|
|
|
|
|
from __future__ import division |
|
|
|
import pytest |
|
from mpmath import * |
|
xrange = libmp.backend.xrange |
|
|
|
|
|
LU_decomp = mp.LU_decomp |
|
L_solve = mp.L_solve |
|
U_solve = mp.U_solve |
|
householder = mp.householder |
|
improve_solution = mp.improve_solution |
|
|
|
A1 = matrix([[3, 1, 6], |
|
[2, 1, 3], |
|
[1, 1, 1]]) |
|
b1 = [2, 7, 4] |
|
|
|
A2 = matrix([[ 2, -1, -1, 2], |
|
[ 6, -2, 3, -1], |
|
[-4, 2, 3, -2], |
|
[ 2, 0, 4, -3]]) |
|
b2 = [3, -3, -2, -1] |
|
|
|
A3 = matrix([[ 1, 0, -1, -1, 0], |
|
[ 0, 1, 1, 0, -1], |
|
[ 4, -5, 2, 0, 0], |
|
[ 0, 0, -2, 9,-12], |
|
[ 0, 5, 0, 0, 12]]) |
|
b3 = [0, 0, 0, 0, 50] |
|
|
|
A4 = matrix([[10.235, -4.56, 0., -0.035, 5.67], |
|
[-2.463, 1.27, 3.97, -8.63, 1.08], |
|
[-6.58, 0.86, -0.257, 9.32, -43.6 ], |
|
[ 9.83, 7.39, -17.25, 0.036, 24.86], |
|
[-9.31, 34.9, 78.56, 1.07, 65.8 ]]) |
|
b4 = [8.95, 20.54, 7.42, 5.60, 58.43] |
|
|
|
A5 = matrix([[ 1, 2, -4], |
|
[-2, -3, 5], |
|
[ 3, 5, -8]]) |
|
|
|
A6 = matrix([[ 1.377360, 2.481400, 5.359190], |
|
[ 2.679280, -1.229560, 25.560210], |
|
[-1.225280+1.e6, 9.910180, -35.049900-1.e6]]) |
|
b6 = [23.500000, -15.760000, 2.340000] |
|
|
|
A7 = matrix([[1, -0.5], |
|
[2, 1], |
|
[-2, 6]]) |
|
b7 = [3, 2, -4] |
|
|
|
A8 = matrix([[1, 2, 3], |
|
[-1, 0, 1], |
|
[-1, -2, -1], |
|
[1, 0, -1]]) |
|
b8 = [1, 2, 3, 4] |
|
|
|
A9 = matrix([[ 4, 2, -2], |
|
[ 2, 5, -4], |
|
[-2, -4, 5.5]]) |
|
b9 = [10, 16, -15.5] |
|
|
|
A10 = matrix([[1.0 + 1.0j, 2.0, 2.0], |
|
[4.0, 5.0, 6.0], |
|
[7.0, 8.0, 9.0]]) |
|
b10 = [1.0, 1.0 + 1.0j, 1.0] |
|
|
|
|
|
def test_LU_decomp(): |
|
A = A3.copy() |
|
b = b3 |
|
A, p = LU_decomp(A) |
|
y = L_solve(A, b, p) |
|
x = U_solve(A, y) |
|
assert p == [2, 1, 2, 3] |
|
assert [round(i, 14) for i in x] == [3.78953107960742, 2.9989094874591098, |
|
-0.081788440567070006, 3.8713195201744801, 2.9171210468920399] |
|
A = A4.copy() |
|
b = b4 |
|
A, p = LU_decomp(A) |
|
y = L_solve(A, b, p) |
|
x = U_solve(A, y) |
|
assert p == [0, 3, 4, 3] |
|
assert [round(i, 14) for i in x] == [2.6383625899619201, 2.6643834462368399, |
|
0.79208015947958998, -2.5088376454101899, -1.0567657691375001] |
|
A = randmatrix(3) |
|
bak = A.copy() |
|
LU_decomp(A, overwrite=1) |
|
assert A != bak |
|
|
|
def test_inverse(): |
|
for A in [A1, A2, A5]: |
|
inv = inverse(A) |
|
assert mnorm(A*inv - eye(A.rows), 1) < 1.e-14 |
|
|
|
def test_householder(): |
|
mp.dps = 15 |
|
A, b = A8, b8 |
|
H, p, x, r = householder(extend(A, b)) |
|
assert H == matrix( |
|
[[mpf('3.0'), mpf('-2.0'), mpf('-1.0'), 0], |
|
[-1.0,mpf('3.333333333333333'),mpf('-2.9999999999999991'),mpf('2.0')], |
|
[-1.0, mpf('-0.66666666666666674'),mpf('2.8142135623730948'), |
|
mpf('-2.8284271247461898')], |
|
[1.0, mpf('-1.3333333333333333'),mpf('-0.20000000000000018'), |
|
mpf('4.2426406871192857')]]) |
|
assert p == [-2, -2, mpf('-1.4142135623730949')] |
|
assert round(norm(r, 2), 10) == 4.2426406870999998 |
|
|
|
y = [102.102, 58.344, 36.463, 24.310, 17.017, 12.376, 9.282, 7.140, 5.610, |
|
4.488, 3.6465, 3.003] |
|
|
|
def coeff(n): |
|
|
|
A = [] |
|
for i in range(1, 13): |
|
A.append([1. / (i + j - 1) for j in range(1, n + 1)]) |
|
return matrix(A) |
|
|
|
residuals = [] |
|
refres = [] |
|
for n in range(2, 7): |
|
A = coeff(n) |
|
H, p, x, r = householder(extend(A, y)) |
|
x = matrix(x) |
|
y = matrix(y) |
|
residuals.append(norm(r, 2)) |
|
refres.append(norm(residual(A, x, y), 2)) |
|
assert [round(res, 10) for res in residuals] == [15.1733888877, |
|
0.82378073210000002, 0.302645887, 0.0260109244, |
|
0.00058653999999999998] |
|
assert norm(matrix(residuals) - matrix(refres), inf) < 1.e-13 |
|
|
|
def hilbert_cmplx(n): |
|
|
|
A = hilbert(2*n,n) |
|
v = randmatrix(2*n, 2, min=-1, max=1) |
|
v = v.apply(lambda x: exp(1J*pi()*x)) |
|
A = diag(v[:,0])*A*diag(v[:n,1]) |
|
return A |
|
|
|
residuals_cmplx = [] |
|
refres_cmplx = [] |
|
for n in range(2, 10): |
|
A = hilbert_cmplx(n) |
|
H, p, x, r = householder(A.copy()) |
|
residuals_cmplx.append(norm(r, 2)) |
|
refres_cmplx.append(norm(residual(A[:,:n-1], x, A[:,n-1]), 2)) |
|
assert norm(matrix(residuals_cmplx) - matrix(refres_cmplx), inf) < 1.e-13 |
|
|
|
def test_factorization(): |
|
A = randmatrix(5) |
|
P, L, U = lu(A) |
|
assert mnorm(P*A - L*U, 1) < 1.e-15 |
|
|
|
def test_solve(): |
|
assert norm(residual(A6, lu_solve(A6, b6), b6), inf) < 1.e-10 |
|
assert norm(residual(A7, lu_solve(A7, b7), b7), inf) < 1.5 |
|
assert norm(residual(A8, lu_solve(A8, b8), b8), inf) <= 3 + 1.e-10 |
|
assert norm(residual(A6, qr_solve(A6, b6)[0], b6), inf) < 1.e-10 |
|
assert norm(residual(A7, qr_solve(A7, b7)[0], b7), inf) < 1.5 |
|
assert norm(residual(A8, qr_solve(A8, b8)[0], b8), 2) <= 4.3 |
|
assert norm(residual(A10, lu_solve(A10, b10), b10), 2) < 1.e-10 |
|
assert norm(residual(A10, qr_solve(A10, b10)[0], b10), 2) < 1.e-10 |
|
|
|
def test_solve_overdet_complex(): |
|
A = matrix([[1, 2j], [3, 4j], [5, 6]]) |
|
b = matrix([1 + j, 2, -j]) |
|
assert norm(residual(A, lu_solve(A, b), b)) < 1.0208 |
|
|
|
def test_singular(): |
|
mp.dps = 15 |
|
A = [[5.6, 1.2], [7./15, .1]] |
|
B = repr(zeros(2)) |
|
b = [1, 2] |
|
for i in ['lu_solve(%s, %s)' % (A, b), 'lu_solve(%s, %s)' % (B, b), |
|
'qr_solve(%s, %s)' % (A, b), 'qr_solve(%s, %s)' % (B, b)]: |
|
pytest.raises((ZeroDivisionError, ValueError), lambda: eval(i)) |
|
|
|
def test_cholesky(): |
|
assert fp.cholesky(fp.matrix(A9)) == fp.matrix([[2, 0, 0], [1, 2, 0], [-1, -3/2, 3/2]]) |
|
x = fp.cholesky_solve(A9, b9) |
|
assert fp.norm(fp.residual(A9, x, b9), fp.inf) == 0 |
|
|
|
def test_det(): |
|
assert det(A1) == 1 |
|
assert round(det(A2), 14) == 8 |
|
assert round(det(A3)) == 1834 |
|
assert round(det(A4)) == 4443376 |
|
assert det(A5) == 1 |
|
assert round(det(A6)) == 78356463 |
|
assert det(zeros(3)) == 0 |
|
|
|
def test_cond(): |
|
mp.dps = 15 |
|
A = matrix([[1.2969, 0.8648], [0.2161, 0.1441]]) |
|
assert cond(A, lambda x: mnorm(x,1)) == mpf('327065209.73817754') |
|
assert cond(A, lambda x: mnorm(x,inf)) == mpf('327065209.73817754') |
|
assert cond(A, lambda x: mnorm(x,'F')) == mpf('249729266.80008656') |
|
|
|
@extradps(50) |
|
def test_precision(): |
|
A = randmatrix(10, 10) |
|
assert mnorm(inverse(inverse(A)) - A, 1) < 1.e-45 |
|
|
|
def test_interval_matrix(): |
|
mp.dps = 15 |
|
iv.dps = 15 |
|
a = iv.matrix([['0.1','0.3','1.0'],['7.1','5.5','4.8'],['3.2','4.4','5.6']]) |
|
b = iv.matrix(['4','0.6','0.5']) |
|
c = iv.lu_solve(a, b) |
|
assert c[0].delta < 1e-13 |
|
assert c[1].delta < 1e-13 |
|
assert c[2].delta < 1e-13 |
|
assert 5.25823271130625686059275 in c[0] |
|
assert -13.155049396267837541163 in c[1] |
|
assert 7.42069154774972557628979 in c[2] |
|
|
|
def test_LU_cache(): |
|
A = randmatrix(3) |
|
LU = LU_decomp(A) |
|
assert A._LU == LU_decomp(A) |
|
A[0,0] = -1000 |
|
assert A._LU is None |
|
|
|
def test_improve_solution(): |
|
A = randmatrix(5, min=1e-20, max=1e20) |
|
b = randmatrix(5, 1, min=-1000, max=1000) |
|
x1 = lu_solve(A, b) + randmatrix(5, 1, min=-1e-5, max=1.e-5) |
|
x2 = improve_solution(A, x1, b) |
|
assert norm(residual(A, x2, b), 2) < norm(residual(A, x1, b), 2) |
|
|
|
def test_exp_pade(): |
|
for i in range(3): |
|
dps = 15 |
|
extra = 15 |
|
mp.dps = dps + extra |
|
dm = 0 |
|
N = 3 |
|
dg = range(1,N+1) |
|
a = diag(dg) |
|
expa = diag([exp(x) for x in dg]) |
|
|
|
|
|
|
|
while abs(dm) < 0.01: |
|
m = randmatrix(N) |
|
dm = det(m) |
|
m = m/dm |
|
a1 = m**-1 * a * m |
|
e2 = m**-1 * expa * m |
|
mp.dps = dps |
|
e1 = expm(a1, method='pade') |
|
mp.dps = dps + extra |
|
d = e2 - e1 |
|
|
|
mp.dps = dps |
|
assert norm(d, inf).ae(0) |
|
mp.dps = 15 |
|
|
|
def test_qr(): |
|
mp.dps = 15 |
|
lowlimit = -9 |
|
uplimit = 9 |
|
maxm = 4 |
|
flg = False |
|
zero = mpf('0.0') |
|
|
|
for k in xrange(0,10): |
|
exdps = 0 |
|
mode = 'full' |
|
flg = bool(k % 2) |
|
|
|
|
|
num1 = nint(maxm*rand()) |
|
num2 = nint(maxm*rand()) |
|
m = int(max(num1, num2)) |
|
n = int(min(num1, num2)) |
|
|
|
|
|
A = mp.matrix(m,n) |
|
|
|
|
|
if flg: |
|
flg = False |
|
dtype = 'complex' |
|
for j in xrange(0,n): |
|
for i in xrange(0,m): |
|
val = nint(lowlimit + (uplimit-lowlimit)*rand()) |
|
val2 = nint(lowlimit + (uplimit-lowlimit)*rand()) |
|
A[i,j] = mpc(val, val2) |
|
else: |
|
flg = True |
|
dtype = 'real' |
|
for j in xrange(0,n): |
|
for i in xrange(0,m): |
|
val = nint(lowlimit + (uplimit-lowlimit)*rand()) |
|
A[i,j] = mpf(val) |
|
|
|
|
|
Q, R = qr(A, mode, edps = exdps) |
|
|
|
|
|
|
|
|
|
|
|
|
|
maxnorm = mpf('1.0E-11') |
|
n1 = norm(A - Q * R) |
|
|
|
assert n1 <= maxnorm |
|
|
|
if dtype == 'real': |
|
n1 = norm(eye(m) - Q.T * Q) |
|
|
|
assert n1 <= maxnorm |
|
|
|
n1 = norm(eye(m) - Q * Q.T) |
|
|
|
assert n1 <= maxnorm |
|
|
|
if dtype == 'complex': |
|
n1 = norm(eye(m) - Q.T * Q.conjugate()) |
|
|
|
assert n1 <= maxnorm |
|
|
|
n1 = norm(eye(m) - Q.conjugate() * Q.T) |
|
|
|
assert n1 <= maxnorm |
|
|