|
""" |
|
View Classes provide node, edge and degree "views" of a graph. |
|
|
|
Views for nodes, edges and degree are provided for all base graph classes. |
|
A view means a read-only object that is quick to create, automatically |
|
updated when the graph changes, and provides basic access like `n in V`, |
|
`for n in V`, `V[n]` and sometimes set operations. |
|
|
|
The views are read-only iterable containers that are updated as the |
|
graph is updated. As with dicts, the graph should not be updated |
|
while iterating through the view. Views can be iterated multiple times. |
|
|
|
Edge and Node views also allow data attribute lookup. |
|
The resulting attribute dict is writable as `G.edges[3, 4]['color']='red'` |
|
Degree views allow lookup of degree values for single nodes. |
|
Weighted degree is supported with the `weight` argument. |
|
|
|
NodeView |
|
======== |
|
|
|
`V = G.nodes` (or `V = G.nodes()`) allows `len(V)`, `n in V`, set |
|
operations e.g. "G.nodes & H.nodes", and `dd = G.nodes[n]`, where |
|
`dd` is the node data dict. Iteration is over the nodes by default. |
|
|
|
NodeDataView |
|
============ |
|
|
|
To iterate over (node, data) pairs, use arguments to `G.nodes()` |
|
to create a DataView e.g. `DV = G.nodes(data='color', default='red')`. |
|
The DataView iterates as `for n, color in DV` and allows |
|
`(n, 'red') in DV`. Using `DV = G.nodes(data=True)`, the DataViews |
|
use the full datadict in writeable form also allowing contain testing as |
|
`(n, {'color': 'red'}) in VD`. DataViews allow set operations when |
|
data attributes are hashable. |
|
|
|
DegreeView |
|
========== |
|
|
|
`V = G.degree` allows iteration over (node, degree) pairs as well |
|
as lookup: `deg=V[n]`. There are many flavors of DegreeView |
|
for In/Out/Directed/Multi. For Directed Graphs, `G.degree` |
|
counts both in and out going edges. `G.out_degree` and |
|
`G.in_degree` count only specific directions. |
|
Weighted degree using edge data attributes is provide via |
|
`V = G.degree(weight='attr_name')` where any string with the |
|
attribute name can be used. `weight=None` is the default. |
|
No set operations are implemented for degrees, use NodeView. |
|
|
|
The argument `nbunch` restricts iteration to nodes in nbunch. |
|
The DegreeView can still lookup any node even if nbunch is specified. |
|
|
|
EdgeView |
|
======== |
|
|
|
`V = G.edges` or `V = G.edges()` allows iteration over edges as well as |
|
`e in V`, set operations and edge data lookup `dd = G.edges[2, 3]`. |
|
Iteration is over 2-tuples `(u, v)` for Graph/DiGraph. For multigraphs |
|
edges 3-tuples `(u, v, key)` are the default but 2-tuples can be obtained |
|
via `V = G.edges(keys=False)`. |
|
|
|
Set operations for directed graphs treat the edges as a set of 2-tuples. |
|
For undirected graphs, 2-tuples are not a unique representation of edges. |
|
So long as the set being compared to contains unique representations |
|
of its edges, the set operations will act as expected. If the other |
|
set contains both `(0, 1)` and `(1, 0)` however, the result of set |
|
operations may contain both representations of the same edge. |
|
|
|
EdgeDataView |
|
============ |
|
|
|
Edge data can be reported using an EdgeDataView typically created |
|
by calling an EdgeView: `DV = G.edges(data='weight', default=1)`. |
|
The EdgeDataView allows iteration over edge tuples, membership checking |
|
but no set operations. |
|
|
|
Iteration depends on `data` and `default` and for multigraph `keys` |
|
If `data is False` (the default) then iterate over 2-tuples `(u, v)`. |
|
If `data is True` iterate over 3-tuples `(u, v, datadict)`. |
|
Otherwise iterate over `(u, v, datadict.get(data, default))`. |
|
For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key` |
|
to create 3-tuples and 4-tuples. |
|
|
|
The argument `nbunch` restricts edges to those incident to nodes in nbunch. |
|
""" |
|
|
|
from abc import ABC |
|
from collections.abc import Mapping, Set |
|
|
|
import networkx as nx |
|
|
|
__all__ = [ |
|
"NodeView", |
|
"NodeDataView", |
|
"EdgeView", |
|
"OutEdgeView", |
|
"InEdgeView", |
|
"EdgeDataView", |
|
"OutEdgeDataView", |
|
"InEdgeDataView", |
|
"MultiEdgeView", |
|
"OutMultiEdgeView", |
|
"InMultiEdgeView", |
|
"MultiEdgeDataView", |
|
"OutMultiEdgeDataView", |
|
"InMultiEdgeDataView", |
|
"DegreeView", |
|
"DiDegreeView", |
|
"InDegreeView", |
|
"OutDegreeView", |
|
"MultiDegreeView", |
|
"DiMultiDegreeView", |
|
"InMultiDegreeView", |
|
"OutMultiDegreeView", |
|
] |
|
|
|
|
|
|
|
class NodeView(Mapping, Set): |
|
"""A NodeView class to act as G.nodes for a NetworkX Graph |
|
|
|
Set operations act on the nodes without considering data. |
|
Iteration is over nodes. Node data can be looked up like a dict. |
|
Use NodeDataView to iterate over node data or to specify a data |
|
attribute for lookup. NodeDataView is created by calling the NodeView. |
|
|
|
Parameters |
|
---------- |
|
graph : NetworkX graph-like class |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(3) |
|
>>> NV = G.nodes() |
|
>>> 2 in NV |
|
True |
|
>>> for n in NV: |
|
... print(n) |
|
0 |
|
1 |
|
2 |
|
>>> assert NV & {1, 2, 3} == {1, 2} |
|
|
|
>>> G.add_node(2, color="blue") |
|
>>> NV[2] |
|
{'color': 'blue'} |
|
>>> G.add_node(8, color="red") |
|
>>> NDV = G.nodes(data=True) |
|
>>> (2, NV[2]) in NDV |
|
True |
|
>>> for n, dd in NDV: |
|
... print((n, dd.get("color", "aqua"))) |
|
(0, 'aqua') |
|
(1, 'aqua') |
|
(2, 'blue') |
|
(8, 'red') |
|
>>> NDV[2] == NV[2] |
|
True |
|
|
|
>>> NVdata = G.nodes(data="color", default="aqua") |
|
>>> (2, NVdata[2]) in NVdata |
|
True |
|
>>> for n, dd in NVdata: |
|
... print((n, dd)) |
|
(0, 'aqua') |
|
(1, 'aqua') |
|
(2, 'blue') |
|
(8, 'red') |
|
>>> NVdata[2] == NV[2] # NVdata gets 'color', NV gets datadict |
|
False |
|
""" |
|
|
|
__slots__ = ("_nodes",) |
|
|
|
def __getstate__(self): |
|
return {"_nodes": self._nodes} |
|
|
|
def __setstate__(self, state): |
|
self._nodes = state["_nodes"] |
|
|
|
def __init__(self, graph): |
|
self._nodes = graph._node |
|
|
|
|
|
def __len__(self): |
|
return len(self._nodes) |
|
|
|
def __iter__(self): |
|
return iter(self._nodes) |
|
|
|
def __getitem__(self, n): |
|
if isinstance(n, slice): |
|
raise nx.NetworkXError( |
|
f"{type(self).__name__} does not support slicing, " |
|
f"try list(G.nodes)[{n.start}:{n.stop}:{n.step}]" |
|
) |
|
return self._nodes[n] |
|
|
|
|
|
def __contains__(self, n): |
|
return n in self._nodes |
|
|
|
@classmethod |
|
def _from_iterable(cls, it): |
|
return set(it) |
|
|
|
|
|
def __call__(self, data=False, default=None): |
|
if data is False: |
|
return self |
|
return NodeDataView(self._nodes, data, default) |
|
|
|
def data(self, data=True, default=None): |
|
""" |
|
Return a read-only view of node data. |
|
|
|
Parameters |
|
---------- |
|
data : bool or node data key, default=True |
|
If ``data=True`` (the default), return a `NodeDataView` object that |
|
maps each node to *all* of its attributes. `data` may also be an |
|
arbitrary key, in which case the `NodeDataView` maps each node to |
|
the value for the keyed attribute. In this case, if a node does |
|
not have the `data` attribute, the `default` value is used. |
|
default : object, default=None |
|
The value used when a node does not have a specific attribute. |
|
|
|
Returns |
|
------- |
|
NodeDataView |
|
The layout of the returned NodeDataView depends on the value of the |
|
`data` parameter. |
|
|
|
Notes |
|
----- |
|
If ``data=False``, returns a `NodeView` object without data. |
|
|
|
See Also |
|
-------- |
|
NodeDataView |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.Graph() |
|
>>> G.add_nodes_from( |
|
... [ |
|
... (0, {"color": "red", "weight": 10}), |
|
... (1, {"color": "blue"}), |
|
... (2, {"color": "yellow", "weight": 2}), |
|
... ] |
|
... ) |
|
|
|
Accessing node data with ``data=True`` (the default) returns a |
|
NodeDataView mapping each node to all of its attributes: |
|
|
|
>>> G.nodes.data() |
|
NodeDataView({0: {'color': 'red', 'weight': 10}, 1: {'color': 'blue'}, 2: {'color': 'yellow', 'weight': 2}}) |
|
|
|
If `data` represents a key in the node attribute dict, a NodeDataView mapping |
|
the nodes to the value for that specific key is returned: |
|
|
|
>>> G.nodes.data("color") |
|
NodeDataView({0: 'red', 1: 'blue', 2: 'yellow'}, data='color') |
|
|
|
If a specific key is not found in an attribute dict, the value specified |
|
by `default` is returned: |
|
|
|
>>> G.nodes.data("weight", default=-999) |
|
NodeDataView({0: 10, 1: -999, 2: 2}, data='weight') |
|
|
|
Note that there is no check that the `data` key is in any of the |
|
node attribute dictionaries: |
|
|
|
>>> G.nodes.data("height") |
|
NodeDataView({0: None, 1: None, 2: None}, data='height') |
|
""" |
|
if data is False: |
|
return self |
|
return NodeDataView(self._nodes, data, default) |
|
|
|
def __str__(self): |
|
return str(list(self)) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({tuple(self)})" |
|
|
|
|
|
class NodeDataView(Set): |
|
"""A DataView class for nodes of a NetworkX Graph |
|
|
|
The main use for this class is to iterate through node-data pairs. |
|
The data can be the entire data-dictionary for each node, or it |
|
can be a specific attribute (with default) for each node. |
|
Set operations are enabled with NodeDataView, but don't work in |
|
cases where the data is not hashable. Use with caution. |
|
Typically, set operations on nodes use NodeView, not NodeDataView. |
|
That is, they use `G.nodes` instead of `G.nodes(data='foo')`. |
|
|
|
Parameters |
|
========== |
|
graph : NetworkX graph-like class |
|
data : bool or string (default=False) |
|
default : object (default=None) |
|
""" |
|
|
|
__slots__ = ("_nodes", "_data", "_default") |
|
|
|
def __getstate__(self): |
|
return {"_nodes": self._nodes, "_data": self._data, "_default": self._default} |
|
|
|
def __setstate__(self, state): |
|
self._nodes = state["_nodes"] |
|
self._data = state["_data"] |
|
self._default = state["_default"] |
|
|
|
def __init__(self, nodedict, data=False, default=None): |
|
self._nodes = nodedict |
|
self._data = data |
|
self._default = default |
|
|
|
@classmethod |
|
def _from_iterable(cls, it): |
|
try: |
|
return set(it) |
|
except TypeError as err: |
|
if "unhashable" in str(err): |
|
msg = " : Could be b/c data=True or your values are unhashable" |
|
raise TypeError(str(err) + msg) from err |
|
raise |
|
|
|
def __len__(self): |
|
return len(self._nodes) |
|
|
|
def __iter__(self): |
|
data = self._data |
|
if data is False: |
|
return iter(self._nodes) |
|
if data is True: |
|
return iter(self._nodes.items()) |
|
return ( |
|
(n, dd[data] if data in dd else self._default) |
|
for n, dd in self._nodes.items() |
|
) |
|
|
|
def __contains__(self, n): |
|
try: |
|
node_in = n in self._nodes |
|
except TypeError: |
|
n, d = n |
|
return n in self._nodes and self[n] == d |
|
if node_in is True: |
|
return node_in |
|
try: |
|
n, d = n |
|
except (TypeError, ValueError): |
|
return False |
|
return n in self._nodes and self[n] == d |
|
|
|
def __getitem__(self, n): |
|
if isinstance(n, slice): |
|
raise nx.NetworkXError( |
|
f"{type(self).__name__} does not support slicing, " |
|
f"try list(G.nodes.data())[{n.start}:{n.stop}:{n.step}]" |
|
) |
|
ddict = self._nodes[n] |
|
data = self._data |
|
if data is False or data is True: |
|
return ddict |
|
return ddict[data] if data in ddict else self._default |
|
|
|
def __str__(self): |
|
return str(list(self)) |
|
|
|
def __repr__(self): |
|
name = self.__class__.__name__ |
|
if self._data is False: |
|
return f"{name}({tuple(self)})" |
|
if self._data is True: |
|
return f"{name}({dict(self)})" |
|
return f"{name}({dict(self)}, data={self._data!r})" |
|
|
|
|
|
|
|
class DiDegreeView: |
|
"""A View class for degree of nodes in a NetworkX Graph |
|
|
|
The functionality is like dict.items() with (node, degree) pairs. |
|
Additional functionality includes read-only lookup of node degree, |
|
and calling with optional features nbunch (for only a subset of nodes) |
|
and weight (use edge weights to compute degree). |
|
|
|
Parameters |
|
========== |
|
graph : NetworkX graph-like class |
|
nbunch : node, container of nodes, or None meaning all nodes (default=None) |
|
weight : bool or string (default=None) |
|
|
|
Notes |
|
----- |
|
DegreeView can still lookup any node even if nbunch is specified. |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(3) |
|
>>> DV = G.degree() |
|
>>> assert DV[2] == 1 |
|
>>> assert sum(deg for n, deg in DV) == 4 |
|
|
|
>>> DVweight = G.degree(weight="span") |
|
>>> G.add_edge(1, 2, span=34) |
|
>>> DVweight[2] |
|
34 |
|
>>> DVweight[0] # default edge weight is 1 |
|
1 |
|
>>> sum(span for n, span in DVweight) # sum weighted degrees |
|
70 |
|
|
|
>>> DVnbunch = G.degree(nbunch=(1, 2)) |
|
>>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only |
|
""" |
|
|
|
def __init__(self, G, nbunch=None, weight=None): |
|
self._graph = G |
|
self._succ = G._succ if hasattr(G, "_succ") else G._adj |
|
self._pred = G._pred if hasattr(G, "_pred") else G._adj |
|
self._nodes = self._succ if nbunch is None else list(G.nbunch_iter(nbunch)) |
|
self._weight = weight |
|
|
|
def __call__(self, nbunch=None, weight=None): |
|
if nbunch is None: |
|
if weight == self._weight: |
|
return self |
|
return self.__class__(self._graph, None, weight) |
|
try: |
|
if nbunch in self._nodes: |
|
if weight == self._weight: |
|
return self[nbunch] |
|
return self.__class__(self._graph, None, weight)[nbunch] |
|
except TypeError: |
|
pass |
|
return self.__class__(self._graph, nbunch, weight) |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
succs = self._succ[n] |
|
preds = self._pred[n] |
|
if weight is None: |
|
return len(succs) + len(preds) |
|
return sum(dd.get(weight, 1) for dd in succs.values()) + sum( |
|
dd.get(weight, 1) for dd in preds.values() |
|
) |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
succs = self._succ[n] |
|
preds = self._pred[n] |
|
yield (n, len(succs) + len(preds)) |
|
else: |
|
for n in self._nodes: |
|
succs = self._succ[n] |
|
preds = self._pred[n] |
|
deg = sum(dd.get(weight, 1) for dd in succs.values()) + sum( |
|
dd.get(weight, 1) for dd in preds.values() |
|
) |
|
yield (n, deg) |
|
|
|
def __len__(self): |
|
return len(self._nodes) |
|
|
|
def __str__(self): |
|
return str(list(self)) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({dict(self)})" |
|
|
|
|
|
class DegreeView(DiDegreeView): |
|
"""A DegreeView class to act as G.degree for a NetworkX Graph |
|
|
|
Typical usage focuses on iteration over `(node, degree)` pairs. |
|
The degree is by default the number of edges incident to the node. |
|
Optional argument `weight` enables weighted degree using the edge |
|
attribute named in the `weight` argument. Reporting and iteration |
|
can also be restricted to a subset of nodes using `nbunch`. |
|
|
|
Additional functionality include node lookup so that `G.degree[n]` |
|
reported the (possibly weighted) degree of node `n`. Calling the |
|
view creates a view with different arguments `nbunch` or `weight`. |
|
|
|
Parameters |
|
========== |
|
graph : NetworkX graph-like class |
|
nbunch : node, container of nodes, or None meaning all nodes (default=None) |
|
weight : string or None (default=None) |
|
|
|
Notes |
|
----- |
|
DegreeView can still lookup any node even if nbunch is specified. |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(3) |
|
>>> DV = G.degree() |
|
>>> assert DV[2] == 1 |
|
>>> assert G.degree[2] == 1 |
|
>>> assert sum(deg for n, deg in DV) == 4 |
|
|
|
>>> DVweight = G.degree(weight="span") |
|
>>> G.add_edge(1, 2, span=34) |
|
>>> DVweight[2] |
|
34 |
|
>>> DVweight[0] # default edge weight is 1 |
|
1 |
|
>>> sum(span for n, span in DVweight) # sum weighted degrees |
|
70 |
|
|
|
>>> DVnbunch = G.degree(nbunch=(1, 2)) |
|
>>> assert len(list(DVnbunch)) == 2 # iteration over nbunch only |
|
""" |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
nbrs = self._succ[n] |
|
if weight is None: |
|
return len(nbrs) + (n in nbrs) |
|
return sum(dd.get(weight, 1) for dd in nbrs.values()) + ( |
|
n in nbrs and nbrs[n].get(weight, 1) |
|
) |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
nbrs = self._succ[n] |
|
yield (n, len(nbrs) + (n in nbrs)) |
|
else: |
|
for n in self._nodes: |
|
nbrs = self._succ[n] |
|
deg = sum(dd.get(weight, 1) for dd in nbrs.values()) + ( |
|
n in nbrs and nbrs[n].get(weight, 1) |
|
) |
|
yield (n, deg) |
|
|
|
|
|
class OutDegreeView(DiDegreeView): |
|
"""A DegreeView class to report out_degree for a DiGraph; See DegreeView""" |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
nbrs = self._succ[n] |
|
if self._weight is None: |
|
return len(nbrs) |
|
return sum(dd.get(self._weight, 1) for dd in nbrs.values()) |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
succs = self._succ[n] |
|
yield (n, len(succs)) |
|
else: |
|
for n in self._nodes: |
|
succs = self._succ[n] |
|
deg = sum(dd.get(weight, 1) for dd in succs.values()) |
|
yield (n, deg) |
|
|
|
|
|
class InDegreeView(DiDegreeView): |
|
"""A DegreeView class to report in_degree for a DiGraph; See DegreeView""" |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
nbrs = self._pred[n] |
|
if weight is None: |
|
return len(nbrs) |
|
return sum(dd.get(weight, 1) for dd in nbrs.values()) |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
preds = self._pred[n] |
|
yield (n, len(preds)) |
|
else: |
|
for n in self._nodes: |
|
preds = self._pred[n] |
|
deg = sum(dd.get(weight, 1) for dd in preds.values()) |
|
yield (n, deg) |
|
|
|
|
|
class MultiDegreeView(DiDegreeView): |
|
"""A DegreeView class for undirected multigraphs; See DegreeView""" |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
nbrs = self._succ[n] |
|
if weight is None: |
|
return sum(len(keys) for keys in nbrs.values()) + ( |
|
n in nbrs and len(nbrs[n]) |
|
) |
|
|
|
deg = sum( |
|
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values() |
|
) |
|
if n in nbrs: |
|
deg += sum(d.get(weight, 1) for d in nbrs[n].values()) |
|
return deg |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
nbrs = self._succ[n] |
|
deg = sum(len(keys) for keys in nbrs.values()) + ( |
|
n in nbrs and len(nbrs[n]) |
|
) |
|
yield (n, deg) |
|
else: |
|
for n in self._nodes: |
|
nbrs = self._succ[n] |
|
deg = sum( |
|
d.get(weight, 1) |
|
for key_dict in nbrs.values() |
|
for d in key_dict.values() |
|
) |
|
if n in nbrs: |
|
deg += sum(d.get(weight, 1) for d in nbrs[n].values()) |
|
yield (n, deg) |
|
|
|
|
|
class DiMultiDegreeView(DiDegreeView): |
|
"""A DegreeView class for MultiDiGraph; See DegreeView""" |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
succs = self._succ[n] |
|
preds = self._pred[n] |
|
if weight is None: |
|
return sum(len(keys) for keys in succs.values()) + sum( |
|
len(keys) for keys in preds.values() |
|
) |
|
|
|
deg = sum( |
|
d.get(weight, 1) for key_dict in succs.values() for d in key_dict.values() |
|
) + sum( |
|
d.get(weight, 1) for key_dict in preds.values() for d in key_dict.values() |
|
) |
|
return deg |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
succs = self._succ[n] |
|
preds = self._pred[n] |
|
deg = sum(len(keys) for keys in succs.values()) + sum( |
|
len(keys) for keys in preds.values() |
|
) |
|
yield (n, deg) |
|
else: |
|
for n in self._nodes: |
|
succs = self._succ[n] |
|
preds = self._pred[n] |
|
deg = sum( |
|
d.get(weight, 1) |
|
for key_dict in succs.values() |
|
for d in key_dict.values() |
|
) + sum( |
|
d.get(weight, 1) |
|
for key_dict in preds.values() |
|
for d in key_dict.values() |
|
) |
|
yield (n, deg) |
|
|
|
|
|
class InMultiDegreeView(DiDegreeView): |
|
"""A DegreeView class for inward degree of MultiDiGraph; See DegreeView""" |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
nbrs = self._pred[n] |
|
if weight is None: |
|
return sum(len(data) for data in nbrs.values()) |
|
|
|
return sum( |
|
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values() |
|
) |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
nbrs = self._pred[n] |
|
deg = sum(len(data) for data in nbrs.values()) |
|
yield (n, deg) |
|
else: |
|
for n in self._nodes: |
|
nbrs = self._pred[n] |
|
deg = sum( |
|
d.get(weight, 1) |
|
for key_dict in nbrs.values() |
|
for d in key_dict.values() |
|
) |
|
yield (n, deg) |
|
|
|
|
|
class OutMultiDegreeView(DiDegreeView): |
|
"""A DegreeView class for outward degree of MultiDiGraph; See DegreeView""" |
|
|
|
def __getitem__(self, n): |
|
weight = self._weight |
|
nbrs = self._succ[n] |
|
if weight is None: |
|
return sum(len(data) for data in nbrs.values()) |
|
|
|
return sum( |
|
d.get(weight, 1) for key_dict in nbrs.values() for d in key_dict.values() |
|
) |
|
|
|
def __iter__(self): |
|
weight = self._weight |
|
if weight is None: |
|
for n in self._nodes: |
|
nbrs = self._succ[n] |
|
deg = sum(len(data) for data in nbrs.values()) |
|
yield (n, deg) |
|
else: |
|
for n in self._nodes: |
|
nbrs = self._succ[n] |
|
deg = sum( |
|
d.get(weight, 1) |
|
for key_dict in nbrs.values() |
|
for d in key_dict.values() |
|
) |
|
yield (n, deg) |
|
|
|
|
|
|
|
|
|
|
|
class EdgeViewABC(ABC): |
|
pass |
|
|
|
|
|
|
|
class OutEdgeDataView(EdgeViewABC): |
|
"""EdgeDataView for outward edges of DiGraph; See EdgeDataView""" |
|
|
|
__slots__ = ( |
|
"_viewer", |
|
"_nbunch", |
|
"_data", |
|
"_default", |
|
"_adjdict", |
|
"_nodes_nbrs", |
|
"_report", |
|
) |
|
|
|
def __getstate__(self): |
|
return { |
|
"viewer": self._viewer, |
|
"nbunch": self._nbunch, |
|
"data": self._data, |
|
"default": self._default, |
|
} |
|
|
|
def __setstate__(self, state): |
|
self.__init__(**state) |
|
|
|
def __init__(self, viewer, nbunch=None, data=False, *, default=None): |
|
self._viewer = viewer |
|
adjdict = self._adjdict = viewer._adjdict |
|
if nbunch is None: |
|
self._nodes_nbrs = adjdict.items |
|
else: |
|
|
|
nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch)) |
|
self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch] |
|
self._nbunch = nbunch |
|
self._data = data |
|
self._default = default |
|
|
|
if data is True: |
|
self._report = lambda n, nbr, dd: (n, nbr, dd) |
|
elif data is False: |
|
self._report = lambda n, nbr, dd: (n, nbr) |
|
else: |
|
self._report = ( |
|
lambda n, nbr, dd: (n, nbr, dd[data]) |
|
if data in dd |
|
else (n, nbr, default) |
|
) |
|
|
|
def __len__(self): |
|
return sum(len(nbrs) for n, nbrs in self._nodes_nbrs()) |
|
|
|
def __iter__(self): |
|
return ( |
|
self._report(n, nbr, dd) |
|
for n, nbrs in self._nodes_nbrs() |
|
for nbr, dd in nbrs.items() |
|
) |
|
|
|
def __contains__(self, e): |
|
u, v = e[:2] |
|
if self._nbunch is not None and u not in self._nbunch: |
|
return False |
|
try: |
|
ddict = self._adjdict[u][v] |
|
except KeyError: |
|
return False |
|
return e == self._report(u, v, ddict) |
|
|
|
def __str__(self): |
|
return str(list(self)) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({list(self)})" |
|
|
|
|
|
class EdgeDataView(OutEdgeDataView): |
|
"""A EdgeDataView class for edges of Graph |
|
|
|
This view is primarily used to iterate over the edges reporting |
|
edges as node-tuples with edge data optionally reported. The |
|
argument `nbunch` allows restriction to edges incident to nodes |
|
in that container/singleton. The default (nbunch=None) |
|
reports all edges. The arguments `data` and `default` control |
|
what edge data is reported. The default `data is False` reports |
|
only node-tuples for each edge. If `data is True` the entire edge |
|
data dict is returned. Otherwise `data` is assumed to hold the name |
|
of the edge attribute to report with default `default` if that |
|
edge attribute is not present. |
|
|
|
Parameters |
|
---------- |
|
nbunch : container of nodes, node or None (default None) |
|
data : False, True or string (default False) |
|
default : default value (default None) |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.path_graph(3) |
|
>>> G.add_edge(1, 2, foo="bar") |
|
>>> list(G.edges(data="foo", default="biz")) |
|
[(0, 1, 'biz'), (1, 2, 'bar')] |
|
>>> assert (0, 1, "biz") in G.edges(data="foo", default="biz") |
|
""" |
|
|
|
__slots__ = () |
|
|
|
def __len__(self): |
|
return sum(1 for e in self) |
|
|
|
def __iter__(self): |
|
seen = {} |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr, dd in nbrs.items(): |
|
if nbr not in seen: |
|
yield self._report(n, nbr, dd) |
|
seen[n] = 1 |
|
del seen |
|
|
|
def __contains__(self, e): |
|
u, v = e[:2] |
|
if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch: |
|
return False |
|
try: |
|
ddict = self._adjdict[u][v] |
|
except KeyError: |
|
return False |
|
return e == self._report(u, v, ddict) |
|
|
|
|
|
class InEdgeDataView(OutEdgeDataView): |
|
"""An EdgeDataView class for outward edges of DiGraph; See EdgeDataView""" |
|
|
|
__slots__ = () |
|
|
|
def __iter__(self): |
|
return ( |
|
self._report(nbr, n, dd) |
|
for n, nbrs in self._nodes_nbrs() |
|
for nbr, dd in nbrs.items() |
|
) |
|
|
|
def __contains__(self, e): |
|
u, v = e[:2] |
|
if self._nbunch is not None and v not in self._nbunch: |
|
return False |
|
try: |
|
ddict = self._adjdict[v][u] |
|
except KeyError: |
|
return False |
|
return e == self._report(u, v, ddict) |
|
|
|
|
|
class OutMultiEdgeDataView(OutEdgeDataView): |
|
"""An EdgeDataView for outward edges of MultiDiGraph; See EdgeDataView""" |
|
|
|
__slots__ = ("keys",) |
|
|
|
def __getstate__(self): |
|
return { |
|
"viewer": self._viewer, |
|
"nbunch": self._nbunch, |
|
"keys": self.keys, |
|
"data": self._data, |
|
"default": self._default, |
|
} |
|
|
|
def __setstate__(self, state): |
|
self.__init__(**state) |
|
|
|
def __init__(self, viewer, nbunch=None, data=False, *, default=None, keys=False): |
|
self._viewer = viewer |
|
adjdict = self._adjdict = viewer._adjdict |
|
self.keys = keys |
|
if nbunch is None: |
|
self._nodes_nbrs = adjdict.items |
|
else: |
|
|
|
nbunch = dict.fromkeys(viewer._graph.nbunch_iter(nbunch)) |
|
self._nodes_nbrs = lambda: [(n, adjdict[n]) for n in nbunch] |
|
self._nbunch = nbunch |
|
self._data = data |
|
self._default = default |
|
|
|
if data is True: |
|
if keys is True: |
|
self._report = lambda n, nbr, k, dd: (n, nbr, k, dd) |
|
else: |
|
self._report = lambda n, nbr, k, dd: (n, nbr, dd) |
|
elif data is False: |
|
if keys is True: |
|
self._report = lambda n, nbr, k, dd: (n, nbr, k) |
|
else: |
|
self._report = lambda n, nbr, k, dd: (n, nbr) |
|
else: |
|
if keys is True: |
|
self._report = ( |
|
lambda n, nbr, k, dd: (n, nbr, k, dd[data]) |
|
if data in dd |
|
else (n, nbr, k, default) |
|
) |
|
else: |
|
self._report = ( |
|
lambda n, nbr, k, dd: (n, nbr, dd[data]) |
|
if data in dd |
|
else (n, nbr, default) |
|
) |
|
|
|
def __len__(self): |
|
return sum(1 for e in self) |
|
|
|
def __iter__(self): |
|
return ( |
|
self._report(n, nbr, k, dd) |
|
for n, nbrs in self._nodes_nbrs() |
|
for nbr, kd in nbrs.items() |
|
for k, dd in kd.items() |
|
) |
|
|
|
def __contains__(self, e): |
|
u, v = e[:2] |
|
if self._nbunch is not None and u not in self._nbunch: |
|
return False |
|
try: |
|
kdict = self._adjdict[u][v] |
|
except KeyError: |
|
return False |
|
if self.keys is True: |
|
k = e[2] |
|
try: |
|
dd = kdict[k] |
|
except KeyError: |
|
return False |
|
return e == self._report(u, v, k, dd) |
|
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items()) |
|
|
|
|
|
class MultiEdgeDataView(OutMultiEdgeDataView): |
|
"""An EdgeDataView class for edges of MultiGraph; See EdgeDataView""" |
|
|
|
__slots__ = () |
|
|
|
def __iter__(self): |
|
seen = {} |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr, kd in nbrs.items(): |
|
if nbr not in seen: |
|
for k, dd in kd.items(): |
|
yield self._report(n, nbr, k, dd) |
|
seen[n] = 1 |
|
del seen |
|
|
|
def __contains__(self, e): |
|
u, v = e[:2] |
|
if self._nbunch is not None and u not in self._nbunch and v not in self._nbunch: |
|
return False |
|
try: |
|
kdict = self._adjdict[u][v] |
|
except KeyError: |
|
try: |
|
kdict = self._adjdict[v][u] |
|
except KeyError: |
|
return False |
|
if self.keys is True: |
|
k = e[2] |
|
try: |
|
dd = kdict[k] |
|
except KeyError: |
|
return False |
|
return e == self._report(u, v, k, dd) |
|
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items()) |
|
|
|
|
|
class InMultiEdgeDataView(OutMultiEdgeDataView): |
|
"""An EdgeDataView for inward edges of MultiDiGraph; See EdgeDataView""" |
|
|
|
__slots__ = () |
|
|
|
def __iter__(self): |
|
return ( |
|
self._report(nbr, n, k, dd) |
|
for n, nbrs in self._nodes_nbrs() |
|
for nbr, kd in nbrs.items() |
|
for k, dd in kd.items() |
|
) |
|
|
|
def __contains__(self, e): |
|
u, v = e[:2] |
|
if self._nbunch is not None and v not in self._nbunch: |
|
return False |
|
try: |
|
kdict = self._adjdict[v][u] |
|
except KeyError: |
|
return False |
|
if self.keys is True: |
|
k = e[2] |
|
dd = kdict[k] |
|
return e == self._report(u, v, k, dd) |
|
return any(e == self._report(u, v, k, dd) for k, dd in kdict.items()) |
|
|
|
|
|
|
|
class OutEdgeView(Set, Mapping, EdgeViewABC): |
|
"""A EdgeView class for outward edges of a DiGraph""" |
|
|
|
__slots__ = ("_adjdict", "_graph", "_nodes_nbrs") |
|
|
|
def __getstate__(self): |
|
return {"_graph": self._graph, "_adjdict": self._adjdict} |
|
|
|
def __setstate__(self, state): |
|
self._graph = state["_graph"] |
|
self._adjdict = state["_adjdict"] |
|
self._nodes_nbrs = self._adjdict.items |
|
|
|
@classmethod |
|
def _from_iterable(cls, it): |
|
return set(it) |
|
|
|
dataview = OutEdgeDataView |
|
|
|
def __init__(self, G): |
|
self._graph = G |
|
self._adjdict = G._succ if hasattr(G, "succ") else G._adj |
|
self._nodes_nbrs = self._adjdict.items |
|
|
|
|
|
def __len__(self): |
|
return sum(len(nbrs) for n, nbrs in self._nodes_nbrs()) |
|
|
|
def __iter__(self): |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr in nbrs: |
|
yield (n, nbr) |
|
|
|
def __contains__(self, e): |
|
try: |
|
u, v = e |
|
return v in self._adjdict[u] |
|
except KeyError: |
|
return False |
|
|
|
|
|
def __getitem__(self, e): |
|
if isinstance(e, slice): |
|
raise nx.NetworkXError( |
|
f"{type(self).__name__} does not support slicing, " |
|
f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]" |
|
) |
|
u, v = e |
|
try: |
|
return self._adjdict[u][v] |
|
except KeyError as ex: |
|
raise KeyError(f"The edge {e} is not in the graph.") |
|
|
|
|
|
def __call__(self, nbunch=None, data=False, *, default=None): |
|
if nbunch is None and data is False: |
|
return self |
|
return self.dataview(self, nbunch, data, default=default) |
|
|
|
def data(self, data=True, default=None, nbunch=None): |
|
""" |
|
Return a read-only view of edge data. |
|
|
|
Parameters |
|
---------- |
|
data : bool or edge attribute key |
|
If ``data=True``, then the data view maps each edge to a dictionary |
|
containing all of its attributes. If `data` is a key in the edge |
|
dictionary, then the data view maps each edge to its value for |
|
the keyed attribute. In this case, if the edge doesn't have the |
|
attribute, the `default` value is returned. |
|
default : object, default=None |
|
The value used when an edge does not have a specific attribute |
|
nbunch : container of nodes, optional (default=None) |
|
Allows restriction to edges only involving certain nodes. All edges |
|
are considered by default. |
|
|
|
Returns |
|
------- |
|
dataview |
|
Returns an `EdgeDataView` for undirected Graphs, `OutEdgeDataView` |
|
for DiGraphs, `MultiEdgeDataView` for MultiGraphs and |
|
`OutMultiEdgeDataView` for MultiDiGraphs. |
|
|
|
Notes |
|
----- |
|
If ``data=False``, returns an `EdgeView` without any edge data. |
|
|
|
See Also |
|
-------- |
|
EdgeDataView |
|
OutEdgeDataView |
|
MultiEdgeDataView |
|
OutMultiEdgeDataView |
|
|
|
Examples |
|
-------- |
|
>>> G = nx.Graph() |
|
>>> G.add_edges_from( |
|
... [ |
|
... (0, 1, {"dist": 3, "capacity": 20}), |
|
... (1, 2, {"dist": 4}), |
|
... (2, 0, {"dist": 5}), |
|
... ] |
|
... ) |
|
|
|
Accessing edge data with ``data=True`` (the default) returns an |
|
edge data view object listing each edge with all of its attributes: |
|
|
|
>>> G.edges.data() |
|
EdgeDataView([(0, 1, {'dist': 3, 'capacity': 20}), (0, 2, {'dist': 5}), (1, 2, {'dist': 4})]) |
|
|
|
If `data` represents a key in the edge attribute dict, a dataview listing |
|
each edge with its value for that specific key is returned: |
|
|
|
>>> G.edges.data("dist") |
|
EdgeDataView([(0, 1, 3), (0, 2, 5), (1, 2, 4)]) |
|
|
|
`nbunch` can be used to limit the edges: |
|
|
|
>>> G.edges.data("dist", nbunch=[0]) |
|
EdgeDataView([(0, 1, 3), (0, 2, 5)]) |
|
|
|
If a specific key is not found in an edge attribute dict, the value |
|
specified by `default` is used: |
|
|
|
>>> G.edges.data("capacity") |
|
EdgeDataView([(0, 1, 20), (0, 2, None), (1, 2, None)]) |
|
|
|
Note that there is no check that the `data` key is present in any of |
|
the edge attribute dictionaries: |
|
|
|
>>> G.edges.data("speed") |
|
EdgeDataView([(0, 1, None), (0, 2, None), (1, 2, None)]) |
|
""" |
|
if nbunch is None and data is False: |
|
return self |
|
return self.dataview(self, nbunch, data, default=default) |
|
|
|
|
|
def __str__(self): |
|
return str(list(self)) |
|
|
|
def __repr__(self): |
|
return f"{self.__class__.__name__}({list(self)})" |
|
|
|
|
|
class EdgeView(OutEdgeView): |
|
"""A EdgeView class for edges of a Graph |
|
|
|
This densely packed View allows iteration over edges, data lookup |
|
like a dict and set operations on edges represented by node-tuples. |
|
In addition, edge data can be controlled by calling this object |
|
possibly creating an EdgeDataView. Typically edges are iterated over |
|
and reported as `(u, v)` node tuples or `(u, v, key)` node/key tuples |
|
for multigraphs. Those edge representations can also be using to |
|
lookup the data dict for any edge. Set operations also are available |
|
where those tuples are the elements of the set. |
|
Calling this object with optional arguments `data`, `default` and `keys` |
|
controls the form of the tuple (see EdgeDataView). Optional argument |
|
`nbunch` allows restriction to edges only involving certain nodes. |
|
|
|
If `data is False` (the default) then iterate over 2-tuples `(u, v)`. |
|
If `data is True` iterate over 3-tuples `(u, v, datadict)`. |
|
Otherwise iterate over `(u, v, datadict.get(data, default))`. |
|
For Multigraphs, if `keys is True`, replace `u, v` with `u, v, key` above. |
|
|
|
Parameters |
|
========== |
|
graph : NetworkX graph-like class |
|
nbunch : (default= all nodes in graph) only report edges with these nodes |
|
keys : (only for MultiGraph. default=False) report edge key in tuple |
|
data : bool or string (default=False) see above |
|
default : object (default=None) |
|
|
|
Examples |
|
======== |
|
>>> G = nx.path_graph(4) |
|
>>> EV = G.edges() |
|
>>> (2, 3) in EV |
|
True |
|
>>> for u, v in EV: |
|
... print((u, v)) |
|
(0, 1) |
|
(1, 2) |
|
(2, 3) |
|
>>> assert EV & {(1, 2), (3, 4)} == {(1, 2)} |
|
|
|
>>> EVdata = G.edges(data="color", default="aqua") |
|
>>> G.add_edge(2, 3, color="blue") |
|
>>> assert (2, 3, "blue") in EVdata |
|
>>> for u, v, c in EVdata: |
|
... print(f"({u}, {v}) has color: {c}") |
|
(0, 1) has color: aqua |
|
(1, 2) has color: aqua |
|
(2, 3) has color: blue |
|
|
|
>>> EVnbunch = G.edges(nbunch=2) |
|
>>> assert (2, 3) in EVnbunch |
|
>>> assert (0, 1) not in EVnbunch |
|
>>> for u, v in EVnbunch: |
|
... assert u == 2 or v == 2 |
|
|
|
>>> MG = nx.path_graph(4, create_using=nx.MultiGraph) |
|
>>> EVmulti = MG.edges(keys=True) |
|
>>> (2, 3, 0) in EVmulti |
|
True |
|
>>> (2, 3) in EVmulti # 2-tuples work even when keys is True |
|
True |
|
>>> key = MG.add_edge(2, 3) |
|
>>> for u, v, k in EVmulti: |
|
... print((u, v, k)) |
|
(0, 1, 0) |
|
(1, 2, 0) |
|
(2, 3, 0) |
|
(2, 3, 1) |
|
""" |
|
|
|
__slots__ = () |
|
|
|
dataview = EdgeDataView |
|
|
|
def __len__(self): |
|
num_nbrs = (len(nbrs) + (n in nbrs) for n, nbrs in self._nodes_nbrs()) |
|
return sum(num_nbrs) // 2 |
|
|
|
def __iter__(self): |
|
seen = {} |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr in list(nbrs): |
|
if nbr not in seen: |
|
yield (n, nbr) |
|
seen[n] = 1 |
|
del seen |
|
|
|
def __contains__(self, e): |
|
try: |
|
u, v = e[:2] |
|
return v in self._adjdict[u] or u in self._adjdict[v] |
|
except (KeyError, ValueError): |
|
return False |
|
|
|
|
|
class InEdgeView(OutEdgeView): |
|
"""A EdgeView class for inward edges of a DiGraph""" |
|
|
|
__slots__ = () |
|
|
|
def __setstate__(self, state): |
|
self._graph = state["_graph"] |
|
self._adjdict = state["_adjdict"] |
|
self._nodes_nbrs = self._adjdict.items |
|
|
|
dataview = InEdgeDataView |
|
|
|
def __init__(self, G): |
|
self._graph = G |
|
self._adjdict = G._pred if hasattr(G, "pred") else G._adj |
|
self._nodes_nbrs = self._adjdict.items |
|
|
|
def __iter__(self): |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr in nbrs: |
|
yield (nbr, n) |
|
|
|
def __contains__(self, e): |
|
try: |
|
u, v = e |
|
return u in self._adjdict[v] |
|
except KeyError: |
|
return False |
|
|
|
def __getitem__(self, e): |
|
if isinstance(e, slice): |
|
raise nx.NetworkXError( |
|
f"{type(self).__name__} does not support slicing, " |
|
f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]" |
|
) |
|
u, v = e |
|
return self._adjdict[v][u] |
|
|
|
|
|
class OutMultiEdgeView(OutEdgeView): |
|
"""A EdgeView class for outward edges of a MultiDiGraph""" |
|
|
|
__slots__ = () |
|
|
|
dataview = OutMultiEdgeDataView |
|
|
|
def __len__(self): |
|
return sum( |
|
len(kdict) for n, nbrs in self._nodes_nbrs() for nbr, kdict in nbrs.items() |
|
) |
|
|
|
def __iter__(self): |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr, kdict in nbrs.items(): |
|
for key in kdict: |
|
yield (n, nbr, key) |
|
|
|
def __contains__(self, e): |
|
N = len(e) |
|
if N == 3: |
|
u, v, k = e |
|
elif N == 2: |
|
u, v = e |
|
k = 0 |
|
else: |
|
raise ValueError("MultiEdge must have length 2 or 3") |
|
try: |
|
return k in self._adjdict[u][v] |
|
except KeyError: |
|
return False |
|
|
|
def __getitem__(self, e): |
|
if isinstance(e, slice): |
|
raise nx.NetworkXError( |
|
f"{type(self).__name__} does not support slicing, " |
|
f"try list(G.edges)[{e.start}:{e.stop}:{e.step}]" |
|
) |
|
u, v, k = e |
|
return self._adjdict[u][v][k] |
|
|
|
def __call__(self, nbunch=None, data=False, *, default=None, keys=False): |
|
if nbunch is None and data is False and keys is True: |
|
return self |
|
return self.dataview(self, nbunch, data, default=default, keys=keys) |
|
|
|
def data(self, data=True, default=None, nbunch=None, keys=False): |
|
if nbunch is None and data is False and keys is True: |
|
return self |
|
return self.dataview(self, nbunch, data, default=default, keys=keys) |
|
|
|
|
|
class MultiEdgeView(OutMultiEdgeView): |
|
"""A EdgeView class for edges of a MultiGraph""" |
|
|
|
__slots__ = () |
|
|
|
dataview = MultiEdgeDataView |
|
|
|
def __len__(self): |
|
return sum(1 for e in self) |
|
|
|
def __iter__(self): |
|
seen = {} |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr, kd in nbrs.items(): |
|
if nbr not in seen: |
|
for k, dd in kd.items(): |
|
yield (n, nbr, k) |
|
seen[n] = 1 |
|
del seen |
|
|
|
|
|
class InMultiEdgeView(OutMultiEdgeView): |
|
"""A EdgeView class for inward edges of a MultiDiGraph""" |
|
|
|
__slots__ = () |
|
|
|
def __setstate__(self, state): |
|
self._graph = state["_graph"] |
|
self._adjdict = state["_adjdict"] |
|
self._nodes_nbrs = self._adjdict.items |
|
|
|
dataview = InMultiEdgeDataView |
|
|
|
def __init__(self, G): |
|
self._graph = G |
|
self._adjdict = G._pred if hasattr(G, "pred") else G._adj |
|
self._nodes_nbrs = self._adjdict.items |
|
|
|
def __iter__(self): |
|
for n, nbrs in self._nodes_nbrs(): |
|
for nbr, kdict in nbrs.items(): |
|
for key in kdict: |
|
yield (nbr, n, key) |
|
|
|
def __contains__(self, e): |
|
N = len(e) |
|
if N == 3: |
|
u, v, k = e |
|
elif N == 2: |
|
u, v = e |
|
k = 0 |
|
else: |
|
raise ValueError("MultiEdge must have length 2 or 3") |
|
try: |
|
return k in self._adjdict[v][u] |
|
except KeyError: |
|
return False |
|
|
|
def __getitem__(self, e): |
|
if isinstance(e, slice): |
|
raise nx.NetworkXError( |
|
f"{type(self).__name__} does not support slicing, " |
|
f"try list(G.in_edges)[{e.start}:{e.stop}:{e.step}]" |
|
) |
|
u, v, k = e |
|
return self._adjdict[v][u][k] |
|
|