|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import AbstractContextManager, nullcontext |
|
from datetime import timedelta |
|
from typing import Any, Literal, Optional, Union |
|
|
|
import torch |
|
import torch.distributed |
|
from lightning_utilities.core.rank_zero import rank_zero_only as utils_rank_zero_only |
|
from torch import Tensor |
|
from torch.nn import Module |
|
from torch.nn.parallel.distributed import DistributedDataParallel |
|
from typing_extensions import override |
|
|
|
from lightning_fabric.accelerators.accelerator import Accelerator |
|
from lightning_fabric.plugins.collectives.torch_collective import default_pg_timeout |
|
from lightning_fabric.plugins.environments.cluster_environment import ClusterEnvironment |
|
from lightning_fabric.plugins.io.checkpoint_io import CheckpointIO |
|
from lightning_fabric.plugins.precision import Precision |
|
from lightning_fabric.strategies.launchers.multiprocessing import _MultiProcessingLauncher |
|
from lightning_fabric.strategies.launchers.subprocess_script import _SubprocessScriptLauncher |
|
from lightning_fabric.strategies.parallel import ParallelStrategy |
|
from lightning_fabric.strategies.registry import _StrategyRegistry |
|
from lightning_fabric.strategies.strategy import TBroadcast, _BackwardSyncControl |
|
from lightning_fabric.utilities.distributed import ( |
|
ReduceOp, |
|
_distributed_is_initialized, |
|
_get_default_process_group_backend_for_device, |
|
_init_dist_connection, |
|
_sync_ddp_if_available, |
|
) |
|
from lightning_fabric.utilities.distributed import group as _group |
|
from lightning_fabric.utilities.rank_zero import rank_zero_only |
|
|
|
_DDP_FORK_ALIASES = ( |
|
"ddp_fork", |
|
"ddp_notebook", |
|
) |
|
|
|
|
|
class DDPStrategy(ParallelStrategy): |
|
"""Strategy for multi-process single-device training on one or multiple nodes.""" |
|
|
|
def __init__( |
|
self, |
|
accelerator: Optional[Accelerator] = None, |
|
parallel_devices: Optional[list[torch.device]] = None, |
|
cluster_environment: Optional[ClusterEnvironment] = None, |
|
checkpoint_io: Optional[CheckpointIO] = None, |
|
precision: Optional[Precision] = None, |
|
process_group_backend: Optional[str] = None, |
|
timeout: Optional[timedelta] = default_pg_timeout, |
|
start_method: Literal["popen", "spawn", "fork", "forkserver"] = "popen", |
|
**kwargs: Any, |
|
) -> None: |
|
super().__init__( |
|
accelerator=accelerator, |
|
parallel_devices=parallel_devices, |
|
cluster_environment=cluster_environment, |
|
checkpoint_io=checkpoint_io, |
|
precision=precision, |
|
) |
|
self._num_nodes = 1 |
|
self._process_group_backend: Optional[str] = process_group_backend |
|
self._timeout: Optional[timedelta] = timeout |
|
self._start_method = start_method |
|
self._backward_sync_control = _DDPBackwardSyncControl() |
|
self._ddp_kwargs = kwargs |
|
|
|
@property |
|
@override |
|
def root_device(self) -> torch.device: |
|
assert self.parallel_devices is not None |
|
return self.parallel_devices[self.local_rank] |
|
|
|
@property |
|
def num_nodes(self) -> int: |
|
return self._num_nodes |
|
|
|
@num_nodes.setter |
|
def num_nodes(self, num_nodes: int) -> None: |
|
|
|
self._num_nodes = num_nodes |
|
|
|
@property |
|
def num_processes(self) -> int: |
|
return len(self.parallel_devices) if self.parallel_devices is not None else 0 |
|
|
|
@property |
|
@override |
|
def distributed_sampler_kwargs(self) -> dict[str, Any]: |
|
return {"num_replicas": (self.num_nodes * self.num_processes), "rank": self.global_rank} |
|
|
|
@property |
|
def process_group_backend(self) -> Optional[str]: |
|
return self._process_group_backend |
|
|
|
@override |
|
def _configure_launcher(self) -> None: |
|
assert self.cluster_environment is not None |
|
if self._start_method == "popen": |
|
self._launcher = _SubprocessScriptLauncher(self.cluster_environment, self.num_processes, self.num_nodes) |
|
else: |
|
self._launcher = _MultiProcessingLauncher(self, start_method=self._start_method) |
|
|
|
@override |
|
def setup_environment(self) -> None: |
|
super().setup_environment() |
|
self._setup_distributed() |
|
|
|
@override |
|
def setup_module(self, module: Module) -> DistributedDataParallel: |
|
"""Wraps the model into a :class:`~torch.nn.parallel.distributed.DistributedDataParallel` module.""" |
|
device_ids = self._determine_ddp_device_ids() |
|
|
|
ctx = torch.cuda.stream(torch.cuda.Stream()) if device_ids is not None else nullcontext() |
|
with ctx: |
|
return DistributedDataParallel(module=module, device_ids=device_ids, **self._ddp_kwargs) |
|
|
|
@override |
|
def module_to_device(self, module: Module) -> None: |
|
module.to(self.root_device) |
|
|
|
@override |
|
def all_reduce( |
|
self, tensor: Tensor, group: Optional[Any] = None, reduce_op: Optional[Union[ReduceOp, str]] = "mean" |
|
) -> Tensor: |
|
"""Reduces a tensor from several distributed processes to one aggregated tensor. |
|
|
|
Args: |
|
tensor: the tensor to sync and reduce |
|
group: the process group to gather results from. Defaults to all processes (world) |
|
reduce_op: the reduction operation. Defaults to 'mean'/'avg'. |
|
Can also be a string 'sum' to calculate the sum during reduction. |
|
|
|
Return: |
|
reduced value, except when the input was not a tensor the output remains is unchanged |
|
|
|
""" |
|
if isinstance(tensor, Tensor): |
|
return _sync_ddp_if_available(tensor, group, reduce_op=reduce_op) |
|
return tensor |
|
|
|
@override |
|
def barrier(self, *args: Any, **kwargs: Any) -> None: |
|
if not _distributed_is_initialized(): |
|
return |
|
if torch.distributed.get_backend() == "nccl": |
|
torch.distributed.barrier(device_ids=self._determine_ddp_device_ids()) |
|
else: |
|
torch.distributed.barrier() |
|
|
|
@override |
|
def broadcast(self, obj: TBroadcast, src: int = 0) -> TBroadcast: |
|
if not _distributed_is_initialized(): |
|
return obj |
|
|
|
obj = [obj] |
|
torch.distributed.broadcast_object_list(obj, src, group=_group.WORLD) |
|
return obj[0] |
|
|
|
@override |
|
def get_module_state_dict(self, module: Module) -> dict[str, Union[Any, Tensor]]: |
|
if isinstance(module, DistributedDataParallel): |
|
module = module.module |
|
return super().get_module_state_dict(module) |
|
|
|
@override |
|
def load_module_state_dict( |
|
self, module: Module, state_dict: dict[str, Union[Any, Tensor]], strict: bool = True |
|
) -> None: |
|
if isinstance(module, DistributedDataParallel): |
|
module = module.module |
|
super().load_module_state_dict(module=module, state_dict=state_dict, strict=strict) |
|
|
|
@classmethod |
|
@override |
|
def register_strategies(cls, strategy_registry: _StrategyRegistry) -> None: |
|
entries = ( |
|
("ddp", "popen"), |
|
("ddp_spawn", "spawn"), |
|
("ddp_fork", "fork"), |
|
("ddp_notebook", "fork"), |
|
) |
|
for name, start_method in entries: |
|
strategy_registry.register( |
|
name, |
|
cls, |
|
description=f"DDP strategy with `start_method={start_method!r}`", |
|
start_method=start_method, |
|
) |
|
strategy_registry.register( |
|
"ddp_find_unused_parameters_true", |
|
cls, |
|
description="Alias for `find_unused_parameters_true` and `start_method='popen'`", |
|
find_unused_parameters=True, |
|
start_method="popen", |
|
) |
|
|
|
def _setup_distributed(self) -> None: |
|
self._set_world_ranks() |
|
self._process_group_backend = self._get_process_group_backend() |
|
assert self.cluster_environment is not None |
|
_init_dist_connection(self.cluster_environment, self._process_group_backend, timeout=self._timeout) |
|
|
|
def _get_process_group_backend(self) -> str: |
|
return self._process_group_backend or _get_default_process_group_backend_for_device(self.root_device) |
|
|
|
def _set_world_ranks(self) -> None: |
|
if self.cluster_environment is not None: |
|
self.cluster_environment.set_global_rank(self.node_rank * self.num_processes + self.local_rank) |
|
self.cluster_environment.set_world_size(self.num_nodes * self.num_processes) |
|
|
|
|
|
rank_zero_only.rank = utils_rank_zero_only.rank = self.global_rank |
|
|
|
def _determine_ddp_device_ids(self) -> Optional[list[int]]: |
|
return None if self.root_device.type == "cpu" else [self.root_device.index] |
|
|
|
|
|
class _DDPBackwardSyncControl(_BackwardSyncControl): |
|
@override |
|
def no_backward_sync(self, module: Module, enabled: bool) -> AbstractContextManager: |
|
"""Blocks gradient synchronization inside the :class:`~torch.nn.parallel.distributed.DistributedDataParallel` |
|
wrapper.""" |
|
if not enabled: |
|
return nullcontext() |
|
|
|
if not isinstance(module, DistributedDataParallel): |
|
raise TypeError( |
|
"Blocking backward sync is only possible if the module passed to" |
|
f" `{self.__class__.__name__}.no_backward_sync` is wrapped in `DistributedDataParallel`." |
|
f" Got: {module.__class__.__name__}." |
|
) |
|
return module.no_sync() |
|
|