|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import AbstractContextManager, nullcontext |
|
from typing import TYPE_CHECKING, Any, Literal |
|
|
|
import torch |
|
from lightning_utilities.core.apply_func import apply_to_collection |
|
from torch import Tensor |
|
from torch.nn import Module |
|
from typing_extensions import get_args, override |
|
|
|
from lightning_fabric.plugins.precision.precision import Precision |
|
from lightning_fabric.plugins.precision.utils import _convert_fp_tensor, _DtypeContextManager |
|
from lightning_fabric.utilities.types import Steppable |
|
|
|
if TYPE_CHECKING: |
|
from deepspeed import DeepSpeedEngine |
|
|
|
_PRECISION_INPUT = Literal["32-true", "16-true", "bf16-true", "16-mixed", "bf16-mixed"] |
|
|
|
|
|
class DeepSpeedPrecision(Precision): |
|
"""Precision plugin for DeepSpeed integration. |
|
|
|
Args: |
|
precision: Full precision (32-true), half precision (16-true, bf16-true) or |
|
mixed precision (16-mixed, bf16-mixed). |
|
|
|
Raises: |
|
ValueError: |
|
If unsupported ``precision`` is provided. |
|
|
|
""" |
|
|
|
def __init__(self, precision: _PRECISION_INPUT) -> None: |
|
supported_precision = get_args(_PRECISION_INPUT) |
|
if precision not in supported_precision: |
|
raise ValueError( |
|
f"`precision={precision!r})` is not supported in DeepSpeed." |
|
f" `precision` must be one of: {supported_precision}." |
|
) |
|
self.precision = precision |
|
|
|
precision_to_type = { |
|
"bf16-mixed": torch.bfloat16, |
|
"16-mixed": torch.float16, |
|
"bf16-true": torch.bfloat16, |
|
"16-true": torch.float16, |
|
"32-true": torch.float32, |
|
} |
|
self._desired_dtype = precision_to_type[self.precision] |
|
|
|
@override |
|
def convert_module(self, module: Module) -> Module: |
|
if "true" in self.precision: |
|
return module.to(dtype=self._desired_dtype) |
|
return module |
|
|
|
@override |
|
def tensor_init_context(self) -> AbstractContextManager: |
|
if "true" not in self.precision: |
|
return nullcontext() |
|
return _DtypeContextManager(self._desired_dtype) |
|
|
|
@override |
|
def module_init_context(self) -> AbstractContextManager: |
|
return self.tensor_init_context() |
|
|
|
@override |
|
def convert_input(self, data: Any) -> Any: |
|
return apply_to_collection(data, function=_convert_fp_tensor, dtype=Tensor, dst_type=self._desired_dtype) |
|
|
|
@override |
|
def convert_output(self, data: Any) -> Any: |
|
return apply_to_collection(data, function=_convert_fp_tensor, dtype=Tensor, dst_type=torch.get_default_dtype()) |
|
|
|
@override |
|
def backward(self, tensor: Tensor, model: "DeepSpeedEngine", *args: Any, **kwargs: Any) -> None: |
|
"""Performs back-propagation using DeepSpeed's engine.""" |
|
model.backward(tensor, *args, **kwargs) |
|
|
|
@override |
|
def optimizer_step( |
|
self, |
|
optimizer: Steppable, |
|
**kwargs: Any, |
|
) -> Any: |
|
|
|
return optimizer.step(**kwargs) |
|
|