|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import logging |
|
import os |
|
|
|
from typing_extensions import override |
|
|
|
from lightning_fabric.plugins.environments.cluster_environment import ClusterEnvironment |
|
|
|
log = logging.getLogger(__name__) |
|
|
|
|
|
class KubeflowEnvironment(ClusterEnvironment): |
|
"""Environment for distributed training using the `PyTorchJob`_ operator from `Kubeflow`_. |
|
|
|
This environment, unlike others, does not get auto-detected and needs to be passed to the Fabric/Trainer |
|
constructor manually. |
|
|
|
.. _PyTorchJob: https://www.kubeflow.org/docs/components/trainer/legacy-v1/user-guides/pytorch/ |
|
.. _Kubeflow: https://www.kubeflow.org |
|
|
|
""" |
|
|
|
@property |
|
@override |
|
def creates_processes_externally(self) -> bool: |
|
return True |
|
|
|
@property |
|
@override |
|
def main_address(self) -> str: |
|
return os.environ["MASTER_ADDR"] |
|
|
|
@property |
|
@override |
|
def main_port(self) -> int: |
|
return int(os.environ["MASTER_PORT"]) |
|
|
|
@staticmethod |
|
@override |
|
def detect() -> bool: |
|
raise NotImplementedError("The Kubeflow environment can't be detected automatically.") |
|
|
|
@override |
|
def world_size(self) -> int: |
|
return int(os.environ["WORLD_SIZE"]) |
|
|
|
@override |
|
def set_world_size(self, size: int) -> None: |
|
log.debug("KubeflowEnvironment.set_world_size was called, but setting world size is not allowed. Ignored.") |
|
|
|
@override |
|
def global_rank(self) -> int: |
|
return int(os.environ["RANK"]) |
|
|
|
@override |
|
def set_global_rank(self, rank: int) -> None: |
|
log.debug("KubeflowEnvironment.set_global_rank was called, but setting global rank is not allowed. Ignored.") |
|
|
|
@override |
|
def local_rank(self) -> int: |
|
return 0 |
|
|
|
@override |
|
def node_rank(self) -> int: |
|
return self.global_rank() |
|
|