.cm.ScalarMappable(cmap=map) |
|
mapper.set_clim(vmin, vmax) |
|
|
|
def do_map(x): |
|
|
|
return tuple(float(x) for x in mapper.to_rgba(x)) |
|
|
|
if nodes: |
|
nx.set_node_attributes( |
|
G, {n: do_map(G.nodes[n][src_attr]) for n in G.nodes()}, dest_attr |
|
) |
|
else: |
|
nx.set_edge_attributes( |
|
G, {e: do_map(G.edges[e][src_attr]) for e in type_iter}, dest_attr |
|
) |
|
|
|
|
|
def display( |
|
G, |
|
canvas=None, |
|
**kwargs, |
|
): |
|
"""Draw the graph G. |
|
|
|
Draw the graph as a collection of nodes connected by edges. |
|
The exact details of what the graph looks like are controled by the below |
|
attributes. All nodes and nodes at the end of visible edges must have a |
|
position set, but nearly all other node and edge attributes are options and |
|
nodes or edges missing the attribute will use the default listed below. A more |
|
complete discription of each parameter is given below this summary. |
|
|
|
.. list-table:: Default Visualization Attributes |
|
:widths: 25 25 50 |
|
:header-rows: 1 |
|
|
|
* - Parameter |
|
- Default Attribute |
|
- Default Value |
|
* - pos |
|
- `"pos"` |
|
- If there is not position, a layout will be calculated with `nx.spring_layout`. |
|
* - node_visible |
|
- `"visible"` |
|
- True |
|
* - node_color |
|
- `"color"` |
|
- #1f78b4 |
|
* - node_size |
|
- `"size"` |
|
- 300 |
|
* - node_label |
|
- `"label"` |
|
- Dict describing the node label. Defaults create a black text with |
|
the node name as the label. The dict respects these keys and defaults: |
|
|
|
* size : 12 |
|
* color : black |
|
* family : sans serif |
|
* weight : normal |
|
* alpha : 1.0 |
|
* h_align : center |
|
* v_align : center |
|
* bbox : Dict describing a `matplotlib.patches.FancyBboxPatch`. |
|
Default is None. |
|
|
|
* - node_shape |
|
- `"shape"` |
|
- "o" |
|
* - node_alpha |
|
- `"alpha"` |
|
- 1.0 |
|
* - node_border_width |
|
- `"border_width"` |
|
- 1.0 |
|
* - node_border_color |
|
- `"border_color"` |
|
- Matching node_color |
|
* - edge_visible |
|
- `"visible"` |
|
- True |
|
* - edge_width |
|
- `"width"` |
|
- 1.0 |
|
* - edge_color |
|
- `"color"` |
|
- Black (#000000) |
|
* - edge_label |
|
- `"label"` |
|
- Dict describing the edge label. Defaults create black text with a |
|
white bounding box. The dictionary respects these keys and defaults: |
|
|
|
* size : 12 |
|
* color : black |
|
* family : sans serif |
|
* weight : normal |
|
* alpha : 1.0 |
|
* bbox : Dict describing a `matplotlib.patches.FancyBboxPatch`. |
|
Default {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)} |
|
* h_align : "center" |
|
* v_align : "center" |
|
* pos : 0.5 |
|
* rotate : True |
|
|
|
* - edge_style |
|
- `"style"` |
|
- "-" |
|
* - edge_alpha |
|
- `"alpha"` |
|
- 1.0 |
|
* - arrowstyle |
|
- `"arrowstyle"` |
|
- ``"-|>"`` if `G` is directed else ``"-"`` |
|
* - arrowsize |
|
- `"arrowsize"` |
|
- 10 if `G` is directed else 0 |
|
* - edge_curvature |
|
- `"curvature"` |
|
- arc3 |
|
* - edge_source_margin |
|
- `"source_margin"` |
|
- 0 |
|
* - edge_target_margin |
|
- `"target_margin"` |
|
- 0 |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
canvas : Matplotlib Axes object, optional |
|
Draw the graph in specified Matplotlib axes |
|
|
|
pos : string or function, default "pos" |
|
A string naming the node attribute storing the position of nodes as a tuple. |
|
Or a function to be called with input `G` which returns the layout as a dict keyed |
|
by node to position tuple like the NetworkX layout functions. |
|
If no nodes in the graph has the attribute, a spring layout is calculated. |
|
|
|
node_visible : string or bool, default visible |
|
A string naming the node attribute which stores if a node should be drawn. |
|
If `True`, all nodes will be visible while if `False` no nodes will be visible. |
|
If incomplete, nodes missing this attribute will be shown by default. |
|
|
|
node_color : string, default "color" |
|
A string naming the node attribute which stores the color of each node. |
|
Visible nodes without this attribute will use '#1f78b4' as a default. |
|
|
|
node_size : string or number, default "size" |
|
A string naming the node attribute which stores the size of each node. |
|
Visible nodes without this attribute will use a default size of 300. |
|
|
|
node_label : string or bool, default "label" |
|
A string naming the node attribute which stores the label of each node. |
|
The attribute value can be a string, False (no label for that node), |
|
True (the node is the label) or a dict keyed by node to the label. |
|
|
|
If a dict is specified, these keys are read to further control the label: |
|
|
|
* label : The text of the label; default: name of the node |
|
* size : Font size of the label; default: 12 |
|
* color : Font color of the label; default: black |
|
* family : Font family of the label; default: "sans-serif" |
|
* weight : Font weight of the label; default: "normal" |
|
* alpha : Alpha value of the label; default: 1.0 |
|
* h_align : The horizontal alignment of the label. |
|
one of "left", "center", "right"; default: "center" |
|
* v_align : The vertical alignment of the label. |
|
one of "top", "center", "bottom"; default: "center" |
|
* bbox : A dict of parameters for `matplotlib.patches.FancyBboxPatch`. |
|
|
|
Visible nodes without this attribute will be treated as if the value was True. |
|
|
|
node_shape : string, default "shape" |
|
A string naming the node attribute which stores the label of each node. |
|
The values of this attribute are expected to be one of the matplotlib shapes, |
|
one of 'so^>v<dph8'. Visible nodes without this attribute will use 'o'. |
|
|
|
node_alpha : string, default "alpha" |
|
A string naming the node attribute which stores the alpha of each node. |
|
The values of this attribute are expected to be floats between 0.0 and 1.0. |
|
Visible nodes without this attribute will be treated as if the value was 1.0. |
|
|
|
node_border_width : string, default "border_width" |
|
A string naming the node attribute storing the width of the border of the node. |
|
The values of this attribute are expected to be numeric. Visible nodes without |
|
this attribute will use the assumed default of 1.0. |
|
|
|
node_border_color : string, default "border_color" |
|
A string naming the node attribute which storing the color of the border of the node. |
|
Visible nodes missing this attribute will use the final node_color value. |
|
|
|
edge_visible : string or bool, default "visible" |
|
A string nameing the edge attribute which stores if an edge should be drawn. |
|
If `True`, all edges will be drawn while if `False` no edges will be visible. |
|
If incomplete, edges missing this attribute will be shown by default. Values |
|
of this attribute are expected to be booleans. |
|
|
|
edge_width : string or int, default "width" |
|
A string nameing the edge attribute which stores the width of each edge. |
|
Visible edges without this attribute will use a default width of 1.0. |
|
|
|
edge_color : string or color, default "color" |
|
A string nameing the edge attribute which stores of color of each edge. |
|
Visible edges without this attribute will be drawn black. Each color can be |
|
a string or rgb (or rgba) tuple of floats from 0.0 to 1.0. |
|
|
|
edge_label : string, default "label" |
|
A string naming the edge attribute which stores the label of each edge. |
|
The values of this attribute can be a string, number or False or None. In |
|
the latter two cases, no edge label is displayed. |
|
|
|
If a dict is specified, these keys are read to further control the label: |
|
|
|
* label : The text of the label, or the name of an edge attribute holding the label. |
|
* size : Font size of the label; default: 12 |
|
* color : Font color of the label; default: black |
|
* family : Font family of the label; default: "sans-serif" |
|
* weight : Font weight of the label; default: "normal" |
|
* alpha : Alpha value of the label; default: 1.0 |
|
* h_align : The horizontal alignment of the label. |
|
one of "left", "center", "right"; default: "center" |
|
* v_align : The vertical alignment of the label. |
|
one of "top", "center", "bottom"; default: "center" |
|
* bbox : A dict of parameters for `matplotlib.patches.FancyBboxPatch`. |
|
* rotate : Whether to rotate labels to lie parallel to the edge, default: True. |
|
* pos : A float showing how far along the edge to put the label; default: 0.5. |
|
|
|
edge_style : string, default "style" |
|
A string naming the edge attribute which stores the style of each edge. |
|
Visible edges without this attribute will be drawn solid. Values of this |
|
attribute can be line styles, e.g. '-', '--', '-.' or ':' or words like 'solid' |
|
or 'dashed'. If no edge in the graph has this attribute and it is a non-default |
|
value, assume that it describes the edge style for all edges in the graph. |
|
|
|
edge_alpha : string or float, default "alpha" |
|
A string naming the edge attribute which stores the alpha value of each edge. |
|
Visible edges without this attribute will use an alpha value of 1.0. |
|
|
|
arrowstyle : string, default "arrow" |
|
A string naming the edge attribute which stores the type of arrowhead to use for |
|
each edge. Visible edges without this attribute use ``"-"`` for undirected graphs |
|
and ``"-|>"`` for directed graphs. |
|
|
|
See `matplotlib.patches.ArrowStyle` for more options |
|
|
|
arrowsize : string or int, default "arrow_size" |
|
A string naming the edge attribute which stores the size of the arrowhead for each |
|
edge. Visible edges without this attribute will use a default value of 10. |
|
|
|
edge_curvature : string, default "curvature" |
|
A string naming the edge attribute storing the curvature and connection style |
|
of each edge. Visible edges without this attribute will use "arc3" as a default |
|
value, resulting an a straight line between the two nodes. Curvature can be given |
|
as 'arc3,rad=0.2' to specify both the style and radius of curvature. |
|
|
|
Please see `matplotlib.patches.ConnectionStyle` and |
|
`matplotlib.patches.FancyArrowPatch` for more information. |
|
|
|
edge_source_margin : string or int, default "source_margin" |
|
A string naming the edge attribute which stores the minimum margin (gap) between |
|
the source node and the start of the edge. Visible edges without this attribute |
|
will use a default value of 0. |
|
|
|
edge_target_margin : string or int, default "target_margin" |
|
A string naming the edge attribute which stores the minimumm margin (gap) between |
|
the target node and the end of the edge. Visible edges without this attribute |
|
will use a default value of 0. |
|
|
|
hide_ticks : bool, default True |
|
Weather to remove the ticks from the axes of the matplotlib object. |
|
|
|
Raises |
|
------ |
|
NetworkXError |
|
If a node or edge is missing a required parameter such as `pos` or |
|
if `display` receives an argument not listed above. |
|
|
|
ValueError |
|
If a node or edge has an invalid color format, i.e. not a color string, |
|
rgb tuple or rgba tuple. |
|
|
|
Returns |
|
------- |
|
The input graph. This is potentially useful for dispatching visualization |
|
functions. |
|
""" |
|
from collections import Counter |
|
|
|
import matplotlib as mpl |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
defaults = { |
|
"node_pos": None, |
|
"node_visible": True, |
|
"node_color": "#1f78b4", |
|
"node_size": 300, |
|
"node_label": { |
|
"size": 12, |
|
"color": "#000000", |
|
"family": "sans-serif", |
|
"weight": "normal", |
|
"alpha": 1.0, |
|
"h_align": "center", |
|
"v_align": "center", |
|
"bbox": None, |
|
}, |
|
"node_shape": "o", |
|
"node_alpha": 1.0, |
|
"node_border_width": 1.0, |
|
"node_border_color": "face", |
|
"edge_visible": True, |
|
"edge_width": 1.0, |
|
"edge_color": "#000000", |
|
"edge_label": { |
|
"size": 12, |
|
"color": "#000000", |
|
"family": "sans-serif", |
|
"weight": "normal", |
|
"alpha": 1.0, |
|
"bbox": {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)}, |
|
"h_align": "center", |
|
"v_align": "center", |
|
"pos": 0.5, |
|
"rotate": True, |
|
}, |
|
"edge_style": "-", |
|
"edge_alpha": 1.0, |
|
"edge_arrowstyle": "-|>" if G.is_directed() else "-", |
|
"edge_arrowsize": 10 if G.is_directed() else 0, |
|
"edge_curvature": "arc3", |
|
"edge_source_margin": 0, |
|
"edge_target_margin": 0, |
|
"hide_ticks": True, |
|
} |
|
|
|
|
|
for kwarg in kwargs: |
|
if kwarg not in defaults: |
|
raise nx.NetworkXError( |
|
f"Unrecongized visualization keyword argument: {kwarg}" |
|
) |
|
|
|
if canvas is None: |
|
canvas = plt.gca() |
|
|
|
if kwargs.get("hide_ticks", defaults["hide_ticks"]): |
|
canvas.tick_params( |
|
axis="both", |
|
which="both", |
|
bottom=False, |
|
left=False, |
|
labelbottom=False, |
|
labelleft=False, |
|
) |
|
|
|
|
|
|
|
def node_property_sequence(seq, attr): |
|
"""Return a list of attribute values for `seq`, using a default if needed""" |
|
|
|
|
|
param_name = f"node_{attr}" |
|
default = defaults[param_name] |
|
attr = kwargs.get(param_name, attr) |
|
|
|
if default is None: |
|
|
|
for n in seq: |
|
if attr not in node_subgraph.nodes[n]: |
|
raise nx.NetworkXError(f"Attribute '{attr}' missing for node {n}") |
|
|
|
|
|
|
|
|
|
if ( |
|
attr is not None |
|
and nx.get_node_attributes(node_subgraph, attr) == {} |
|
and any(attr == v for k, v in kwargs.items() if "node" in k) |
|
): |
|
return [attr for _ in seq] |
|
|
|
return [node_subgraph.nodes[n].get(attr, default) for n in seq] |
|
|
|
def compute_colors(color, alpha): |
|
if isinstance(color, str): |
|
rgba = mpl.colors.colorConverter.to_rgba(color) |
|
|
|
if alpha != defaults["node_alpha"]: |
|
return (rgba[0], rgba[1], rgba[2], alpha) |
|
return rgba |
|
|
|
if isinstance(color, tuple) and len(color) == 3: |
|
return (color[0], color[1], color[2], alpha) |
|
|
|
if isinstance(color, tuple) and len(color) == 4: |
|
return color |
|
|
|
raise ValueError(f"Invalid format for color: {color}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def collection_compatible(e): |
|
return ( |
|
get_edge_attr(e, "arrowstyle") == "-" |
|
and get_edge_attr(e, "curvature") == "arc3" |
|
and get_edge_attr(e, "source_margin") == 0 |
|
and get_edge_attr(e, "target_margin") == 0 |
|
|
|
and e[0] != e[1] |
|
) |
|
|
|
def edge_property_sequence(seq, attr): |
|
"""Return a list of attribute values for `seq`, using a default if needed""" |
|
|
|
param_name = f"edge_{attr}" |
|
default = defaults[param_name] |
|
attr = kwargs.get(param_name, attr) |
|
|
|
if default is None: |
|
|
|
for e in seq: |
|
if attr not in edge_subgraph.edges[e]: |
|
raise nx.NetworkXError(f"Attribute '{attr}' missing for edge {e}") |
|
|
|
if ( |
|
attr is not None |
|
and nx.get_edge_attributes(edge_subgraph, attr) == {} |
|
and any(attr == v for k, v in kwargs.items() if "edge" in k) |
|
): |
|
return [attr for _ in seq] |
|
|
|
return [edge_subgraph.edges[e].get(attr, default) for e in seq] |
|
|
|
def get_edge_attr(e, attr): |
|
"""Return the final edge attribute value, using default if not None""" |
|
|
|
param_name = f"edge_{attr}" |
|
default = defaults[param_name] |
|
attr = kwargs.get(param_name, attr) |
|
|
|
if default is None and attr not in edge_subgraph.edges[e]: |
|
raise nx.NetworkXError(f"Attribute '{attr}' missing from edge {e}") |
|
|
|
if ( |
|
attr is not None |
|
and nx.get_edge_attributes(edge_subgraph, attr) == {} |
|
and attr in kwargs.values() |
|
): |
|
return attr |
|
|
|
return edge_subgraph.edges[e].get(attr, default) |
|
|
|
def get_node_attr(n, attr, use_edge_subgraph=True): |
|
"""Return the final node attribute value, using default if not None""" |
|
subgraph = edge_subgraph if use_edge_subgraph else node_subgraph |
|
|
|
param_name = f"node_{attr}" |
|
default = defaults[param_name] |
|
attr = kwargs.get(param_name, attr) |
|
|
|
if default is None and attr not in subgraph.nodes[n]: |
|
raise nx.NetworkXError(f"Attribute '{attr}' missing from node {n}") |
|
|
|
if ( |
|
attr is not None |
|
and nx.get_node_attributes(subgraph, attr) == {} |
|
and attr in kwargs.values() |
|
): |
|
return attr |
|
|
|
return subgraph.nodes[n].get(attr, default) |
|
|
|
|
|
def self_loop(edge_index, node_size): |
|
def self_loop_connection(posA, posB, *args, **kwargs): |
|
if not np.all(posA == posB): |
|
raise nx.NetworkXError( |
|
"`self_loop` connection style method" |
|
"is only to be used for self-loops" |
|
) |
|
|
|
|
|
data_loc = canvas.transData.inverted().transform(posA) |
|
|
|
|
|
v_shift = np.sqrt(node_size) / 72 |
|
h_shift = v_shift * 0.5 |
|
|
|
path = np.asarray( |
|
[ |
|
|
|
[0, v_shift], |
|
|
|
[h_shift, v_shift], |
|
[h_shift, 0], |
|
[0, 0], |
|
|
|
[-h_shift, 0], |
|
[-h_shift, v_shift], |
|
[0, v_shift], |
|
] |
|
) |
|
|
|
|
|
if edge_index % 4: |
|
x, y = path.T |
|
for _ in range(edge_index % 4): |
|
x, y = y, -x |
|
path = np.array([x, y]).T |
|
return mpl.path.Path( |
|
canvas.transData.transform(data_loc + path), [1, 4, 4, 4, 4, 4, 4] |
|
) |
|
|
|
return self_loop_connection |
|
|
|
def to_marker_edge(size, marker): |
|
if marker in "s^>v<d": |
|
return np.sqrt(2 * size) / 2 |
|
else: |
|
return np.sqrt(size) / 2 |
|
|
|
def build_fancy_arrow(e): |
|
source_margin = to_marker_edge( |
|
get_node_attr(e[0], "size"), |
|
get_node_attr(e[0], "shape"), |
|
) |
|
source_margin = max( |
|
source_margin, |
|
get_edge_attr(e, "source_margin"), |
|
) |
|
|
|
target_margin = to_marker_edge( |
|
get_node_attr(e[1], "size"), |
|
get_node_attr(e[1], "shape"), |
|
) |
|
target_margin = max( |
|
target_margin, |
|
get_edge_attr(e, "target_margin"), |
|
) |
|
return mpl.patches.FancyArrowPatch( |
|
edge_subgraph.nodes[e[0]][pos], |
|
edge_subgraph.nodes[e[1]][pos], |
|
arrowstyle=get_edge_attr(e, "arrowstyle"), |
|
connectionstyle=( |
|
get_edge_attr(e, "curvature") |
|
if e[0] != e[1] |
|
else self_loop( |
|
0 if len(e) == 2 else e[2] % 4, |
|
get_node_attr(e[0], "size"), |
|
) |
|
), |
|
color=get_edge_attr(e, "color"), |
|
linestyle=get_edge_attr(e, "style"), |
|
linewidth=get_edge_attr(e, "width"), |
|
mutation_scale=get_edge_attr(e, "arrowsize"), |
|
shrinkA=source_margin, |
|
shrinkB=source_margin, |
|
zorder=1, |
|
) |
|
|
|
class CurvedArrowText(mpl.text.Text): |
|
def __init__( |
|
self, |
|
arrow, |
|
*args, |
|
label_pos=0.5, |
|
labels_horizontal=False, |
|
ax=None, |
|
**kwargs, |
|
): |
|
|
|
self.arrow = arrow |
|
|
|
|
|
self.label_pos = label_pos |
|
self.labels_horizontal = labels_horizontal |
|
if ax is None: |
|
ax = plt.gca() |
|
self.ax = ax |
|
self.x, self.y, self.angle = self._update_text_pos_angle(arrow) |
|
|
|
|
|
super().__init__(self.x, self.y, *args, rotation=self.angle, **kwargs) |
|
|
|
self.ax.add_artist(self) |
|
|
|
def _get_arrow_path_disp(self, arrow): |
|
""" |
|
This is part of FancyArrowPatch._get_path_in_displaycoord |
|
It omits the second part of the method where path is converted |
|
to polygon based on width |
|
The transform is taken from ax, not the object, as the object |
|
has not been added yet, and doesn't have transform |
|
""" |
|
dpi_cor = arrow._dpi_cor |
|
|
|
trans_data = self.ax.transData |
|
if arrow._posA_posB is not None: |
|
posA = arrow._convert_xy_units(arrow._posA_posB[0]) |
|
posB = arrow._convert_xy_units(arrow._posA_posB[1]) |
|
(posA, posB) = trans_data.transform((posA, posB)) |
|
_path = arrow.get_connectionstyle()( |
|
posA, |
|
posB, |
|
patchA=arrow.patchA, |
|
patchB=arrow.patchB, |
|
shrinkA=arrow.shrinkA * dpi_cor, |
|
shrinkB=arrow.shrinkB * dpi_cor, |
|
) |
|
else: |
|
_path = trans_data.transform_path(arrow._path_original) |
|
|
|
return _path |
|
|
|
def _update_text_pos_angle(self, arrow): |
|
|
|
path_disp = self._get_arrow_path_disp(arrow) |
|
(x1, y1), (cx, cy), (x2, y2) = path_disp.vertices |
|
|
|
|
|
t = self.label_pos |
|
tt = 1 - t |
|
x = tt**2 * x1 + 2 * t * tt * cx + t**2 * x2 |
|
y = tt**2 * y1 + 2 * t * tt * cy + t**2 * y2 |
|
if self.labels_horizontal: |
|
|
|
angle = 0 |
|
else: |
|
|
|
change_x = 2 * tt * (cx - x1) + 2 * t * (x2 - cx) |
|
change_y = 2 * tt * (cy - y1) + 2 * t * (y2 - cy) |
|
angle = (np.arctan2(change_y, change_x) / (2 * np.pi)) * 360 |
|
|
|
if angle > 90: |
|
angle -= 180 |
|
if angle < -90: |
|
angle += 180 |
|
(x, y) = self.ax.transData.inverted().transform((x, y)) |
|
return x, y, angle |
|
|
|
def draw(self, renderer): |
|
|
|
self.x, self.y, self.angle = self._update_text_pos_angle(self.arrow) |
|
self.set_position((self.x, self.y)) |
|
self.set_rotation(self.angle) |
|
|
|
super().draw(renderer) |
|
|
|
|
|
node_visible = kwargs.get("node_visible", "visible") |
|
if isinstance(node_visible, bool): |
|
if node_visible: |
|
visible_nodes = G.nodes() |
|
else: |
|
visible_nodes = [] |
|
else: |
|
visible_nodes = [ |
|
n for n, v in nx.get_node_attributes(G, node_visible, True).items() if v |
|
] |
|
|
|
node_subgraph = G.subgraph(visible_nodes) |
|
|
|
|
|
|
|
pos = kwargs.get("node_pos", "pos") |
|
|
|
default_display_pos_attr = "display's position attribute name" |
|
if callable(pos): |
|
nx.set_node_attributes( |
|
node_subgraph, pos(node_subgraph), default_display_pos_attr |
|
) |
|
pos = default_display_pos_attr |
|
kwargs["node_pos"] = default_display_pos_attr |
|
elif nx.get_node_attributes(G, pos) == {}: |
|
nx.set_node_attributes( |
|
node_subgraph, nx.spring_layout(node_subgraph), default_display_pos_attr |
|
) |
|
pos = default_display_pos_attr |
|
kwargs["node_pos"] = default_display_pos_attr |
|
|
|
|
|
|
|
if len(visible_nodes) > 0: |
|
node_shape = kwargs.get("node_shape", "shape") |
|
for shape in Counter( |
|
nx.get_node_attributes( |
|
node_subgraph, node_shape, defaults["node_shape"] |
|
).values() |
|
): |
|
|
|
nodes_with_shape = [ |
|
n |
|
for n, s in node_subgraph.nodes(data=node_shape) |
|
if s == shape or (s is None and shape == defaults["node_shape"]) |
|
] |
|
|
|
|
|
|
|
|
|
position = np.asarray(node_property_sequence(nodes_with_shape, "pos")) |
|
color = np.asarray( |
|
[ |
|
compute_colors(c, a) |
|
for c, a in zip( |
|
node_property_sequence(nodes_with_shape, "color"), |
|
node_property_sequence(nodes_with_shape, "alpha"), |
|
) |
|
] |
|
) |
|
border_color = np.asarray( |
|
[ |
|
( |
|
c |
|
if ( |
|
c := get_node_attr( |
|
n, |
|
"border_color", |
|
False, |
|
) |
|
) |
|
!= "face" |
|
else color[i] |
|
) |
|
for i, n in enumerate(nodes_with_shape) |
|
] |
|
) |
|
canvas.scatter( |
|
position[:, 0], |
|
position[:, 1], |
|
s=node_property_sequence(nodes_with_shape, "size"), |
|
c=color, |
|
marker=shape, |
|
linewidths=node_property_sequence(nodes_with_shape, "border_width"), |
|
edgecolors=border_color, |
|
zorder=2, |
|
) |
|
|
|
|
|
node_label = kwargs.get("node_label", "label") |
|
|
|
if node_label is not None and node_label is not False: |
|
default_dict = {} |
|
if isinstance(node_label, dict): |
|
default_dict = node_label |
|
node_label = None |
|
|
|
for n, lbl in node_subgraph.nodes(data=node_label): |
|
if lbl is False: |
|
continue |
|
|
|
|
|
if not isinstance(lbl, dict): |
|
lbl = {"label": lbl if lbl is not None else n} |
|
|
|
lbl_text = lbl.get("label", n) |
|
if not isinstance(lbl_text, str): |
|
lbl_text = str(lbl_text) |
|
|
|
lbl.update(default_dict) |
|
x, y = node_subgraph.nodes[n][pos] |
|
canvas.text( |
|
x, |
|
y, |
|
lbl_text, |
|
size=lbl.get("size", defaults["node_label"]["size"]), |
|
color=lbl.get("color", defaults["node_label"]["color"]), |
|
family=lbl.get("family", defaults["node_label"]["family"]), |
|
weight=lbl.get("weight", defaults["node_label"]["weight"]), |
|
horizontalalignment=lbl.get( |
|
"h_align", defaults["node_label"]["h_align"] |
|
), |
|
verticalalignment=lbl.get("v_align", defaults["node_label"]["v_align"]), |
|
transform=canvas.transData, |
|
bbox=lbl.get("bbox", defaults["node_label"]["bbox"]), |
|
) |
|
|
|
|
|
|
|
edge_visible = kwargs.get("edge_visible", "visible") |
|
if isinstance(edge_visible, bool): |
|
if edge_visible: |
|
visible_edges = G.edges() |
|
else: |
|
visible_edges = [] |
|
else: |
|
visible_edges = [ |
|
e for e, v in nx.get_edge_attributes(G, edge_visible, True).items() if v |
|
] |
|
|
|
edge_subgraph = G.edge_subgraph(visible_edges) |
|
print(nx.get_node_attributes(node_subgraph, pos)) |
|
nx.set_node_attributes( |
|
edge_subgraph, nx.get_node_attributes(node_subgraph, pos), name=pos |
|
) |
|
|
|
collection_edges = ( |
|
[e for e in edge_subgraph.edges(keys=True) if collection_compatible(e)] |
|
if edge_subgraph.is_multigraph() |
|
else [e for e in edge_subgraph.edges() if collection_compatible(e)] |
|
) |
|
non_collection_edges = ( |
|
[e for e in edge_subgraph.edges(keys=True) if not collection_compatible(e)] |
|
if edge_subgraph.is_multigraph() |
|
else [e for e in edge_subgraph.edges() if not collection_compatible(e)] |
|
) |
|
edge_position = np.asarray( |
|
[ |
|
( |
|
get_node_attr(u, "pos", use_edge_subgraph=True), |
|
get_node_attr(v, "pos", use_edge_subgraph=True), |
|
) |
|
for u, v, *_ in collection_edges |
|
] |
|
) |
|
|
|
|
|
if len(collection_edges) > 0: |
|
edge_collection = mpl.collections.LineCollection( |
|
edge_position, |
|
colors=edge_property_sequence(collection_edges, "color"), |
|
linewidths=edge_property_sequence(collection_edges, "width"), |
|
linestyle=edge_property_sequence(collection_edges, "style"), |
|
alpha=edge_property_sequence(collection_edges, "alpha"), |
|
antialiaseds=(1,), |
|
zorder=1, |
|
) |
|
canvas.add_collection(edge_collection) |
|
|
|
fancy_arrows = {} |
|
if len(non_collection_edges) > 0: |
|
for e in non_collection_edges: |
|
|
|
fancy_arrows[e] = build_fancy_arrow(e) |
|
canvas.add_patch(fancy_arrows[e]) |
|
|
|
|
|
edge_label = kwargs.get("edge_label", "label") |
|
default_dict = {} |
|
if isinstance(edge_label, dict): |
|
default_dict = edge_label |
|
|
|
edge_label = "label" |
|
|
|
|
|
edge_label_data = ( |
|
edge_subgraph.edges(data=edge_label, keys=True) |
|
if edge_subgraph.is_multigraph() |
|
else edge_subgraph.edges(data=edge_label) |
|
) |
|
if edge_label is not None and edge_label is not False: |
|
for *e, lbl in edge_label_data: |
|
e = tuple(e) |
|
|
|
if lbl is False or lbl is None: |
|
continue |
|
|
|
if not isinstance(lbl, dict): |
|
lbl = {"label": lbl} |
|
|
|
lbl.update(default_dict) |
|
lbl_text = lbl.get("label") |
|
if not isinstance(lbl_text, str): |
|
lbl_text = str(lbl_text) |
|
|
|
|
|
|
|
|
|
try: |
|
arrow = fancy_arrows[e] |
|
except KeyError: |
|
arrow = build_fancy_arrow(e) |
|
|
|
if e[0] == e[1]: |
|
|
|
connectionstyle_obj = arrow.get_connectionstyle() |
|
posA = canvas.transData.transform(edge_subgraph.nodes[e[0]][pos]) |
|
path_disp = connectionstyle_obj(posA, posA) |
|
path_data = canvas.transData.inverted().transform_path(path_disp) |
|
x, y = path_data.vertices[0] |
|
canvas.text( |
|
x, |
|
y, |
|
lbl_text, |
|
size=lbl.get("size", defaults["edge_label"]["size"]), |
|
color=lbl.get("color", defaults["edge_label"]["color"]), |
|
family=lbl.get("family", defaults["edge_label"]["family"]), |
|
weight=lbl.get("weight", defaults["edge_label"]["weight"]), |
|
alpha=lbl.get("alpha", defaults["edge_label"]["alpha"]), |
|
horizontalalignment=lbl.get( |
|
"h_align", defaults["edge_label"]["h_align"] |
|
), |
|
verticalalignment=lbl.get( |
|
"v_align", defaults["edge_label"]["v_align"] |
|
), |
|
rotation=0, |
|
transform=canvas.transData, |
|
bbox=lbl.get("bbox", defaults["edge_label"]["bbox"]), |
|
zorder=1, |
|
) |
|
continue |
|
|
|
CurvedArrowText( |
|
arrow, |
|
lbl_text, |
|
size=lbl.get("size", defaults["edge_label"]["size"]), |
|
color=lbl.get("color", defaults["edge_label"]["color"]), |
|
family=lbl.get("family", defaults["edge_label"]["family"]), |
|
weight=lbl.get("weight", defaults["edge_label"]["weight"]), |
|
alpha=lbl.get("alpha", defaults["edge_label"]["alpha"]), |
|
bbox=lbl.get("bbox", defaults["edge_label"]["bbox"]), |
|
horizontalalignment=lbl.get( |
|
"h_align", defaults["edge_label"]["h_align"] |
|
), |
|
verticalalignment=lbl.get("v_align", defaults["edge_label"]["v_align"]), |
|
label_pos=lbl.get("pos", defaults["edge_label"]["pos"]), |
|
labels_horizontal=lbl.get("rotate", defaults["edge_label"]["rotate"]), |
|
transform=canvas.transData, |
|
zorder=1, |
|
ax=canvas, |
|
) |
|
|
|
|
|
if pos == default_display_pos_attr: |
|
nx.remove_node_attributes(G, default_display_pos_attr) |
|
|
|
return G |
|
|
|
|
|
def draw(G, pos=None, ax=None, **kwds): |
|
"""Draw the graph G with Matplotlib. |
|
|
|
Draw the graph as a simple representation with no node |
|
labels or edge labels and using the full Matplotlib figure area |
|
and no axis labels by default. See draw_networkx() for more |
|
full-featured drawing that allows title, axis labels etc. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
pos : dictionary, optional |
|
A dictionary with nodes as keys and positions as values. |
|
If not specified a spring layout positioning will be computed. |
|
See :py:mod:`networkx.drawing.layout` for functions that |
|
compute node positions. |
|
|
|
ax : Matplotlib Axes object, optional |
|
Draw the graph in specified Matplotlib axes. |
|
|
|
kwds : optional keywords |
|
See networkx.draw_networkx() for a description of optional keywords. |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.dodecahedral_graph() |
|
>>> nx.draw(G) |
|
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout |
|
|
|
See Also |
|
-------- |
|
draw_networkx |
|
draw_networkx_nodes |
|
draw_networkx_edges |
|
draw_networkx_labels |
|
draw_networkx_edge_labels |
|
|
|
Notes |
|
----- |
|
This function has the same name as pylab.draw and pyplot.draw |
|
so beware when using `from networkx import *` |
|
|
|
since you might overwrite the pylab.draw function. |
|
|
|
With pyplot use |
|
|
|
>>> import matplotlib.pyplot as plt |
|
>>> G = nx.dodecahedral_graph() |
|
>>> nx.draw(G) # networkx draw() |
|
>>> plt.draw() # pyplot draw() |
|
|
|
Also see the NetworkX drawing examples at |
|
https://networkx.org/documentation/latest/auto_examples/index.html |
|
""" |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
if ax is None: |
|
cf = plt.gcf() |
|
else: |
|
cf = ax.get_figure() |
|
cf.set_facecolor("w") |
|
if ax is None: |
|
if cf.axes: |
|
ax = cf.gca() |
|
else: |
|
ax = cf.add_axes((0, 0, 1, 1)) |
|
|
|
if "with_labels" not in kwds: |
|
kwds["with_labels"] = "labels" in kwds |
|
|
|
draw_networkx(G, pos=pos, ax=ax, **kwds) |
|
ax.set_axis_off() |
|
plt.draw_if_interactive() |
|
return |
|
|
|
|
|
def draw_networkx(G, pos=None, arrows=None, with_labels=True, **kwds): |
|
r"""Draw the graph G using Matplotlib. |
|
|
|
Draw the graph with Matplotlib with options for node positions, |
|
labeling, titles, and many other drawing features. |
|
See draw() for simple drawing without labels or axes. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
pos : dictionary, optional |
|
A dictionary with nodes as keys and positions as values. |
|
If not specified a spring layout positioning will be computed. |
|
See :py:mod:`networkx.drawing.layout` for functions that |
|
compute node positions. |
|
|
|
arrows : bool or None, optional (default=None) |
|
If `None`, directed graphs draw arrowheads with |
|
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges |
|
via `~matplotlib.collections.LineCollection` for speed. |
|
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish). |
|
If `False`, draw edges using LineCollection (linear and fast). |
|
For directed graphs, if True draw arrowheads. |
|
Note: Arrows will be the same color as edges. |
|
|
|
arrowstyle : str (default='-\|>' for directed graphs) |
|
For directed graphs, choose the style of the arrowsheads. |
|
For undirected graphs default to '-' |
|
|
|
See `matplotlib.patches.ArrowStyle` for more options. |
|
|
|
arrowsize : int or list (default=10) |
|
For directed graphs, choose the size of the arrow head's length and |
|
width. A list of values can be passed in to assign a different size for arrow head's length and width. |
|
See `matplotlib.patches.FancyArrowPatch` for attribute `mutation_scale` |
|
for more info. |
|
|
|
with_labels : bool (default=True) |
|
Set to True to draw labels on the nodes. |
|
|
|
ax : Matplotlib Axes object, optional |
|
Draw the graph in the specified Matplotlib axes. |
|
|
|
nodelist : list (default=list(G)) |
|
Draw only specified nodes |
|
|
|
edgelist : list (default=list(G.edges())) |
|
Draw only specified edges |
|
|
|
node_size : scalar or array (default=300) |
|
Size of nodes. If an array is specified it must be the |
|
same length as nodelist. |
|
|
|
node_color : color or array of colors (default='#1f78b4') |
|
Node color. Can be a single color or a sequence of colors with the same |
|
length as nodelist. Color can be string or rgb (or rgba) tuple of |
|
floats from 0-1. If numeric values are specified they will be |
|
mapped to colors using the cmap and vmin,vmax parameters. See |
|
matplotlib.scatter for more details. |
|
|
|
node_shape : string (default='o') |
|
The shape of the node. Specification is as matplotlib.scatter |
|
marker, one of 'so^>v<dph8'. |
|
|
|
alpha : float or None (default=None) |
|
The node and edge transparency |
|
|
|
cmap : Matplotlib colormap, optional |
|
Colormap for mapping intensities of nodes |
|
|
|
vmin,vmax : float, optional |
|
Minimum and maximum for node colormap scaling |
|
|
|
linewidths : scalar or sequence (default=1.0) |
|
Line width of symbol border |
|
|
|
width : float or array of floats (default=1.0) |
|
Line width of edges |
|
|
|
edge_color : color or array of colors (default='k') |
|
Edge color. Can be a single color or a sequence of colors with the same |
|
length as edgelist. Color can be string or rgb (or rgba) tuple of |
|
floats from 0-1. If numeric values are specified they will be |
|
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. |
|
|
|
edge_cmap : Matplotlib colormap, optional |
|
Colormap for mapping intensities of edges |
|
|
|
edge_vmin,edge_vmax : floats, optional |
|
Minimum and maximum for edge colormap scaling |
|
|
|
style : string (default=solid line) |
|
Edge line style e.g.: '-', '--', '-.', ':' |
|
or words like 'solid' or 'dashed'. |
|
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`) |
|
|
|
labels : dictionary (default=None) |
|
Node labels in a dictionary of text labels keyed by node |
|
|
|
font_size : int (default=12 for nodes, 10 for edges) |
|
Font size for text labels |
|
|
|
font_color : color (default='k' black) |
|
Font color string. Color can be string or rgb (or rgba) tuple of |
|
floats from 0-1. |
|
|
|
font_weight : string (default='normal') |
|
Font weight |
|
|
|
font_family : string (default='sans-serif') |
|
Font family |
|
|
|
label : string, optional |
|
Label for graph legend |
|
|
|
hide_ticks : bool, optional |
|
Hide ticks of axes. When `True` (the default), ticks and ticklabels |
|
are removed from the axes. To set ticks and tick labels to the pyplot default, |
|
use ``hide_ticks=False``. |
|
|
|
kwds : optional keywords |
|
See networkx.draw_networkx_nodes(), networkx.draw_networkx_edges(), and |
|
networkx.draw_networkx_labels() for a description of optional keywords. |
|
|
|
Notes |
|
----- |
|
For directed graphs, arrows are drawn at the head end. Arrows can be |
|
turned off with keyword arrows=False. |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.dodecahedral_graph() |
|
>>> nx.draw(G) |
|
>>> nx.draw(G, pos=nx.spring_layout(G)) # use spring layout |
|
|
|
>>> import matplotlib.pyplot as plt |
|
>>> limits = plt.axis("off") # turn off axis |
|
|
|
Also see the NetworkX drawing examples at |
|
https://networkx.org/documentation/latest/auto_examples/index.html |
|
|
|
See Also |
|
-------- |
|
draw |
|
draw_networkx_nodes |
|
draw_networkx_edges |
|
draw_networkx_labels |
|
draw_networkx_edge_labels |
|
""" |
|
from inspect import signature |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
|
|
valid_node_kwds = signature(draw_networkx_nodes).parameters.keys() |
|
valid_edge_kwds = signature(draw_networkx_edges).parameters.keys() |
|
valid_label_kwds = signature(draw_networkx_labels).parameters.keys() |
|
|
|
|
|
|
|
valid_kwds = (valid_node_kwds | valid_edge_kwds | valid_label_kwds) - { |
|
"G", |
|
"pos", |
|
"arrows", |
|
"with_labels", |
|
} |
|
|
|
if any(k not in valid_kwds for k in kwds): |
|
invalid_args = ", ".join([k for k in kwds if k not in valid_kwds]) |
|
raise ValueError(f"Received invalid argument(s): {invalid_args}") |
|
|
|
node_kwds = {k: v for k, v in kwds.items() if k in valid_node_kwds} |
|
edge_kwds = {k: v for k, v in kwds.items() if k in valid_edge_kwds} |
|
label_kwds = {k: v for k, v in kwds.items() if k in valid_label_kwds} |
|
|
|
if pos is None: |
|
pos = nx.drawing.spring_layout(G) |
|
|
|
draw_networkx_nodes(G, pos, **node_kwds) |
|
draw_networkx_edges(G, pos, arrows=arrows, **edge_kwds) |
|
if with_labels: |
|
draw_networkx_labels(G, pos, **label_kwds) |
|
plt.draw_if_interactive() |
|
|
|
|
|
def draw_networkx_nodes( |
|
G, |
|
pos, |
|
nodelist=None, |
|
node_size=300, |
|
node_color="#1f78b4", |
|
node_shape="o", |
|
alpha=None, |
|
cmap=None, |
|
vmin=None, |
|
vmax=None, |
|
ax=None, |
|
linewidths=None, |
|
edgecolors=None, |
|
label=None, |
|
margins=None, |
|
hide_ticks=True, |
|
): |
|
"""Draw the nodes of the graph G. |
|
|
|
This draws only the nodes of the graph G. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
pos : dictionary |
|
A dictionary with nodes as keys and positions as values. |
|
Positions should be sequences of length 2. |
|
|
|
ax : Matplotlib Axes object, optional |
|
Draw the graph in the specified Matplotlib axes. |
|
|
|
nodelist : list (default list(G)) |
|
Draw only specified nodes |
|
|
|
node_size : scalar or array (default=300) |
|
Size of nodes. If an array it must be the same length as nodelist. |
|
|
|
node_color : color or array of colors (default='#1f78b4') |
|
Node color. Can be a single color or a sequence of colors with the same |
|
length as nodelist. Color can be string or rgb (or rgba) tuple of |
|
floats from 0-1. If numeric values are specified they will be |
|
mapped to colors using the cmap and vmin,vmax parameters. See |
|
matplotlib.scatter for more details. |
|
|
|
node_shape : string (default='o') |
|
The shape of the node. Specification is as matplotlib.scatter |
|
marker, one of 'so^>v<dph8'. |
|
|
|
alpha : float or array of floats (default=None) |
|
The node transparency. This can be a single alpha value, |
|
in which case it will be applied to all the nodes of color. Otherwise, |
|
if it is an array, the elements of alpha will be applied to the colors |
|
in order (cycling through alpha multiple times if necessary). |
|
|
|
cmap : Matplotlib colormap (default=None) |
|
Colormap for mapping intensities of nodes |
|
|
|
vmin,vmax : floats or None (default=None) |
|
Minimum and maximum for node colormap scaling |
|
|
|
linewidths : [None | scalar | sequence] (default=1.0) |
|
Line width of symbol border |
|
|
|
edgecolors : [None | scalar | sequence] (default = node_color) |
|
Colors of node borders. Can be a single color or a sequence of colors with the |
|
same length as nodelist. Color can be string or rgb (or rgba) tuple of floats |
|
from 0-1. If numeric values are specified they will be mapped to colors |
|
using the cmap and vmin,vmax parameters. See `~matplotlib.pyplot.scatter` for more details. |
|
|
|
label : [None | string] |
|
Label for legend |
|
|
|
margins : float or 2-tuple, optional |
|
Sets the padding for axis autoscaling. Increase margin to prevent |
|
clipping for nodes that are near the edges of an image. Values should |
|
be in the range ``[0, 1]``. See :meth:`matplotlib.axes.Axes.margins` |
|
for details. The default is `None`, which uses the Matplotlib default. |
|
|
|
hide_ticks : bool, optional |
|
Hide ticks of axes. When `True` (the default), ticks and ticklabels |
|
are removed from the axes. To set ticks and tick labels to the pyplot default, |
|
use ``hide_ticks=False``. |
|
|
|
Returns |
|
------- |
|
matplotlib.collections.PathCollection |
|
`PathCollection` of the nodes. |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.dodecahedral_graph() |
|
>>> nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G)) |
|
|
|
Also see the NetworkX drawing examples at |
|
https://networkx.org/documentation/latest/auto_examples/index.html |
|
|
|
See Also |
|
-------- |
|
draw |
|
draw_networkx |
|
draw_networkx_edges |
|
draw_networkx_labels |
|
draw_networkx_edge_labels |
|
""" |
|
from collections.abc import Iterable |
|
|
|
import matplotlib as mpl |
|
import matplotlib.collections |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
if ax is None: |
|
ax = plt.gca() |
|
|
|
if nodelist is None: |
|
nodelist = list(G) |
|
|
|
if len(nodelist) == 0: |
|
return mpl.collections.PathCollection(None) |
|
|
|
try: |
|
xy = np.asarray([pos[v] for v in nodelist]) |
|
except KeyError as err: |
|
raise nx.NetworkXError(f"Node {err} has no position.") from err |
|
|
|
if isinstance(alpha, Iterable): |
|
node_color = apply_alpha(node_color, alpha, nodelist, cmap, vmin, vmax) |
|
alpha = None |
|
|
|
if not isinstance(node_shape, np.ndarray) and not isinstance(node_shape, list): |
|
node_shape = np.array([node_shape for _ in range(len(nodelist))]) |
|
|
|
for shape in np.unique(node_shape): |
|
node_collection = ax.scatter( |
|
xy[node_shape == shape, 0], |
|
xy[node_shape == shape, 1], |
|
s=node_size, |
|
c=node_color, |
|
marker=shape, |
|
cmap=cmap, |
|
vmin=vmin, |
|
vmax=vmax, |
|
alpha=alpha, |
|
linewidths=linewidths, |
|
edgecolors=edgecolors, |
|
label=label, |
|
) |
|
if hide_ticks: |
|
ax.tick_params( |
|
axis="both", |
|
which="both", |
|
bottom=False, |
|
left=False, |
|
labelbottom=False, |
|
labelleft=False, |
|
) |
|
|
|
if margins is not None: |
|
if isinstance(margins, Iterable): |
|
ax.margins(*margins) |
|
else: |
|
ax.margins(margins) |
|
|
|
node_collection.set_zorder(2) |
|
return node_collection |
|
|
|
|
|
class FancyArrowFactory: |
|
"""Draw arrows with `matplotlib.patches.FancyarrowPatch`""" |
|
|
|
class ConnectionStyleFactory: |
|
def __init__(self, connectionstyles, selfloop_height, ax=None): |
|
import matplotlib as mpl |
|
import matplotlib.path |
|
import numpy as np |
|
|
|
self.ax = ax |
|
self.mpl = mpl |
|
self.np = np |
|
self.base_connection_styles = [ |
|
mpl.patches.ConnectionStyle(cs) for cs in connectionstyles |
|
] |
|
self.n = len(self.base_connection_styles) |
|
self.selfloop_height = selfloop_height |
|
|
|
def curved(self, edge_index): |
|
return self.base_connection_styles[edge_index % self.n] |
|
|
|
def self_loop(self, edge_index): |
|
def self_loop_connection(posA, posB, *args, **kwargs): |
|
if not self.np.all(posA == posB): |
|
raise nx.NetworkXError( |
|
"`self_loop` connection style method" |
|
"is only to be used for self-loops" |
|
) |
|
|
|
|
|
data_loc = self.ax.transData.inverted().transform(posA) |
|
v_shift = 0.1 * self.selfloop_height |
|
h_shift = v_shift * 0.5 |
|
|
|
path = self.np.asarray( |
|
[ |
|
|
|
[0, v_shift], |
|
|
|
[h_shift, v_shift], |
|
[h_shift, 0], |
|
[0, 0], |
|
|
|
[-h_shift, 0], |
|
[-h_shift, v_shift], |
|
[0, v_shift], |
|
] |
|
) |
|
|
|
|
|
if edge_index % 4: |
|
x, y = path.T |
|
for _ in range(edge_index % 4): |
|
x, y = y, -x |
|
path = self.np.array([x, y]).T |
|
return self.mpl.path.Path( |
|
self.ax.transData.transform(data_loc + path), [1, 4, 4, 4, 4, 4, 4] |
|
) |
|
|
|
return self_loop_connection |
|
|
|
def __init__( |
|
self, |
|
edge_pos, |
|
edgelist, |
|
nodelist, |
|
edge_indices, |
|
node_size, |
|
selfloop_height, |
|
connectionstyle="arc3", |
|
node_shape="o", |
|
arrowstyle="-", |
|
arrowsize=10, |
|
edge_color="k", |
|
alpha=None, |
|
linewidth=1.0, |
|
style="solid", |
|
min_source_margin=0, |
|
min_target_margin=0, |
|
ax=None, |
|
): |
|
import matplotlib as mpl |
|
import matplotlib.patches |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
if isinstance(connectionstyle, str): |
|
connectionstyle = [connectionstyle] |
|
elif np.iterable(connectionstyle): |
|
connectionstyle = list(connectionstyle) |
|
else: |
|
msg = "ConnectionStyleFactory arg `connectionstyle` must be str or iterable" |
|
raise nx.NetworkXError(msg) |
|
self.ax = ax |
|
self.mpl = mpl |
|
self.np = np |
|
self.edge_pos = edge_pos |
|
self.edgelist = edgelist |
|
self.nodelist = nodelist |
|
self.node_shape = node_shape |
|
self.min_source_margin = min_source_margin |
|
self.min_target_margin = min_target_margin |
|
self.edge_indices = edge_indices |
|
self.node_size = node_size |
|
self.connectionstyle_factory = self.ConnectionStyleFactory( |
|
connectionstyle, selfloop_height, ax |
|
) |
|
self.arrowstyle = arrowstyle |
|
self.arrowsize = arrowsize |
|
self.arrow_colors = mpl.colors.colorConverter.to_rgba_array(edge_color, alpha) |
|
self.linewidth = linewidth |
|
self.style = style |
|
if isinstance(arrowsize, list) and len(arrowsize) != len(edge_pos): |
|
raise ValueError("arrowsize should have the same length as edgelist") |
|
|
|
def __call__(self, i): |
|
(x1, y1), (x2, y2) = self.edge_pos[i] |
|
shrink_source = 0 |
|
shrink_target = 0 |
|
if ( |
|
self.np.iterable(self.min_source_margin) |
|
and not isinstance(self.min_source_margin, str) |
|
and not isinstance(self.min_source_margin, tuple) |
|
): |
|
min_source_margin = self.min_source_margin[i] |
|
else: |
|
min_source_margin = self.min_source_margin |
|
|
|
if ( |
|
self.np.iterable(self.min_target_margin) |
|
and not isinstance(self.min_target_margin, str) |
|
and not isinstance(self.min_target_margin, tuple) |
|
): |
|
min_target_margin = self.min_target_margin[i] |
|
else: |
|
min_target_margin = self.min_target_margin |
|
|
|
if self.np.iterable(self.node_size): |
|
source, target = self.edgelist[i][:2] |
|
source_node_size = self.node_size[self.nodelist.index(source)] |
|
target_node_size = self.node_size[self.nodelist.index(target)] |
|
shrink_source = self.to_marker_edge(source_node_size, self.node_shape) |
|
shrink_target = self.to_marker_edge(target_node_size, self.node_shape) |
|
else: |
|
shrink_source = self.to_marker_edge(self.node_size, self.node_shape) |
|
shrink_target = shrink_source |
|
shrink_source = max(shrink_source, min_source_margin) |
|
shrink_target = max(shrink_target, min_target_margin) |
|
|
|
|
|
if isinstance(self.arrowsize, list): |
|
mutation_scale = self.arrowsize[i] |
|
else: |
|
mutation_scale = self.arrowsize |
|
|
|
if len(self.arrow_colors) > i: |
|
arrow_color = self.arrow_colors[i] |
|
elif len(self.arrow_colors) == 1: |
|
arrow_color = self.arrow_colors[0] |
|
else: |
|
arrow_color = self.arrow_colors[i % len(self.arrow_colors)] |
|
|
|
if self.np.iterable(self.linewidth): |
|
if len(self.linewidth) > i: |
|
linewidth = self.linewidth[i] |
|
else: |
|
linewidth = self.linewidth[i % len(self.linewidth)] |
|
else: |
|
linewidth = self.linewidth |
|
|
|
if ( |
|
self.np.iterable(self.style) |
|
and not isinstance(self.style, str) |
|
and not isinstance(self.style, tuple) |
|
): |
|
if len(self.style) > i: |
|
linestyle = self.style[i] |
|
else: |
|
linestyle = self.style[i % len(self.style)] |
|
else: |
|
linestyle = self.style |
|
|
|
if x1 == x2 and y1 == y2: |
|
connectionstyle = self.connectionstyle_factory.self_loop( |
|
self.edge_indices[i] |
|
) |
|
else: |
|
connectionstyle = self.connectionstyle_factory.curved(self.edge_indices[i]) |
|
|
|
if ( |
|
self.np.iterable(self.arrowstyle) |
|
and not isinstance(self.arrowstyle, str) |
|
and not isinstance(self.arrowstyle, tuple) |
|
): |
|
arrowstyle = self.arrowstyle[i] |
|
else: |
|
arrowstyle = self.arrowstyle |
|
|
|
return self.mpl.patches.FancyArrowPatch( |
|
(x1, y1), |
|
(x2, y2), |
|
arrowstyle=arrowstyle, |
|
shrinkA=shrink_source, |
|
shrinkB=shrink_target, |
|
mutation_scale=mutation_scale, |
|
color=arrow_color, |
|
linewidth=linewidth, |
|
connectionstyle=connectionstyle, |
|
linestyle=linestyle, |
|
zorder=1, |
|
) |
|
|
|
def to_marker_edge(self, marker_size, marker): |
|
if marker in "s^>v<d": |
|
return self.np.sqrt(2 * marker_size) / 2 |
|
else: |
|
return self.np.sqrt(marker_size) / 2 |
|
|
|
|
|
def draw_networkx_edges( |
|
G, |
|
pos, |
|
edgelist=None, |
|
width=1.0, |
|
edge_color="k", |
|
style="solid", |
|
alpha=None, |
|
arrowstyle=None, |
|
arrowsize=10, |
|
edge_cmap=None, |
|
edge_vmin=None, |
|
edge_vmax=None, |
|
ax=None, |
|
arrows=None, |
|
label=None, |
|
node_size=300, |
|
nodelist=None, |
|
node_shape="o", |
|
connectionstyle="arc3", |
|
min_source_margin=0, |
|
min_target_margin=0, |
|
hide_ticks=True, |
|
): |
|
r"""Draw the edges of the graph G. |
|
|
|
This draws only the edges of the graph G. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
pos : dictionary |
|
A dictionary with nodes as keys and positions as values. |
|
Positions should be sequences of length 2. |
|
|
|
edgelist : collection of edge tuples (default=G.edges()) |
|
Draw only specified edges |
|
|
|
width : float or array of floats (default=1.0) |
|
Line width of edges |
|
|
|
edge_color : color or array of colors (default='k') |
|
Edge color. Can be a single color or a sequence of colors with the same |
|
length as edgelist. Color can be string or rgb (or rgba) tuple of |
|
floats from 0-1. If numeric values are specified they will be |
|
mapped to colors using the edge_cmap and edge_vmin,edge_vmax parameters. |
|
|
|
style : string or array of strings (default='solid') |
|
Edge line style e.g.: '-', '--', '-.', ':' |
|
or words like 'solid' or 'dashed'. |
|
Can be a single style or a sequence of styles with the same |
|
length as the edge list. |
|
If less styles than edges are given the styles will cycle. |
|
If more styles than edges are given the styles will be used sequentially |
|
and not be exhausted. |
|
Also, `(offset, onoffseq)` tuples can be used as style instead of a strings. |
|
(See `matplotlib.patches.FancyArrowPatch`: `linestyle`) |
|
|
|
alpha : float or array of floats (default=None) |
|
The edge transparency. This can be a single alpha value, |
|
in which case it will be applied to all specified edges. Otherwise, |
|
if it is an array, the elements of alpha will be applied to the colors |
|
in order (cycling through alpha multiple times if necessary). |
|
|
|
edge_cmap : Matplotlib colormap, optional |
|
Colormap for mapping intensities of edges |
|
|
|
edge_vmin,edge_vmax : floats, optional |
|
Minimum and maximum for edge colormap scaling |
|
|
|
ax : Matplotlib Axes object, optional |
|
Draw the graph in the specified Matplotlib axes. |
|
|
|
arrows : bool or None, optional (default=None) |
|
If `None`, directed graphs draw arrowheads with |
|
`~matplotlib.patches.FancyArrowPatch`, while undirected graphs draw edges |
|
via `~matplotlib.collections.LineCollection` for speed. |
|
If `True`, draw arrowheads with FancyArrowPatches (bendable and stylish). |
|
If `False`, draw edges using LineCollection (linear and fast). |
|
|
|
Note: Arrowheads will be the same color as edges. |
|
|
|
arrowstyle : str or list of strs (default='-\|>' for directed graphs) |
|
For directed graphs and `arrows==True` defaults to '-\|>', |
|
For undirected graphs default to '-'. |
|
|
|
See `matplotlib.patches.ArrowStyle` for more options. |
|
|
|
arrowsize : int or list of ints(default=10) |
|
For directed graphs, choose the size of the arrow head's length and |
|
width. See `matplotlib.patches.FancyArrowPatch` for attribute |
|
`mutation_scale` for more info. |
|
|
|
connectionstyle : string or iterable of strings (default="arc3") |
|
Pass the connectionstyle parameter to create curved arc of rounding |
|
radius rad. For example, connectionstyle='arc3,rad=0.2'. |
|
See `matplotlib.patches.ConnectionStyle` and |
|
`matplotlib.patches.FancyArrowPatch` for more info. |
|
If Iterable, index indicates i'th edge key of MultiGraph |
|
|
|
node_size : scalar or array (default=300) |
|
Size of nodes. Though the nodes are not drawn with this function, the |
|
node size is used in determining edge positioning. |
|
|
|
nodelist : list, optional (default=G.nodes()) |
|
This provides the node order for the `node_size` array (if it is an array). |
|
|
|
node_shape : string (default='o') |
|
The marker used for nodes, used in determining edge positioning. |
|
Specification is as a `matplotlib.markers` marker, e.g. one of 'so^>v<dph8'. |
|
|
|
label : None or string |
|
Label for legend |
|
|
|
min_source_margin : int or list of ints (default=0) |
|
The minimum margin (gap) at the beginning of the edge at the source. |
|
|
|
min_target_margin : int or list of ints (default=0) |
|
The minimum margin (gap) at the end of the edge at the target. |
|
|
|
hide_ticks : bool, optional |
|
Hide ticks of axes. When `True` (the default), ticks and ticklabels |
|
are removed from the axes. To set ticks and tick labels to the pyplot default, |
|
use ``hide_ticks=False``. |
|
|
|
Returns |
|
------- |
|
matplotlib.collections.LineCollection or a list of matplotlib.patches.FancyArrowPatch |
|
If ``arrows=True``, a list of FancyArrowPatches is returned. |
|
If ``arrows=False``, a LineCollection is returned. |
|
If ``arrows=None`` (the default), then a LineCollection is returned if |
|
`G` is undirected, otherwise returns a list of FancyArrowPatches. |
|
|
|
Notes |
|
----- |
|
For directed graphs, arrows are drawn at the head end. Arrows can be |
|
turned off with keyword arrows=False or by passing an arrowstyle without |
|
an arrow on the end. |
|
|
|
Be sure to include `node_size` as a keyword argument; arrows are |
|
drawn considering the size of nodes. |
|
|
|
Self-loops are always drawn with `~matplotlib.patches.FancyArrowPatch` |
|
regardless of the value of `arrows` or whether `G` is directed. |
|
When ``arrows=False`` or ``arrows=None`` and `G` is undirected, the |
|
FancyArrowPatches corresponding to the self-loops are not explicitly |
|
returned. They should instead be accessed via the ``Axes.patches`` |
|
attribute (see examples). |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.dodecahedral_graph() |
|
>>> edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G)) |
|
|
|
>>> G = nx.DiGraph() |
|
>>> G.add_edges_from([(1, 2), (1, 3), (2, 3)]) |
|
>>> arcs = nx.draw_networkx_edges(G, pos=nx.spring_layout(G)) |
|
>>> alphas = [0.3, 0.4, 0.5] |
|
>>> for i, arc in enumerate(arcs): # change alpha values of arcs |
|
... arc.set_alpha(alphas[i]) |
|
|
|
The FancyArrowPatches corresponding to self-loops are not always |
|
returned, but can always be accessed via the ``patches`` attribute of the |
|
`matplotlib.Axes` object. |
|
|
|
>>> import matplotlib.pyplot as plt |
|
>>> fig, ax = plt.subplots() |
|
>>> G = nx.Graph([(0, 1), (0, 0)]) # Self-loop at node 0 |
|
>>> edge_collection = nx.draw_networkx_edges(G, pos=nx.circular_layout(G), ax=ax) |
|
>>> self_loop_fap = ax.patches[0] |
|
|
|
Also see the NetworkX drawing examples at |
|
https://networkx.org/documentation/latest/auto_examples/index.html |
|
|
|
See Also |
|
-------- |
|
draw |
|
draw_networkx |
|
draw_networkx_nodes |
|
draw_networkx_labels |
|
draw_networkx_edge_labels |
|
|
|
""" |
|
import warnings |
|
|
|
import matplotlib as mpl |
|
import matplotlib.collections |
|
import matplotlib.colors |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
if arrows is None: |
|
use_linecollection = not (G.is_directed() or G.is_multigraph()) |
|
else: |
|
if not isinstance(arrows, bool): |
|
raise TypeError("Argument `arrows` must be of type bool or None") |
|
use_linecollection = not arrows |
|
|
|
if isinstance(connectionstyle, str): |
|
connectionstyle = [connectionstyle] |
|
elif np.iterable(connectionstyle): |
|
connectionstyle = list(connectionstyle) |
|
else: |
|
msg = "draw_networkx_edges arg `connectionstyle` must be str or iterable" |
|
raise nx.NetworkXError(msg) |
|
|
|
|
|
|
|
|
|
if use_linecollection: |
|
msg = ( |
|
"\n\nThe {0} keyword argument is not applicable when drawing edges\n" |
|
"with LineCollection.\n\n" |
|
"To make this warning go away, either specify `arrows=True` to\n" |
|
"force FancyArrowPatches or use the default values.\n" |
|
"Note that using FancyArrowPatches may be slow for large graphs.\n" |
|
) |
|
if arrowstyle is not None: |
|
warnings.warn(msg.format("arrowstyle"), category=UserWarning, stacklevel=2) |
|
if arrowsize != 10: |
|
warnings.warn(msg.format("arrowsize"), category=UserWarning, stacklevel=2) |
|
if min_source_margin != 0: |
|
warnings.warn( |
|
msg.format("min_source_margin"), category=UserWarning, stacklevel=2 |
|
) |
|
if min_target_margin != 0: |
|
warnings.warn( |
|
msg.format("min_target_margin"), category=UserWarning, stacklevel=2 |
|
) |
|
if any(cs != "arc3" for cs in connectionstyle): |
|
warnings.warn( |
|
msg.format("connectionstyle"), category=UserWarning, stacklevel=2 |
|
) |
|
|
|
|
|
if arrowstyle is None: |
|
arrowstyle = "-|>" if G.is_directed() else "-" |
|
|
|
if ax is None: |
|
ax = plt.gca() |
|
|
|
if edgelist is None: |
|
edgelist = list(G.edges) |
|
|
|
if len(edgelist): |
|
if G.is_multigraph(): |
|
key_count = collections.defaultdict(lambda: itertools.count(0)) |
|
edge_indices = [next(key_count[tuple(e[:2])]) for e in edgelist] |
|
else: |
|
edge_indices = [0] * len(edgelist) |
|
else: |
|
return [] |
|
|
|
if nodelist is None: |
|
nodelist = list(G.nodes()) |
|
|
|
|
|
if edge_color is None: |
|
edge_color = "k" |
|
|
|
|
|
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist]) |
|
|
|
|
|
|
|
if ( |
|
np.iterable(edge_color) |
|
and (len(edge_color) == len(edge_pos)) |
|
and np.all([isinstance(c, Number) for c in edge_color]) |
|
): |
|
if edge_cmap is not None: |
|
assert isinstance(edge_cmap, mpl.colors.Colormap) |
|
else: |
|
edge_cmap = plt.get_cmap() |
|
if edge_vmin is None: |
|
edge_vmin = min(edge_color) |
|
if edge_vmax is None: |
|
edge_vmax = max(edge_color) |
|
color_normal = mpl.colors.Normalize(vmin=edge_vmin, vmax=edge_vmax) |
|
edge_color = [edge_cmap(color_normal(e)) for e in edge_color] |
|
|
|
|
|
minx = np.amin(np.ravel(edge_pos[:, :, 0])) |
|
maxx = np.amax(np.ravel(edge_pos[:, :, 0])) |
|
miny = np.amin(np.ravel(edge_pos[:, :, 1])) |
|
maxy = np.amax(np.ravel(edge_pos[:, :, 1])) |
|
w = maxx - minx |
|
h = maxy - miny |
|
|
|
|
|
|
|
|
|
selfloop_height = h if h != 0 else 0.005 * np.array(node_size).max() |
|
fancy_arrow_factory = FancyArrowFactory( |
|
edge_pos, |
|
edgelist, |
|
nodelist, |
|
edge_indices, |
|
node_size, |
|
selfloop_height, |
|
connectionstyle, |
|
node_shape, |
|
arrowstyle, |
|
arrowsize, |
|
edge_color, |
|
alpha, |
|
width, |
|
style, |
|
min_source_margin, |
|
min_target_margin, |
|
ax=ax, |
|
) |
|
|
|
|
|
if use_linecollection: |
|
edge_collection = mpl.collections.LineCollection( |
|
edge_pos, |
|
colors=edge_color, |
|
linewidths=width, |
|
antialiaseds=(1,), |
|
linestyle=style, |
|
alpha=alpha, |
|
) |
|
edge_collection.set_cmap(edge_cmap) |
|
edge_collection.set_clim(edge_vmin, edge_vmax) |
|
edge_collection.set_zorder(1) |
|
edge_collection.set_label(label) |
|
ax.add_collection(edge_collection) |
|
edge_viz_obj = edge_collection |
|
|
|
|
|
|
|
selfloops_to_draw = [loop for loop in nx.selfloop_edges(G) if loop in edgelist] |
|
if selfloops_to_draw: |
|
edgelist_tuple = list(map(tuple, edgelist)) |
|
arrow_collection = [] |
|
for loop in selfloops_to_draw: |
|
i = edgelist_tuple.index(loop) |
|
arrow = fancy_arrow_factory(i) |
|
arrow_collection.append(arrow) |
|
ax.add_patch(arrow) |
|
else: |
|
edge_viz_obj = [] |
|
for i in range(len(edgelist)): |
|
arrow = fancy_arrow_factory(i) |
|
ax.add_patch(arrow) |
|
edge_viz_obj.append(arrow) |
|
|
|
|
|
padx, pady = 0.05 * w, 0.05 * h |
|
corners = (minx - padx, miny - pady), (maxx + padx, maxy + pady) |
|
ax.update_datalim(corners) |
|
ax.autoscale_view() |
|
|
|
if hide_ticks: |
|
ax.tick_params( |
|
axis="both", |
|
which="both", |
|
bottom=False, |
|
left=False, |
|
labelbottom=False, |
|
labelleft=False, |
|
) |
|
|
|
return edge_viz_obj |
|
|
|
|
|
def draw_networkx_labels( |
|
G, |
|
pos, |
|
labels=None, |
|
font_size=12, |
|
font_color="k", |
|
font_family="sans-serif", |
|
font_weight="normal", |
|
alpha=None, |
|
bbox=None, |
|
horizontalalignment="center", |
|
verticalalignment="center", |
|
ax=None, |
|
clip_on=True, |
|
hide_ticks=True, |
|
): |
|
"""Draw node labels on the graph G. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
pos : dictionary |
|
A dictionary with nodes as keys and positions as values. |
|
Positions should be sequences of length 2. |
|
|
|
labels : dictionary (default={n: n for n in G}) |
|
Node labels in a dictionary of text labels keyed by node. |
|
Node-keys in labels should appear as keys in `pos`. |
|
If needed use: `{n:lab for n,lab in labels.items() if n in pos}` |
|
|
|
font_size : int or dictionary of nodes to ints (default=12) |
|
Font size for text labels. |
|
|
|
font_color : color or dictionary of nodes to colors (default='k' black) |
|
Font color string. Color can be string or rgb (or rgba) tuple of |
|
floats from 0-1. |
|
|
|
font_weight : string or dictionary of nodes to strings (default='normal') |
|
Font weight. |
|
|
|
font_family : string or dictionary of nodes to strings (default='sans-serif') |
|
Font family. |
|
|
|
alpha : float or None or dictionary of nodes to floats (default=None) |
|
The text transparency. |
|
|
|
bbox : Matplotlib bbox, (default is Matplotlib's ax.text default) |
|
Specify text box properties (e.g. shape, color etc.) for node labels. |
|
|
|
horizontalalignment : string or array of strings (default='center') |
|
Horizontal alignment {'center', 'right', 'left'}. If an array is |
|
specified it must be the same length as `nodelist`. |
|
|
|
verticalalignment : string (default='center') |
|
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'}. |
|
If an array is specified it must be the same length as `nodelist`. |
|
|
|
ax : Matplotlib Axes object, optional |
|
Draw the graph in the specified Matplotlib axes. |
|
|
|
clip_on : bool (default=True) |
|
Turn on clipping of node labels at axis boundaries |
|
|
|
hide_ticks : bool, optional |
|
Hide ticks of axes. When `True` (the default), ticks and ticklabels |
|
are removed from the axes. To set ticks and tick labels to the pyplot default, |
|
use ``hide_ticks=False``. |
|
|
|
Returns |
|
------- |
|
dict |
|
`dict` of labels keyed on the nodes |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.dodecahedral_graph() |
|
>>> labels = nx.draw_networkx_labels(G, pos=nx.spring_layout(G)) |
|
|
|
Also see the NetworkX drawing examples at |
|
https://networkx.org/documentation/latest/auto_examples/index.html |
|
|
|
See Also |
|
-------- |
|
draw |
|
draw_networkx |
|
draw_networkx_nodes |
|
draw_networkx_edges |
|
draw_networkx_edge_labels |
|
""" |
|
import matplotlib.pyplot as plt |
|
|
|
if ax is None: |
|
ax = plt.gca() |
|
|
|
if labels is None: |
|
labels = {n: n for n in G.nodes()} |
|
|
|
individual_params = set() |
|
|
|
def check_individual_params(p_value, p_name): |
|
if isinstance(p_value, dict): |
|
if len(p_value) != len(labels): |
|
raise ValueError(f"{p_name} must have the same length as labels.") |
|
individual_params.add(p_name) |
|
|
|
def get_param_value(node, p_value, p_name): |
|
if p_name in individual_params: |
|
return p_value[node] |
|
return p_value |
|
|
|
check_individual_params(font_size, "font_size") |
|
check_individual_params(font_color, "font_color") |
|
check_individual_params(font_weight, "font_weight") |
|
check_individual_params(font_family, "font_family") |
|
check_individual_params(alpha, "alpha") |
|
|
|
text_items = {} |
|
for n, label in labels.items(): |
|
(x, y) = pos[n] |
|
if not isinstance(label, str): |
|
label = str(label) |
|
t = ax.text( |
|
x, |
|
y, |
|
label, |
|
size=get_param_value(n, font_size, "font_size"), |
|
color=get_param_value(n, font_color, "font_color"), |
|
family=get_param_value(n, font_family, "font_family"), |
|
weight=get_param_value(n, font_weight, "font_weight"), |
|
alpha=get_param_value(n, alpha, "alpha"), |
|
horizontalalignment=horizontalalignment, |
|
verticalalignment=verticalalignment, |
|
transform=ax.transData, |
|
bbox=bbox, |
|
clip_on=clip_on, |
|
) |
|
text_items[n] = t |
|
|
|
if hide_ticks: |
|
ax.tick_params( |
|
axis="both", |
|
which="both", |
|
bottom=False, |
|
left=False, |
|
labelbottom=False, |
|
labelleft=False, |
|
) |
|
|
|
return text_items |
|
|
|
|
|
def draw_networkx_edge_labels( |
|
G, |
|
pos, |
|
edge_labels=None, |
|
label_pos=0.5, |
|
font_size=10, |
|
font_color="k", |
|
font_family="sans-serif", |
|
font_weight="normal", |
|
alpha=None, |
|
bbox=None, |
|
horizontalalignment="center", |
|
verticalalignment="center", |
|
ax=None, |
|
rotate=True, |
|
clip_on=True, |
|
node_size=300, |
|
nodelist=None, |
|
connectionstyle="arc3", |
|
hide_ticks=True, |
|
): |
|
"""Draw edge labels. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
pos : dictionary |
|
A dictionary with nodes as keys and positions as values. |
|
Positions should be sequences of length 2. |
|
|
|
edge_labels : dictionary (default=None) |
|
Edge labels in a dictionary of labels keyed by edge two-tuple. |
|
Only labels for the keys in the dictionary are drawn. |
|
|
|
label_pos : float (default=0.5) |
|
Position of edge label along edge (0=head, 0.5=center, 1=tail) |
|
|
|
font_size : int (default=10) |
|
Font size for text labels |
|
|
|
font_color : color (default='k' black) |
|
Font color string. Color can be string or rgb (or rgba) tuple of |
|
floats from 0-1. |
|
|
|
font_weight : string (default='normal') |
|
Font weight |
|
|
|
font_family : string (default='sans-serif') |
|
Font family |
|
|
|
alpha : float or None (default=None) |
|
The text transparency |
|
|
|
bbox : Matplotlib bbox, optional |
|
Specify text box properties (e.g. shape, color etc.) for edge labels. |
|
Default is {boxstyle='round', ec=(1.0, 1.0, 1.0), fc=(1.0, 1.0, 1.0)}. |
|
|
|
horizontalalignment : string (default='center') |
|
Horizontal alignment {'center', 'right', 'left'} |
|
|
|
verticalalignment : string (default='center') |
|
Vertical alignment {'center', 'top', 'bottom', 'baseline', 'center_baseline'} |
|
|
|
ax : Matplotlib Axes object, optional |
|
Draw the graph in the specified Matplotlib axes. |
|
|
|
rotate : bool (default=True) |
|
Rotate edge labels to lie parallel to edges |
|
|
|
clip_on : bool (default=True) |
|
Turn on clipping of edge labels at axis boundaries |
|
|
|
node_size : scalar or array (default=300) |
|
Size of nodes. If an array it must be the same length as nodelist. |
|
|
|
nodelist : list, optional (default=G.nodes()) |
|
This provides the node order for the `node_size` array (if it is an array). |
|
|
|
connectionstyle : string or iterable of strings (default="arc3") |
|
Pass the connectionstyle parameter to create curved arc of rounding |
|
radius rad. For example, connectionstyle='arc3,rad=0.2'. |
|
See `matplotlib.patches.ConnectionStyle` and |
|
`matplotlib.patches.FancyArrowPatch` for more info. |
|
If Iterable, index indicates i'th edge key of MultiGraph |
|
|
|
hide_ticks : bool, optional |
|
Hide ticks of axes. When `True` (the default), ticks and ticklabels |
|
are removed from the axes. To set ticks and tick labels to the pyplot default, |
|
use ``hide_ticks=False``. |
|
|
|
Returns |
|
------- |
|
dict |
|
`dict` of labels keyed by edge |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.dodecahedral_graph() |
|
>>> edge_labels = nx.draw_networkx_edge_labels(G, pos=nx.spring_layout(G)) |
|
|
|
Also see the NetworkX drawing examples at |
|
https://networkx.org/documentation/latest/auto_examples/index.html |
|
|
|
See Also |
|
-------- |
|
draw |
|
draw_networkx |
|
draw_networkx_nodes |
|
draw_networkx_edges |
|
draw_networkx_labels |
|
""" |
|
import matplotlib as mpl |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
|
|
class CurvedArrowText(mpl.text.Text): |
|
def __init__( |
|
self, |
|
arrow, |
|
*args, |
|
label_pos=0.5, |
|
labels_horizontal=False, |
|
ax=None, |
|
**kwargs, |
|
): |
|
|
|
self.arrow = arrow |
|
|
|
|
|
self.label_pos = label_pos |
|
self.labels_horizontal = labels_horizontal |
|
if ax is None: |
|
ax = plt.gca() |
|
self.ax = ax |
|
self.x, self.y, self.angle = self._update_text_pos_angle(arrow) |
|
|
|
|
|
super().__init__(self.x, self.y, *args, rotation=self.angle, **kwargs) |
|
|
|
self.ax.add_artist(self) |
|
|
|
def _get_arrow_path_disp(self, arrow): |
|
""" |
|
This is part of FancyArrowPatch._get_path_in_displaycoord |
|
It omits the second part of the method where path is converted |
|
to polygon based on width |
|
The transform is taken from ax, not the object, as the object |
|
has not been added yet, and doesn't have transform |
|
""" |
|
dpi_cor = arrow._dpi_cor |
|
trans_data = self.ax.transData |
|
if arrow._posA_posB is None: |
|
raise ValueError( |
|
"Can only draw labels for fancy arrows with " |
|
"posA and posB inputs, not custom path" |
|
) |
|
posA = arrow._convert_xy_units(arrow._posA_posB[0]) |
|
posB = arrow._convert_xy_units(arrow._posA_posB[1]) |
|
(posA, posB) = trans_data.transform((posA, posB)) |
|
_path = arrow.get_connectionstyle()( |
|
posA, |
|
posB, |
|
patchA=arrow.patchA, |
|
patchB=arrow.patchB, |
|
shrinkA=arrow.shrinkA * dpi_cor, |
|
shrinkB=arrow.shrinkB * dpi_cor, |
|
) |
|
|
|
return _path |
|
|
|
def _update_text_pos_angle(self, arrow): |
|
|
|
|
|
|
|
t = self.label_pos |
|
tt = 1 - t |
|
path_disp = self._get_arrow_path_disp(arrow) |
|
is_bar_style = isinstance( |
|
arrow.get_connectionstyle(), mpl.patches.ConnectionStyle.Bar |
|
) |
|
|
|
if is_bar_style: |
|
|
|
_, (cx1, cy1), (cx2, cy2), _ = path_disp.vertices |
|
x = cx1 * tt + cx2 * t |
|
y = cy1 * tt + cy2 * t |
|
else: |
|
|
|
(x1, y1), (cx, cy), (x2, y2) = path_disp.vertices |
|
x = tt**2 * x1 + 2 * t * tt * cx + t**2 * x2 |
|
y = tt**2 * y1 + 2 * t * tt * cy + t**2 * y2 |
|
|
|
if self.labels_horizontal: |
|
|
|
angle = 0 |
|
else: |
|
|
|
if is_bar_style: |
|
change_x = (cx2 - cx1) / 2 |
|
change_y = (cy2 - cy1) / 2 |
|
else: |
|
change_x = 2 * tt * (cx - x1) + 2 * t * (x2 - cx) |
|
change_y = 2 * tt * (cy - y1) + 2 * t * (y2 - cy) |
|
angle = np.arctan2(change_y, change_x) / (2 * np.pi) * 360 |
|
|
|
if angle > 90: |
|
angle -= 180 |
|
elif angle < -90: |
|
angle += 180 |
|
(x, y) = self.ax.transData.inverted().transform((x, y)) |
|
return x, y, angle |
|
|
|
def draw(self, renderer): |
|
|
|
self.x, self.y, self.angle = self._update_text_pos_angle(self.arrow) |
|
self.set_position((self.x, self.y)) |
|
self.set_rotation(self.angle) |
|
|
|
super().draw(renderer) |
|
|
|
|
|
if bbox is None: |
|
bbox = {"boxstyle": "round", "ec": (1.0, 1.0, 1.0), "fc": (1.0, 1.0, 1.0)} |
|
|
|
if isinstance(connectionstyle, str): |
|
connectionstyle = [connectionstyle] |
|
elif np.iterable(connectionstyle): |
|
connectionstyle = list(connectionstyle) |
|
else: |
|
raise nx.NetworkXError( |
|
"draw_networkx_edges arg `connectionstyle` must be" |
|
"string or iterable of strings" |
|
) |
|
|
|
if ax is None: |
|
ax = plt.gca() |
|
|
|
if edge_labels is None: |
|
kwds = {"keys": True} if G.is_multigraph() else {} |
|
edge_labels = {tuple(edge): d for *edge, d in G.edges(data=True, **kwds)} |
|
|
|
if not edge_labels: |
|
return {} |
|
edgelist, labels = zip(*edge_labels.items()) |
|
|
|
if nodelist is None: |
|
nodelist = list(G.nodes()) |
|
|
|
|
|
edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist]) |
|
|
|
if G.is_multigraph(): |
|
key_count = collections.defaultdict(lambda: itertools.count(0)) |
|
edge_indices = [next(key_count[tuple(e[:2])]) for e in edgelist] |
|
else: |
|
edge_indices = [0] * len(edgelist) |
|
|
|
|
|
|
|
|
|
h = 0 |
|
if edge_labels: |
|
miny = np.amin(np.ravel(edge_pos[:, :, 1])) |
|
maxy = np.amax(np.ravel(edge_pos[:, :, 1])) |
|
h = maxy - miny |
|
selfloop_height = h if h != 0 else 0.005 * np.array(node_size).max() |
|
fancy_arrow_factory = FancyArrowFactory( |
|
edge_pos, |
|
edgelist, |
|
nodelist, |
|
edge_indices, |
|
node_size, |
|
selfloop_height, |
|
connectionstyle, |
|
ax=ax, |
|
) |
|
|
|
individual_params = {} |
|
|
|
def check_individual_params(p_value, p_name): |
|
|
|
if isinstance(p_value, list): |
|
if len(p_value) != len(edgelist): |
|
raise ValueError(f"{p_name} must have the same length as edgelist.") |
|
individual_params[p_name] = p_value.iter() |
|
|
|
|
|
def get_param_value(p_value, p_name): |
|
if p_name in individual_params: |
|
return next(individual_params[p_name]) |
|
return p_value |
|
|
|
check_individual_params(font_size, "font_size") |
|
check_individual_params(font_color, "font_color") |
|
check_individual_params(font_weight, "font_weight") |
|
check_individual_params(alpha, "alpha") |
|
check_individual_params(horizontalalignment, "horizontalalignment") |
|
check_individual_params(verticalalignment, "verticalalignment") |
|
check_individual_params(rotate, "rotate") |
|
check_individual_params(label_pos, "label_pos") |
|
|
|
text_items = {} |
|
for i, (edge, label) in enumerate(zip(edgelist, labels)): |
|
if not isinstance(label, str): |
|
label = str(label) |
|
|
|
n1, n2 = edge[:2] |
|
arrow = fancy_arrow_factory(i) |
|
if n1 == n2: |
|
connectionstyle_obj = arrow.get_connectionstyle() |
|
posA = ax.transData.transform(pos[n1]) |
|
path_disp = connectionstyle_obj(posA, posA) |
|
path_data = ax.transData.inverted().transform_path(path_disp) |
|
x, y = path_data.vertices[0] |
|
text_items[edge] = ax.text( |
|
x, |
|
y, |
|
label, |
|
size=get_param_value(font_size, "font_size"), |
|
color=get_param_value(font_color, "font_color"), |
|
family=get_param_value(font_family, "font_family"), |
|
weight=get_param_value(font_weight, "font_weight"), |
|
alpha=get_param_value(alpha, "alpha"), |
|
horizontalalignment=get_param_value( |
|
horizontalalignment, "horizontalalignment" |
|
), |
|
verticalalignment=get_param_value( |
|
verticalalignment, "verticalalignment" |
|
), |
|
rotation=0, |
|
transform=ax.transData, |
|
bbox=bbox, |
|
zorder=1, |
|
clip_on=clip_on, |
|
) |
|
else: |
|
text_items[edge] = CurvedArrowText( |
|
arrow, |
|
label, |
|
size=get_param_value(font_size, "font_size"), |
|
color=get_param_value(font_color, "font_color"), |
|
family=get_param_value(font_family, "font_family"), |
|
weight=get_param_value(font_weight, "font_weight"), |
|
alpha=get_param_value(alpha, "alpha"), |
|
horizontalalignment=get_param_value( |
|
horizontalalignment, "horizontalalignment" |
|
), |
|
verticalalignment=get_param_value( |
|
verticalalignment, "verticalalignment" |
|
), |
|
transform=ax.transData, |
|
bbox=bbox, |
|
zorder=1, |
|
clip_on=clip_on, |
|
label_pos=get_param_value(label_pos, "label_pos"), |
|
labels_horizontal=not get_param_value(rotate, "rotate"), |
|
ax=ax, |
|
) |
|
|
|
if hide_ticks: |
|
ax.tick_params( |
|
axis="both", |
|
which="both", |
|
bottom=False, |
|
left=False, |
|
labelbottom=False, |
|
labelleft=False, |
|
) |
|
|
|
return text_items |
|
|
|
|
|
def draw_bipartite(G, **kwargs): |
|
"""Draw the graph `G` with a bipartite layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.bipartite_layout(G), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Raises |
|
------ |
|
NetworkXError : |
|
If `G` is not bipartite. |
|
|
|
Notes |
|
----- |
|
The layout is computed each time this function is called. For |
|
repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.bipartite_layout` directly and reuse the result:: |
|
|
|
>>> G = nx.complete_bipartite_graph(3, 3) |
|
>>> pos = nx.bipartite_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.complete_bipartite_graph(2, 5) |
|
>>> nx.draw_bipartite(G) |
|
|
|
See Also |
|
-------- |
|
:func:`~networkx.drawing.layout.bipartite_layout` |
|
""" |
|
draw(G, pos=nx.bipartite_layout(G), **kwargs) |
|
|
|
|
|
def draw_circular(G, **kwargs): |
|
"""Draw the graph `G` with a circular layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.circular_layout(G), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Notes |
|
----- |
|
The layout is computed each time this function is called. For |
|
repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.circular_layout` directly and reuse the result:: |
|
|
|
>>> G = nx.complete_graph(5) |
|
>>> pos = nx.circular_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(5) |
|
>>> nx.draw_circular(G) |
|
|
|
See Also |
|
-------- |
|
:func:`~networkx.drawing.layout.circular_layout` |
|
""" |
|
draw(G, pos=nx.circular_layout(G), **kwargs) |
|
|
|
|
|
def draw_kamada_kawai(G, **kwargs): |
|
"""Draw the graph `G` with a Kamada-Kawai force-directed layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.kamada_kawai_layout(G), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Notes |
|
----- |
|
The layout is computed each time this function is called. |
|
For repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.kamada_kawai_layout` directly and reuse the |
|
result:: |
|
|
|
>>> G = nx.complete_graph(5) |
|
>>> pos = nx.kamada_kawai_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(5) |
|
>>> nx.draw_kamada_kawai(G) |
|
|
|
See Also |
|
-------- |
|
:func:`~networkx.drawing.layout.kamada_kawai_layout` |
|
""" |
|
draw(G, pos=nx.kamada_kawai_layout(G), **kwargs) |
|
|
|
|
|
def draw_random(G, **kwargs): |
|
"""Draw the graph `G` with a random layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.random_layout(G), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Notes |
|
----- |
|
The layout is computed each time this function is called. |
|
For repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.random_layout` directly and reuse the result:: |
|
|
|
>>> G = nx.complete_graph(5) |
|
>>> pos = nx.random_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.lollipop_graph(4, 3) |
|
>>> nx.draw_random(G) |
|
|
|
See Also |
|
-------- |
|
:func:`~networkx.drawing.layout.random_layout` |
|
""" |
|
draw(G, pos=nx.random_layout(G), **kwargs) |
|
|
|
|
|
def draw_spectral(G, **kwargs): |
|
"""Draw the graph `G` with a spectral 2D layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.spectral_layout(G), **kwargs) |
|
|
|
For more information about how node positions are determined, see |
|
`~networkx.drawing.layout.spectral_layout`. |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Notes |
|
----- |
|
The layout is computed each time this function is called. |
|
For repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.spectral_layout` directly and reuse the result:: |
|
|
|
>>> G = nx.complete_graph(5) |
|
>>> pos = nx.spectral_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(5) |
|
>>> nx.draw_spectral(G) |
|
|
|
See Also |
|
-------- |
|
:func:`~networkx.drawing.layout.spectral_layout` |
|
""" |
|
draw(G, pos=nx.spectral_layout(G), **kwargs) |
|
|
|
|
|
def draw_spring(G, **kwargs): |
|
"""Draw the graph `G` with a spring layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.spring_layout(G), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Notes |
|
----- |
|
`~networkx.drawing.layout.spring_layout` is also the default layout for |
|
`draw`, so this function is equivalent to `draw`. |
|
|
|
The layout is computed each time this function is called. |
|
For repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.spring_layout` directly and reuse the result:: |
|
|
|
>>> G = nx.complete_graph(5) |
|
>>> pos = nx.spring_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(20) |
|
>>> nx.draw_spring(G) |
|
|
|
See Also |
|
-------- |
|
draw |
|
:func:`~networkx.drawing.layout.spring_layout` |
|
""" |
|
draw(G, pos=nx.spring_layout(G), **kwargs) |
|
|
|
|
|
def draw_shell(G, nlist=None, **kwargs): |
|
"""Draw networkx graph `G` with shell layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.shell_layout(G, nlist=nlist), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
nlist : list of list of nodes, optional |
|
A list containing lists of nodes representing the shells. |
|
Default is `None`, meaning all nodes are in a single shell. |
|
See `~networkx.drawing.layout.shell_layout` for details. |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Notes |
|
----- |
|
The layout is computed each time this function is called. |
|
For repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.shell_layout` directly and reuse the result:: |
|
|
|
>>> G = nx.complete_graph(5) |
|
>>> pos = nx.shell_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(4) |
|
>>> shells = [[0], [1, 2, 3]] |
|
>>> nx.draw_shell(G, nlist=shells) |
|
|
|
See Also |
|
-------- |
|
:func:`~networkx.drawing.layout.shell_layout` |
|
""" |
|
draw(G, pos=nx.shell_layout(G, nlist=nlist), **kwargs) |
|
|
|
|
|
def draw_planar(G, **kwargs): |
|
"""Draw a planar networkx graph `G` with planar layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.planar_layout(G), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A planar networkx graph |
|
|
|
kwargs : optional keywords |
|
See `draw_networkx` for a description of optional keywords. |
|
|
|
Raises |
|
------ |
|
NetworkXException |
|
When `G` is not planar |
|
|
|
Notes |
|
----- |
|
The layout is computed each time this function is called. |
|
For repeated drawing it is much more efficient to call |
|
`~networkx.drawing.layout.planar_layout` directly and reuse the result:: |
|
|
|
>>> G = nx.path_graph(5) |
|
>>> pos = nx.planar_layout(G) |
|
>>> nx.draw(G, pos=pos) # Draw the original graph |
|
>>> # Draw a subgraph, reusing the same node positions |
|
>>> nx.draw(G.subgraph([0, 1, 2]), pos=pos, node_color="red") |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(4) |
|
>>> nx.draw_planar(G) |
|
|
|
See Also |
|
-------- |
|
:func:`~networkx.drawing.layout.planar_layout` |
|
""" |
|
draw(G, pos=nx.planar_layout(G), **kwargs) |
|
|
|
|
|
def draw_forceatlas2(G, **kwargs): |
|
"""Draw a networkx graph with forceatlas2 layout. |
|
|
|
This is a convenience function equivalent to:: |
|
|
|
nx.draw(G, pos=nx.forceatlas2_layout(G), **kwargs) |
|
|
|
Parameters |
|
---------- |
|
G : graph |
|
A networkx graph |
|
|
|
kwargs : optional keywords |
|
See networkx.draw_networkx() for a description of optional keywords, |
|
with the exception of the pos parameter which is not used by this |
|
function. |
|
""" |
|
draw(G, pos=nx.forceatlas2_layout(G), **kwargs) |
|
|
|
|
|
def apply_alpha(colors, alpha, elem_list, cmap=None, vmin=None, vmax=None): |
|
"""Apply an alpha (or list of alphas) to the colors provided. |
|
|
|
Parameters |
|
---------- |
|
|
|
colors : color string or array of floats (default='r') |
|
Color of element. Can be a single color format string, |
|
or a sequence of colors with the same length as nodelist. |
|
If numeric values are specified they will be mapped to |
|
colors using the cmap and vmin,vmax parameters. See |
|
matplotlib.scatter for more details. |
|
|
|
alpha : float or array of floats |
|
Alpha values for elements. This can be a single alpha value, in |
|
which case it will be applied to all the elements of color. Otherwise, |
|
if it is an array, the elements of alpha will be applied to the colors |
|
in order (cycling through alpha multiple times if necessary). |
|
|
|
elem_list : array of networkx objects |
|
The list of elements which are being colored. These could be nodes, |
|
edges or labels. |
|
|
|
cmap : matplotlib colormap |
|
Color map for use if colors is a list of floats corresponding to points |
|
on a color mapping. |
|
|
|
vmin, vmax : float |
|
Minimum and maximum values for normalizing colors if a colormap is used |
|
|
|
Returns |
|
------- |
|
|
|
rgba_colors : numpy ndarray |
|
Array containing RGBA format values for each of the node colours. |
|
|
|
""" |
|
from itertools import cycle, islice |
|
|
|
import matplotlib as mpl |
|
import matplotlib.cm |
|
import matplotlib.colors |
|
import numpy as np |
|
|
|
|
|
|
|
if len(colors) == len(elem_list) and isinstance(colors[0], Number): |
|
mapper = mpl.cm.ScalarMappable(cmap=cmap) |
|
mapper.set_clim(vmin, vmax) |
|
rgba_colors = mapper.to_rgba(colors) |
|
|
|
|
|
|
|
else: |
|
try: |
|
rgba_colors = np.array([mpl.colors.colorConverter.to_rgba(colors)]) |
|
except ValueError: |
|
rgba_colors = np.array( |
|
[mpl.colors.colorConverter.to_rgba(color) for color in colors] |
|
) |
|
|
|
try: |
|
|
|
|
|
|
|
|
|
if len(alpha) > len(rgba_colors) or rgba_colors.size == len(elem_list): |
|
rgba_colors = np.resize(rgba_colors, (len(elem_list), 4)) |
|
rgba_colors[1:, 0] = rgba_colors[0, 0] |
|
rgba_colors[1:, 1] = rgba_colors[0, 1] |
|
rgba_colors[1:, 2] = rgba_colors[0, 2] |
|
rgba_colors[:, 3] = list(islice(cycle(alpha), len(rgba_colors))) |
|
except TypeError: |
|
rgba_colors[:, -1] = alpha |
|
return rgba_colors |
|
|