|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import shutil |
|
import warnings |
|
from collections.abc import Generator |
|
from contextlib import AbstractContextManager, ExitStack, nullcontext |
|
from datetime import timedelta |
|
from functools import partial |
|
from pathlib import Path |
|
from typing import ( |
|
TYPE_CHECKING, |
|
Any, |
|
Callable, |
|
Literal, |
|
Optional, |
|
Union, |
|
) |
|
|
|
import torch |
|
from lightning_utilities.core.imports import RequirementCache |
|
from lightning_utilities.core.rank_zero import rank_zero_only as utils_rank_zero_only |
|
from torch import Tensor |
|
from torch.nn import Module |
|
from torch.optim import Optimizer |
|
from typing_extensions import TypeGuard, override |
|
|
|
from lightning_fabric.accelerators import Accelerator |
|
from lightning_fabric.plugins import CheckpointIO, ClusterEnvironment, Precision |
|
from lightning_fabric.plugins.collectives.torch_collective import default_pg_timeout |
|
from lightning_fabric.plugins.precision.fsdp import FSDPPrecision |
|
from lightning_fabric.strategies.launchers.subprocess_script import _SubprocessScriptLauncher |
|
from lightning_fabric.strategies.parallel import ParallelStrategy |
|
from lightning_fabric.strategies.registry import _StrategyRegistry |
|
from lightning_fabric.strategies.strategy import ( |
|
TBroadcast, |
|
_apply_filter, |
|
_BackwardSyncControl, |
|
_Sharded, |
|
_validate_keys_for_strict_loading, |
|
) |
|
from lightning_fabric.utilities.distributed import ( |
|
ReduceOp, |
|
_distributed_is_initialized, |
|
_get_default_process_group_backend_for_device, |
|
_init_dist_connection, |
|
_sync_ddp_if_available, |
|
) |
|
from lightning_fabric.utilities.distributed import group as _group |
|
from lightning_fabric.utilities.imports import ( |
|
_TORCH_GREATER_EQUAL_2_2, |
|
_TORCH_GREATER_EQUAL_2_3, |
|
) |
|
from lightning_fabric.utilities.init import _has_meta_device_parameters_or_buffers |
|
from lightning_fabric.utilities.load import _METADATA_FILENAME, _lazy_load, _materialize_tensors, _move_state_into |
|
from lightning_fabric.utilities.rank_zero import rank_zero_deprecation, rank_zero_only, rank_zero_warn |
|
from lightning_fabric.utilities.seed import reset_seed |
|
from lightning_fabric.utilities.types import _PATH, _Stateful |
|
|
|
if TYPE_CHECKING: |
|
from torch.distributed.device_mesh import DeviceMesh |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision, ShardingStrategy |
|
from torch.distributed.fsdp.wrap import ModuleWrapPolicy |
|
|
|
_POLICY = Union[set[type[Module]], Callable[[Module, bool, int], bool], ModuleWrapPolicy] |
|
_SHARDING_STRATEGY = Union[ShardingStrategy, Literal["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD"]] |
|
|
|
|
|
_FSDP_ALIASES = ("fsdp", "fsdp_cpu_offload") |
|
|
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning, message=".*FSDP.state_dict_type.*") |
|
|
|
|
|
class FSDPStrategy(ParallelStrategy, _Sharded): |
|
r"""Strategy for Fully Sharded Data Parallel provided by torch.distributed. |
|
|
|
Fully Sharded Training shards the entire model across all available GPUs, allowing you to scale model |
|
size, whilst using efficient communication to reduce overhead. In practice, this means we can remain |
|
at parity with PyTorch DDP, whilst scaling our model sizes dramatically. The technique is similar |
|
to ZeRO-Stage 3. |
|
|
|
For more information check out |
|
`this blogpost <https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api>`__. |
|
|
|
Defaults have been set and options have been exposed, but may require configuration |
|
based on your level of memory/speed efficiency. We suggest having a look at |
|
`this tutorial <https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html>`__ for more information. |
|
|
|
Arguments: |
|
cpu_offload: See ``cpu_offload`` parameter in :class:`torch.distributed.fsdp.FullyShardedDataParallel`. |
|
mixed_precision: See ``mixed_precision`` parameter in :class:`torch.distributed.fsdp.FullyShardedDataParallel`. |
|
auto_wrap_policy: Same as ``auto_wrap_policy`` parameter in |
|
:class:`torch.distributed.fsdp.FullyShardedDataParallel`. For convenience, this also accepts a set of the |
|
layer classes to wrap. |
|
activation_checkpointing: Deprecated. Use ``activation_checkpointing_policy``. |
|
activation_checkpointing_policy: Same as ``auto_wrap_policy`` parameter in |
|
:class:`torch.distributed.fsdp.FullyShardedDataParallel` but used when selecting the modules for which you |
|
want to enable activation checkpointing. Enabling this can free up a significant amount of memory at the |
|
cost of speed since activations in these layers need to be recomputed during backpropagation. For |
|
convenience, this also accepts a set of the layer classes to wrap. |
|
sharding_strategy: Select whether to shard model parameters, gradients, optimizer states, or a combination of |
|
them. Available values are: |
|
|
|
- ``"FULL_SHARD"``: Shards model parameters, gradients, and optimizer states (default). |
|
- ``"SHARD_GRAD_OP"``: Shards gradients and optimizer states only. Model parameters get replicated. |
|
- ``"NO_SHARD"``: No sharding (identical to regular DDP). |
|
- ``"HYBRID_SHARD"``: Shards model parameters, gradients, and optimizer states within a single machine, but |
|
replicates across machines. See also the `device_mesh` parameter below. |
|
|
|
Also accepts a :class:`torch.distributed.fsdp.ShardingStrategy` enum value. |
|
|
|
device_mesh: A tuple `(replication size, sharding size)` that defines over how many devices to shard and |
|
replicate the model. The product of the two numbers must equal the world size. Only valid in combination |
|
with the `HYBRID_SHARD` sharding strategy. |
|
|
|
state_dict_type: The format in which the state of the model and optimizers gets saved into the checkpoint. |
|
|
|
- ``"full"``: The full weights and optimizer states get assembled on rank 0 and saved to a single file. |
|
- ``"sharded"``: Each rank saves its shard of weights and optimizer states to a file. The checkpoint is |
|
a folder with as many files as the world size. |
|
|
|
\**kwargs: See available parameters in :class:`torch.distributed.fsdp.FullyShardedDataParallel`. |
|
|
|
""" |
|
|
|
def __init__( |
|
self, |
|
accelerator: Optional[Accelerator] = None, |
|
parallel_devices: Optional[list[torch.device]] = None, |
|
cluster_environment: Optional[ClusterEnvironment] = None, |
|
precision: Optional[Precision] = None, |
|
process_group_backend: Optional[str] = None, |
|
timeout: Optional[timedelta] = default_pg_timeout, |
|
cpu_offload: Union[bool, "CPUOffload", None] = None, |
|
mixed_precision: Optional["MixedPrecision"] = None, |
|
auto_wrap_policy: Optional["_POLICY"] = None, |
|
activation_checkpointing: Optional[Union[type[Module], list[type[Module]]]] = None, |
|
activation_checkpointing_policy: Optional["_POLICY"] = None, |
|
sharding_strategy: "_SHARDING_STRATEGY" = "FULL_SHARD", |
|
state_dict_type: Literal["full", "sharded"] = "sharded", |
|
device_mesh: Optional[Union[tuple[int], "DeviceMesh"]] = None, |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
accelerator=accelerator, |
|
parallel_devices=parallel_devices, |
|
cluster_environment=cluster_environment, |
|
precision=precision, |
|
) |
|
self._num_nodes = 1 |
|
self._process_group_backend: Optional[str] = process_group_backend |
|
self._timeout: Optional[timedelta] = timeout |
|
self._backward_sync_control = _FSDPBackwardSyncControl() |
|
self._fsdp_kwargs = _auto_wrap_policy_kwargs(auto_wrap_policy, kwargs) |
|
|
|
|
|
self._fsdp_kwargs.setdefault("use_orig_params", True) |
|
|
|
if device_mesh is not None: |
|
if not _TORCH_GREATER_EQUAL_2_2: |
|
raise ValueError("The `device_mesh` argument is only supported in torch >= 2.2.") |
|
self._fsdp_kwargs["device_mesh"] = device_mesh |
|
|
|
self._activation_checkpointing_kwargs = _activation_checkpointing_kwargs( |
|
activation_checkpointing, activation_checkpointing_policy |
|
) |
|
self._state_dict_type = state_dict_type |
|
self.sharding_strategy = _init_sharding_strategy(sharding_strategy, self._fsdp_kwargs) |
|
self.cpu_offload = _init_cpu_offload(cpu_offload) |
|
self.mixed_precision = mixed_precision |
|
|
|
@property |
|
@override |
|
def checkpoint_io(self) -> CheckpointIO: |
|
raise NotImplementedError(f"The `{type(self).__name__}` does not use the `CheckpointIO` plugin interface.") |
|
|
|
@checkpoint_io.setter |
|
@override |
|
def checkpoint_io(self, io: CheckpointIO) -> None: |
|
raise NotImplementedError(f"The `{type(self).__name__}` does not support setting a `CheckpointIO` plugin.") |
|
|
|
@property |
|
@override |
|
def root_device(self) -> torch.device: |
|
assert self.parallel_devices is not None |
|
return self.parallel_devices[self.local_rank] |
|
|
|
@property |
|
def num_nodes(self) -> int: |
|
return self._num_nodes |
|
|
|
@num_nodes.setter |
|
def num_nodes(self, num_nodes: int) -> None: |
|
self._num_nodes = num_nodes |
|
|
|
@property |
|
def num_processes(self) -> int: |
|
return len(self.parallel_devices) if self.parallel_devices is not None else 0 |
|
|
|
@property |
|
@override |
|
def distributed_sampler_kwargs(self) -> dict[str, Any]: |
|
return {"num_replicas": (self.num_nodes * self.num_processes), "rank": self.global_rank} |
|
|
|
@property |
|
def process_group_backend(self) -> Optional[str]: |
|
return self._process_group_backend |
|
|
|
@property |
|
def mixed_precision_config(self) -> Optional["MixedPrecision"]: |
|
if self.mixed_precision: |
|
return self.mixed_precision |
|
plugin = self.precision |
|
if isinstance(plugin, FSDPPrecision): |
|
return plugin.mixed_precision_config |
|
return None |
|
|
|
@property |
|
@override |
|
def precision(self) -> FSDPPrecision: |
|
plugin = self._precision |
|
if plugin is not None: |
|
assert isinstance(plugin, FSDPPrecision) |
|
return plugin |
|
return FSDPPrecision("32-true") |
|
|
|
@precision.setter |
|
@override |
|
def precision(self, precision: Optional[Precision]) -> None: |
|
if precision is not None and not isinstance(precision, FSDPPrecision): |
|
raise TypeError(f"The FSDP strategy can only work with the `FSDPPrecision` plugin, found {precision}") |
|
self._precision = precision |
|
|
|
@override |
|
def _configure_launcher(self) -> None: |
|
assert self.cluster_environment is not None |
|
if not self.cluster_environment.creates_processes_externally: |
|
self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes) |
|
|
|
@override |
|
def setup_environment(self) -> None: |
|
super().setup_environment() |
|
self._setup_distributed() |
|
|
|
|
|
if isinstance(self._fsdp_kwargs.get("device_mesh"), tuple): |
|
from torch.distributed.device_mesh import init_device_mesh |
|
|
|
self._fsdp_kwargs["device_mesh"] = init_device_mesh("cuda", self._fsdp_kwargs["device_mesh"]) |
|
|
|
@override |
|
def setup_module_and_optimizers( |
|
self, module: Module, optimizers: list[Optimizer] |
|
) -> tuple[Module, list[Optimizer]]: |
|
"""Wraps the model into a :class:`~torch.distributed.fsdp.fully_sharded_data_parallel.FullyShardedDataParallel` |
|
module and sets `use_orig_params=True` to keep the reference to the original parameters in the optimizer.""" |
|
use_orig_params = self._fsdp_kwargs.get("use_orig_params") |
|
if use_orig_params is False: |
|
raise ValueError( |
|
f"You set `{type(self).__name__}(use_orig_params=False)` but this is not supported when" |
|
" setting the model and optimizer up jointly. Either set it to `True` or set the objects" |
|
" up in this order: Create the model, call `setup_module`, create the optimizer," |
|
" call `setup_optimizer`." |
|
) |
|
module = self.setup_module(module) |
|
return module, optimizers |
|
|
|
@override |
|
def setup_module(self, module: Module) -> Module: |
|
"""Wraps the model into a :class:`~torch.distributed.fsdp.fully_sharded_data_parallel.FullyShardedDataParallel` |
|
module.""" |
|
from torch.distributed.fsdp import FullyShardedDataParallel |
|
|
|
if any(isinstance(mod, FullyShardedDataParallel) for mod in module.modules()): |
|
|
|
if _has_meta_device_parameters_or_buffers(module): |
|
rank_zero_warn( |
|
"The model is already wrapped in `FSDP` but there are still parameters on the meta device." |
|
) |
|
if "auto_wrap_policy" in self._fsdp_kwargs: |
|
rank_zero_warn( |
|
"A FSDP `auto_wrap_policy` is set, but the model is already wrapped. The policy will be ignored." |
|
) |
|
del self._fsdp_kwargs["auto_wrap_policy"] |
|
else: |
|
module = FullyShardedDataParallel( |
|
module=module, |
|
cpu_offload=self.cpu_offload, |
|
mixed_precision=self.mixed_precision_config, |
|
sharding_strategy=self.sharding_strategy, |
|
device_id=self.root_device.index, |
|
**self._fsdp_kwargs, |
|
) |
|
|
|
_move_torchmetrics_to_device(module, self.root_device) |
|
|
|
|
|
_setup_activation_checkpointing(module, self._activation_checkpointing_kwargs) |
|
|
|
return module |
|
|
|
@override |
|
def setup_optimizer(self, optimizer: Optimizer) -> Optimizer: |
|
"""Set up an optimizer for a model wrapped with FSDP. |
|
|
|
This setup method doesn't modify the optimizer or wrap the optimizer. The only thing it currently does is verify |
|
that the optimizer was created after the model was wrapped with :meth:`setup_module` with a reference to the |
|
flattened parameters. |
|
|
|
""" |
|
if self._fsdp_kwargs.get("use_orig_params"): |
|
return super().setup_optimizer(optimizer) |
|
if not _optimizer_has_flat_params(optimizer): |
|
|
|
raise ValueError( |
|
"The optimizer does not seem to reference any FSDP parameters. HINT: Make sure to create the optimizer" |
|
" after setting up the model." |
|
) |
|
return optimizer |
|
|
|
@override |
|
def module_to_device(self, module: Module) -> None: |
|
pass |
|
|
|
@override |
|
def module_init_context(self, empty_init: Optional[bool] = None) -> AbstractContextManager: |
|
precision_init_ctx = self.precision.module_init_context() |
|
module_sharded_ctx = self.module_sharded_context() |
|
stack = ExitStack() |
|
if empty_init: |
|
|
|
|
|
|
|
stack.enter_context(torch.device("meta")) |
|
stack.enter_context(precision_init_ctx) |
|
stack.enter_context(module_sharded_ctx) |
|
return stack |
|
|
|
@override |
|
def module_sharded_context(self) -> AbstractContextManager: |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel |
|
from torch.distributed.fsdp.wrap import enable_wrap |
|
|
|
return enable_wrap( |
|
wrapper_cls=FullyShardedDataParallel, |
|
cpu_offload=self.cpu_offload, |
|
mixed_precision=self.mixed_precision_config, |
|
sharding_strategy=self.sharding_strategy, |
|
device_id=self.root_device.index, |
|
**self._fsdp_kwargs, |
|
) |
|
|
|
@override |
|
def all_reduce( |
|
self, tensor: Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean" |
|
) -> Tensor: |
|
if isinstance(tensor, Tensor): |
|
return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op) |
|
return tensor |
|
|
|
@override |
|
def barrier(self, *args: Any, **kwargs: Any) -> None: |
|
if not _distributed_is_initialized(): |
|
return |
|
if torch.distributed.get_backend() == "nccl": |
|
torch.distributed.barrier(device_ids=[self.root_device.index]) |
|
else: |
|
torch.distributed.barrier() |
|
|
|
@override |
|
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast: |
|
if not _distributed_is_initialized(): |
|
return obj |
|
|
|
obj = [obj] |
|
torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD) |
|
return obj[0] |
|
|
|
@override |
|
def clip_gradients_norm( |
|
self, |
|
module: Module, |
|
optimizer: Optimizer, |
|
max_norm: Union[float, int], |
|
norm_type: Union[float, int] = 2.0, |
|
error_if_nonfinite: bool = True, |
|
) -> Tensor: |
|
"""Clip gradients by norm.""" |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel |
|
|
|
if not isinstance(module, FullyShardedDataParallel): |
|
|
|
raise TypeError( |
|
"Gradient clipping with FSDP is only possible if the module passed to" |
|
f" `{type(self).__name__}.clip_gradients_norm` is wrapped in `FullyShardedDataParallel`." |
|
f" Got: {module.__class__.__name__}." |
|
) |
|
self.precision.unscale_gradients(optimizer) |
|
return module.clip_grad_norm_(max_norm=max_norm, norm_type=norm_type) |
|
|
|
@override |
|
def save_checkpoint( |
|
self, |
|
path: _PATH, |
|
state: dict[str, Union[Module, Optimizer, Any]], |
|
storage_options: Optional[Any] = None, |
|
filter: Optional[dict[str, Callable[[str, Any], bool]]] = None, |
|
) -> None: |
|
"""Save model, optimizer, and other state to a checkpoint on disk. |
|
|
|
If the state-dict-type is ``'full'``, the checkpoint will be written to a single file containing the weights, |
|
optimizer state and other metadata. If the state-dict-type is ``'sharded'``, the checkpoint gets saved as a |
|
directory containing one file per process, with model- and optimizer shards stored per file. Additionally, it |
|
creates a metadata file `meta.pt` with the rest of the user's state (only saved from rank 0). |
|
|
|
""" |
|
if storage_options is not None: |
|
raise TypeError( |
|
"`FSDPStrategy.save_checkpoint(..., storage_options=...)` is not supported because" |
|
" `FSDPStrategy` does not use the `CheckpointIO`." |
|
) |
|
if filter is not None and self._state_dict_type == "sharded": |
|
|
|
raise NotImplementedError( |
|
"FSDP doesn't support loading sharded filtered checkpoints, so saving them is disabled." |
|
) |
|
|
|
|
|
path = Path(self.broadcast(path)) |
|
if path.is_dir() and self._state_dict_type == "full" and not _is_sharded_checkpoint(path): |
|
raise IsADirectoryError(f"The checkpoint path exists and is a directory: {path}") |
|
|
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP |
|
|
|
modules = [module for module in state.values() if _has_fsdp_modules(module)] |
|
if len(modules) == 0: |
|
raise ValueError( |
|
"Could not find a FSDP model in the provided checkpoint state. Please provide the model as" |
|
" part of the state like so: `save_checkpoint(..., state={'model': model, ...})`. Make sure" |
|
" you set up the model (and optimizers if any) through the strategy before saving the checkpoint." |
|
) |
|
if len(modules) > 1: |
|
raise ValueError( |
|
"Found multiple FSDP models in the given state. Saving checkpoints with FSDP is" |
|
" currently limited to a single model per checkpoint. To save multiple models, call the" |
|
" save method for each model separately with a different path." |
|
) |
|
module = modules[0] |
|
|
|
if self._state_dict_type == "sharded": |
|
if path.is_file(): |
|
path.unlink() |
|
path.mkdir(parents=True, exist_ok=True) |
|
|
|
state_dict_ctx = _get_sharded_state_dict_context(module) |
|
|
|
|
|
|
|
converted_state: dict[str, Any] = {} |
|
metadata: dict[str, Any] = {} |
|
with state_dict_ctx: |
|
for key, obj in state.items(): |
|
converted: Any |
|
if isinstance(obj, Module): |
|
converted = obj.state_dict() |
|
target_dict = converted_state |
|
elif isinstance(obj, Optimizer): |
|
converted = FSDP.optim_state_dict(module, obj) |
|
target_dict = converted_state |
|
else: |
|
converted = obj.state_dict() if isinstance(obj, _Stateful) else obj |
|
target_dict = metadata |
|
_apply_filter(key, filter or {}, converted, target_dict) |
|
|
|
_distributed_checkpoint_save(converted_state, path) |
|
|
|
if self.global_rank == 0: |
|
torch.save(metadata, path / _METADATA_FILENAME) |
|
|
|
elif self._state_dict_type == "full": |
|
if _is_sharded_checkpoint(path): |
|
shutil.rmtree(path) |
|
|
|
state_dict_ctx = _get_full_state_dict_context(module, world_size=self.world_size) |
|
full_state: dict[str, Any] = {} |
|
with state_dict_ctx: |
|
for key, obj in state.items(): |
|
if isinstance(obj, Module): |
|
converted = obj.state_dict() |
|
elif isinstance(obj, Optimizer): |
|
converted = FSDP.optim_state_dict(module, obj) |
|
else: |
|
converted = obj.state_dict() if isinstance(obj, _Stateful) else obj |
|
_apply_filter(key, filter or {}, converted, full_state) |
|
|
|
if self.global_rank == 0: |
|
torch.save(full_state, path) |
|
else: |
|
raise ValueError(f"Unknown state_dict_type: {self._state_dict_type}") |
|
|
|
@override |
|
def load_checkpoint( |
|
self, |
|
path: _PATH, |
|
state: Optional[Union[Module, Optimizer, dict[str, Union[Module, Optimizer, Any]]]] = None, |
|
strict: bool = True, |
|
) -> dict[str, Any]: |
|
"""Load the contents from a checkpoint and restore the state of the given objects.""" |
|
if not state: |
|
raise ValueError( |
|
f"Got FSDPStrategy.load_checkpoint(..., state={state!r}) but a state with at least " |
|
f" a model instance to reload is required. Pass it in like so:" |
|
" FSDPStrategy.load_checkpoint(..., state={'model': model, ...})" |
|
) |
|
|
|
path = Path(self.broadcast(path)) |
|
|
|
if isinstance(state, Module): |
|
from lightning_fabric.strategies.model_parallel import _load_raw_module_state_from_path |
|
|
|
_load_raw_module_state_from_path(path, module=state, world_size=self.world_size, strict=strict) |
|
return {} |
|
|
|
if isinstance(state, Optimizer): |
|
raise NotImplementedError( |
|
"Loading a single optimizer object from a checkpoint is not supported yet with the FSDP strategy." |
|
) |
|
|
|
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict |
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP |
|
|
|
modules = {key: module for key, module in state.items() if _has_fsdp_modules(module)} |
|
if len(modules) == 0: |
|
raise ValueError( |
|
"Could not find a FSDP model in the provided checkpoint state. Please provide the model as" |
|
" part of the state like so: `load_checkpoint(..., state={'model': model, ...})`. Make sure" |
|
" you set up the model (and optimizers if any) through the strategy before loading the checkpoint." |
|
) |
|
optimizers = {key: optim for key, optim in state.items() if isinstance(optim, Optimizer)} |
|
if len(modules) > 1: |
|
raise ValueError( |
|
"Found multiple FSDP models in the given state. Loading checkpoints with FSDP is" |
|
" currently limited to a single model per checkpoint. To load multiple models, call the" |
|
" load method for each model separately with a different path." |
|
) |
|
module_key, module = list(modules.items())[0] |
|
|
|
if _is_sharded_checkpoint(path): |
|
state_dict_ctx = _get_sharded_state_dict_context(module) |
|
|
|
with state_dict_ctx: |
|
module_state = {module_key: module.state_dict()} |
|
_distributed_checkpoint_load(module_state, path) |
|
module.load_state_dict(module_state[module_key], strict=strict) |
|
|
|
if optimizers: |
|
from torch.distributed.checkpoint import FileSystemReader |
|
|
|
|
|
|
|
reader = FileSystemReader(path=path) |
|
|
|
for optim_key, optim in optimizers.items(): |
|
optim_state = load_sharded_optimizer_state_dict( |
|
model_state_dict=module_state[module_key], |
|
optimizer_key=optim_key, |
|
storage_reader=reader, |
|
) |
|
flattened_osd = FSDP.optim_state_dict_to_load( |
|
optim_state_dict=optim_state[optim_key], |
|
model=module, |
|
optim=optim, |
|
) |
|
optim.load_state_dict(flattened_osd) |
|
|
|
|
|
metadata = torch.load(path / _METADATA_FILENAME) |
|
requested_metadata_keys = state.keys() - modules.keys() - optimizers.keys() |
|
_validate_keys_for_strict_loading(requested_metadata_keys, metadata.keys(), strict=strict) |
|
for key in requested_metadata_keys: |
|
if key not in metadata: |
|
continue |
|
state[key] = metadata.pop(key) |
|
|
|
|
|
return metadata |
|
|
|
if _is_full_checkpoint(path): |
|
checkpoint = _lazy_load(path) |
|
|
|
from lightning_fabric.strategies.model_parallel import ( |
|
_load_raw_module_state, |
|
_rekey_optimizer_state_if_needed, |
|
) |
|
|
|
_load_raw_module_state(checkpoint.pop(module_key), module=module, world_size=self.world_size, strict=strict) |
|
|
|
if isinstance(state, Module): |
|
return {} |
|
|
|
|
|
|
|
checkpoint = _materialize_tensors(checkpoint) |
|
|
|
|
|
for optim_key, optim in optimizers.items(): |
|
|
|
with _get_full_state_dict_context(module, world_size=self.world_size, rank0_only=False): |
|
temp_state_dict = _rekey_optimizer_state_if_needed(checkpoint.pop(optim_key), module) |
|
optim_state_dict = FSDP.optim_state_dict_to_load( |
|
optim_state_dict=temp_state_dict, |
|
model=module, |
|
optim=optim, |
|
) |
|
optim.load_state_dict(optim_state_dict) |
|
|
|
requested_metadata_keys = state.keys() - modules.keys() - optimizers.keys() |
|
_validate_keys_for_strict_loading(requested_metadata_keys, checkpoint.keys(), strict=strict) |
|
|
|
|
|
_move_state_into(source=checkpoint, destination=state, keys=requested_metadata_keys) |
|
|
|
|
|
return checkpoint |
|
|
|
raise ValueError( |
|
f"The path {str(path)!r} does not point to a valid checkpoint. Make sure the path points to either a" |
|
" directory with FSDP checkpoint shards, or a single file with a full checkpoint." |
|
) |
|
|
|
@classmethod |
|
@override |
|
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None: |
|
if not torch.distributed.is_available(): |
|
return |
|
|
|
strategy_registry.register( |
|
"fsdp", |
|
cls, |
|
description="Fully Sharded Data Parallel (FSDP) training", |
|
) |
|
strategy_registry.register( |
|
"fsdp_cpu_offload", |
|
cls, |
|
description="Fully Sharded Data Parallel (FSDP) training with Full Sharding and CPU Offloading", |
|
cpu_offload=True, |
|
) |
|
|
|
def _setup_distributed(self) -> None: |
|
reset_seed() |
|
self._set_world_ranks() |
|
self._process_group_backend = self._get_process_group_backend() |
|
assert self.cluster_environment is not None |
|
_init_dist_connection(self.cluster_environment, self._process_group_backend, timeout=self._timeout) |
|
|
|
def _get_process_group_backend(self) -> str: |
|
return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device) |
|
|
|
def _set_world_ranks(self) -> None: |
|
if self.cluster_environment is not None: |
|
self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank) |
|
self.cluster_environment.set_world_size(self.num_nodes * self.num_processes) |
|
|
|
|
|
rank_zero_only.rank = utils_rank_zero_only.rank = self.global_rank |
|
|
|
|
|
def _activation_checkpointing_kwargs( |
|
activation_checkpointing: Optional[Union[type[Module], list[type[Module]]]], |
|
activation_checkpointing_policy: Optional["_POLICY"], |
|
) -> dict: |
|
if activation_checkpointing is None and activation_checkpointing_policy is None: |
|
return {} |
|
if activation_checkpointing is not None and activation_checkpointing_policy is not None: |
|
raise ValueError( |
|
"You cannot set both `activation_checkpointing` and `activation_checkpointing_policy`. Use the latter." |
|
) |
|
if activation_checkpointing is not None: |
|
if isinstance(activation_checkpointing, list): |
|
classes = tuple(activation_checkpointing) |
|
else: |
|
classes = (activation_checkpointing,) |
|
rank_zero_deprecation( |
|
f"`FSDPStrategy(activation_checkpointing={activation_checkpointing})` is deprecated, use " |
|
f"`FSDPStrategy(activation_checkpointing_policy={set(classes)})` instead." |
|
) |
|
return {"check_fn": lambda submodule: isinstance(submodule, classes)} |
|
if isinstance(activation_checkpointing_policy, set): |
|
return _auto_wrap_policy_kwargs(activation_checkpointing_policy, {}) |
|
return {"auto_wrap_policy": activation_checkpointing_policy} |
|
|
|
|
|
def _auto_wrap_policy_kwargs(policy: Optional["_POLICY"], kwargs: dict) -> dict: |
|
if policy is None: |
|
return kwargs |
|
if isinstance(policy, set): |
|
from torch.distributed.fsdp.wrap import ModuleWrapPolicy |
|
|
|
policy = ModuleWrapPolicy(policy) |
|
|
|
kwargs["auto_wrap_policy"] = policy |
|
return kwargs |
|
|
|
|
|
def _setup_activation_checkpointing(module: Module, activation_checkpointing_kwargs: dict) -> None: |
|
if not activation_checkpointing_kwargs: |
|
return |
|
|
|
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import CheckpointWrapper |
|
|
|
if any(isinstance(mod, CheckpointWrapper) for mod in module.modules()): |
|
rank_zero_warn( |
|
"FSDP checkpointing is configured, but the model already contains checkpointed layers." |
|
" Checkpointing will be ignored." |
|
) |
|
return |
|
|
|
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( |
|
CheckpointImpl, |
|
apply_activation_checkpointing, |
|
checkpoint_wrapper, |
|
) |
|
|
|
if not _TORCH_GREATER_EQUAL_2_2: |
|
checkpoint_wrapper = partial(checkpoint_wrapper, checkpoint_impl=CheckpointImpl.NO_REENTRANT) |
|
apply_activation_checkpointing(module, checkpoint_wrapper_fn=checkpoint_wrapper, **activation_checkpointing_kwargs) |
|
|
|
|
|
class _FSDPBackwardSyncControl(_BackwardSyncControl): |
|
@override |
|
def no_backward_sync(self, module: Module, enabled: bool) -> AbstractContextManager: |
|
"""Blocks gradient synchronization inside the :class:`~torch.distributed.fsdp.FullyShardedDataParallel` |
|
wrapper.""" |
|
if not enabled: |
|
return nullcontext() |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel |
|
|
|
if not isinstance(module, FullyShardedDataParallel): |
|
|
|
raise TypeError( |
|
"Blocking backward sync is only possible if the module passed to" |
|
f" `{type(self).__name__}.no_backward_sync` is wrapped in `FullyShardedDataParallel`." |
|
f" Got: {module.__class__.__name__}." |
|
) |
|
return module.no_sync() |
|
|
|
|
|
def _init_cpu_offload(cpu_offload: Optional[Union[bool, "CPUOffload"]]) -> "CPUOffload": |
|
from torch.distributed.fsdp import CPUOffload |
|
|
|
return cpu_offload if isinstance(cpu_offload, CPUOffload) else CPUOffload(offload_params=bool(cpu_offload)) |
|
|
|
|
|
def _init_sharding_strategy(sharding_strategy: "_SHARDING_STRATEGY", kwargs: dict) -> "ShardingStrategy": |
|
from torch.distributed.fsdp import ShardingStrategy |
|
|
|
if kwargs.get("process_group") is not None and kwargs.get("device_mesh") is not None: |
|
raise ValueError( |
|
"The arguments `FSDPStrategy(process_group=..., device_mesh=...)` are mutually exclusive." |
|
"Pass only one of them." |
|
) |
|
|
|
strategy = ShardingStrategy[sharding_strategy.upper()] if isinstance(sharding_strategy, str) else sharding_strategy |
|
if ( |
|
"HYBRID" in strategy.name |
|
and kwargs.get("auto_wrap_policy") is None |
|
and kwargs.get("process_group") is None |
|
and kwargs.get("device_mesh") is None |
|
): |
|
raise RuntimeError( |
|
"The hybrid sharding strategy requires you to pass at least one of the parameters: `auto_wrap_policy`," |
|
" `process_group` tuple, or `device_mesh`." |
|
) |
|
return strategy |
|
|
|
|
|
def _optimizer_has_flat_params(optimizer: Optimizer) -> bool: |
|
return any( |
|
getattr(param, "_fsdp_flattened", False) for group in optimizer.param_groups for param in group["params"] |
|
) |
|
|
|
|
|
def _get_sharded_state_dict_context(module: Module) -> Generator[None, None, None]: |
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp.api import ShardedOptimStateDictConfig, ShardedStateDictConfig, StateDictType |
|
|
|
state_dict_config = ShardedStateDictConfig(offload_to_cpu=True) |
|
optim_state_dict_config = ShardedOptimStateDictConfig(offload_to_cpu=True) |
|
state_dict_type_context = FSDP.state_dict_type( |
|
module=module, |
|
state_dict_type=StateDictType.SHARDED_STATE_DICT, |
|
state_dict_config=state_dict_config, |
|
optim_state_dict_config=optim_state_dict_config, |
|
) |
|
return state_dict_type_context |
|
|
|
|
|
def _get_full_state_dict_context( |
|
module: Module, world_size: int, rank0_only: bool = True |
|
) -> Generator[None, None, None]: |
|
from torch.distributed.fsdp import FullStateDictConfig, StateDictType |
|
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp.api import FullOptimStateDictConfig |
|
|
|
state_dict_config = FullStateDictConfig(offload_to_cpu=True, rank0_only=rank0_only) |
|
optim_state_dict_config = FullOptimStateDictConfig(offload_to_cpu=True, rank0_only=rank0_only) |
|
state_dict_type_context = FSDP.state_dict_type( |
|
module=module, |
|
state_dict_type=StateDictType.FULL_STATE_DICT, |
|
state_dict_config=state_dict_config, |
|
optim_state_dict_config=optim_state_dict_config, |
|
) |
|
|
|
return state_dict_type_context |
|
|
|
|
|
def _is_sharded_checkpoint(path: Path) -> bool: |
|
"""A heuristic check to determine whether the path points to a directory with checkpoint shards.""" |
|
return path.is_dir() and (path / _METADATA_FILENAME).is_file() |
|
|
|
|
|
def _is_full_checkpoint(path: Path) -> bool: |
|
return path.is_file() |
|
|
|
|
|
def _has_fsdp_modules(module: object) -> TypeGuard[Module]: |
|
from torch.distributed.fsdp import FullyShardedDataParallel |
|
|
|
return isinstance(module, Module) and any(isinstance(m, FullyShardedDataParallel) for m in module.modules()) |
|
|
|
|
|
def _move_torchmetrics_to_device(module: torch.nn.Module, device: torch.device) -> None: |
|
|
|
|
|
if not RequirementCache("torchmetrics"): |
|
return |
|
|
|
from torchmetrics import Metric |
|
|
|
for metric in (m for m in module.modules() if isinstance(m, Metric)): |
|
metric.to(device) |
|
|
|
|
|
def _distributed_checkpoint_save(converted_state: dict[str, Any], path: Path) -> None: |
|
if _TORCH_GREATER_EQUAL_2_3: |
|
from torch.distributed.checkpoint import save |
|
|
|
|
|
|
|
save(converted_state, checkpoint_id=path) |
|
else: |
|
from torch.distributed.checkpoint import FileSystemWriter |
|
|
|
if _TORCH_GREATER_EQUAL_2_2: |
|
from torch.distributed.checkpoint import save |
|
else: |
|
from torch.distributed.checkpoint import save_state_dict as save |
|
|
|
writer = FileSystemWriter(path=path, single_file_per_rank=True) |
|
save(converted_state, writer) |
|
|
|
|
|
def _distributed_checkpoint_load(module_state: dict[str, Any], path: Path) -> None: |
|
if _TORCH_GREATER_EQUAL_2_3: |
|
from torch.distributed.checkpoint import load |
|
|
|
|
|
|
|
load(module_state, checkpoint_id=path) |
|
else: |
|
from torch.distributed.checkpoint import FileSystemReader |
|
|
|
if _TORCH_GREATER_EQUAL_2_2: |
|
from torch.distributed.checkpoint import load |
|
else: |
|
from torch.distributed.checkpoint import load_state_dict as load |
|
reader = FileSystemReader(path=path) |
|
load(module_state, reader) |
|
|