|
import pytest |
|
from mpmath import * |
|
from mpmath.calculus.optimization import Secant, Muller, Bisection, Illinois, \ |
|
Pegasus, Anderson, Ridder, ANewton, Newton, MNewton, MDNewton |
|
|
|
def test_findroot(): |
|
|
|
mp.dps = 15 |
|
assert findroot(lambda x: 4*x-3, mpf(5)).ae(0.75) |
|
assert findroot(sin, mpf(3)).ae(pi) |
|
assert findroot(sin, (mpf(3), mpf(3.14))).ae(pi) |
|
assert findroot(lambda x: x*x+1, mpc(2+2j)).ae(1j) |
|
|
|
f = lambda x: cos(x) |
|
for solver in [Newton, Secant, MNewton, Muller, ANewton]: |
|
x = findroot(f, 2., solver=solver) |
|
assert abs(f(x)) < eps |
|
|
|
for solver in [Secant, Muller, Bisection, Illinois, Pegasus, Anderson, |
|
Ridder]: |
|
x = findroot(f, (1., 2.), solver=solver) |
|
assert abs(f(x)) < eps |
|
|
|
f = lambda x: (x - 2)**2 |
|
|
|
assert isinstance(findroot(f, 1, tol=1e-10), mpf) |
|
assert isinstance(iv.findroot(f, 1., tol=1e-10), iv.mpf) |
|
assert isinstance(fp.findroot(f, 1, tol=1e-10), float) |
|
assert isinstance(fp.findroot(f, 1+0j, tol=1e-10), complex) |
|
|
|
|
|
with pytest.raises(ValueError): |
|
with workprec(2): |
|
findroot(lambda x: x**2 - 4456178*x + 60372201703370, |
|
mpc(real='5.278e+13', imag='-5.278e+13')) |
|
|
|
|
|
with pytest.raises(ValueError): |
|
findroot(lambda x: -1, 0) |
|
|
|
|
|
with pytest.raises(ValueError): |
|
findroot(lambda p: (1 - p)**30 - 1, 0.9) |
|
|
|
def test_bisection(): |
|
|
|
assert findroot(lambda x: x**2-1,(0,2),solver='bisect') == 1 |
|
|
|
def test_mnewton(): |
|
f = lambda x: polyval([1,3,3,1],x) |
|
x = findroot(f, -0.9, solver='mnewton') |
|
assert abs(f(x)) < eps |
|
|
|
def test_anewton(): |
|
f = lambda x: (x - 2)**100 |
|
x = findroot(f, 1., solver=ANewton) |
|
assert abs(f(x)) < eps |
|
|
|
def test_muller(): |
|
f = lambda x: (2 + x)**3 + 2 |
|
x = findroot(f, 1., solver=Muller) |
|
assert abs(f(x)) < eps |
|
|
|
def test_multiplicity(): |
|
for i in range(1, 5): |
|
assert multiplicity(lambda x: (x - 1)**i, 1) == i |
|
assert multiplicity(lambda x: x**2, 1) == 0 |
|
|
|
def test_multidimensional(): |
|
def f(*x): |
|
return [3*x[0]**2-2*x[1]**2-1, x[0]**2-2*x[0]+x[1]**2+2*x[1]-8] |
|
assert mnorm(jacobian(f, (1,-2)) - matrix([[6,8],[0,-2]]),1) < 1.e-7 |
|
for x, error in MDNewton(mp, f, (1,-2), verbose=0, |
|
norm=lambda x: norm(x, inf)): |
|
pass |
|
assert norm(f(*x), 2) < 1e-14 |
|
|
|
|
|
f1 = lambda x, y: -x + 2*y |
|
f2 = lambda x, y: (x**2 + x*(y**2 - 2) - 4*y) / (x + 4) |
|
f3 = lambda x, y: sqrt(x**2 + y**2) |
|
def f(x, y): |
|
f1x = f1(x, y) |
|
return (f2(x, y) - f1x, f3(x, y) - f1x) |
|
x = findroot(f, (10, 10)) |
|
assert [int(round(i)) for i in x] == [3, 4] |
|
|
|
def test_trivial(): |
|
assert findroot(lambda x: 0, 1) == 1 |
|
assert findroot(lambda x: x, 0) == 0 |
|
|
|
|