jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
import logging
import os
import random
from random import getstate as python_get_rng_state
from random import setstate as python_set_rng_state
from typing import Any, Optional
import torch
from lightning.fabric.utilities.imports import _NUMPY_AVAILABLE
from lightning.fabric.utilities.rank_zero import _get_rank, rank_prefixed_message, rank_zero_only, rank_zero_warn
log = logging.getLogger(__name__)
max_seed_value = 4294967295 # 2^32 - 1 (uint32)
min_seed_value = 0
def seed_everything(seed: Optional[int] = None, workers: bool = False, verbose: bool = True) -> int:
r"""Function that sets the seed for pseudo-random number generators in: torch, numpy, and Python's random module.
In addition, sets the following environment variables:
- ``PL_GLOBAL_SEED``: will be passed to spawned subprocesses (e.g. ddp_spawn backend).
- ``PL_SEED_WORKERS``: (optional) is set to 1 if ``workers=True``.
Args:
seed: the integer value seed for global random state in Lightning.
If ``None``, it will read the seed from ``PL_GLOBAL_SEED`` env variable. If ``None`` and the
``PL_GLOBAL_SEED`` env variable is not set, then the seed defaults to 0.
workers: if set to ``True``, will properly configure all dataloaders passed to the
Trainer with a ``worker_init_fn``. If the user already provides such a function
for their dataloaders, setting this argument will have no influence. See also:
:func:`~lightning.fabric.utilities.seed.pl_worker_init_function`.
verbose: Whether to print a message on each rank with the seed being set.
"""
if seed is None:
env_seed = os.environ.get("PL_GLOBAL_SEED")
if env_seed is None:
seed = 0
rank_zero_warn(f"No seed found, seed set to {seed}")
else:
try:
seed = int(env_seed)
except ValueError:
seed = 0
rank_zero_warn(f"Invalid seed found: {repr(env_seed)}, seed set to {seed}")
elif not isinstance(seed, int):
seed = int(seed)
if not (min_seed_value <= seed <= max_seed_value):
rank_zero_warn(f"{seed} is not in bounds, numpy accepts from {min_seed_value} to {max_seed_value}")
seed = 0
if verbose:
log.info(rank_prefixed_message(f"Seed set to {seed}", _get_rank()))
os.environ["PL_GLOBAL_SEED"] = str(seed)
random.seed(seed)
if _NUMPY_AVAILABLE:
import numpy as np
np.random.seed(seed)
torch.manual_seed(seed)
os.environ["PL_SEED_WORKERS"] = f"{int(workers)}"
return seed
def reset_seed() -> None:
r"""Reset the seed to the value that :func:`~lightning.fabric.utilities.seed.seed_everything` previously set.
If :func:`~lightning.fabric.utilities.seed.seed_everything` is unused, this function will do nothing.
"""
seed = os.environ.get("PL_GLOBAL_SEED", None)
if seed is None:
return
workers = os.environ.get("PL_SEED_WORKERS", "0")
seed_everything(int(seed), workers=bool(int(workers)), verbose=False)
def pl_worker_init_function(worker_id: int, rank: Optional[int] = None) -> None: # pragma: no cover
r"""The worker_init_fn that Lightning automatically adds to your dataloader if you previously set the seed with
``seed_everything(seed, workers=True)``.
See also the PyTorch documentation on
`randomness in DataLoaders <https://pytorch.org/docs/stable/notes/randomness.html#dataloader>`_.
"""
# implementation notes: https://github.com/pytorch/pytorch/issues/5059#issuecomment-817392562
global_rank = rank if rank is not None else rank_zero_only.rank
process_seed = torch.initial_seed()
# back out the base seed so we can use all the bits
base_seed = process_seed - worker_id
log.debug(
f"Initializing random number generators of process {global_rank} worker {worker_id} with base seed {base_seed}"
)
seed_sequence = _generate_seed_sequence(base_seed, worker_id, global_rank, count=4)
torch.manual_seed(seed_sequence[0]) # torch takes a 64-bit seed
random.seed((seed_sequence[1] << 32) | seed_sequence[2]) # combine two 64-bit seeds
if _NUMPY_AVAILABLE:
import numpy as np
ss = np.random.SeedSequence([base_seed, worker_id, global_rank])
np_rng_seed = ss.generate_state(4)
np.random.seed(np_rng_seed)
def _generate_seed_sequence(base_seed: int, worker_id: int, global_rank: int, count: int) -> list[int]:
"""Generates a sequence of seeds from a base seed, worker id and rank using the linear congruential generator (LCG)
algorithm."""
# Combine base seed, worker id and rank into a unique 64-bit number
combined_seed = (base_seed << 32) | (worker_id << 16) | global_rank
seeds = []
for _ in range(count):
# x_(n+1) = (a * x_n + c) mod m. With c=1, m=2^64 and a is D. Knuth's constant
combined_seed = (combined_seed * 6364136223846793005 + 1) & ((1 << 64) - 1)
seeds.append(combined_seed)
return seeds
def _collect_rng_states(include_cuda: bool = True) -> dict[str, Any]:
r"""Collect the global random state of :mod:`torch`, :mod:`torch.cuda`, :mod:`numpy` and Python."""
states = {
"torch": torch.get_rng_state(),
"python": python_get_rng_state(),
}
if _NUMPY_AVAILABLE:
import numpy as np
states["numpy"] = np.random.get_state()
if include_cuda:
states["torch.cuda"] = torch.cuda.get_rng_state_all() if torch.cuda.is_available() else []
return states
def _set_rng_states(rng_state_dict: dict[str, Any]) -> None:
r"""Set the global random state of :mod:`torch`, :mod:`torch.cuda`, :mod:`numpy` and Python in the current
process."""
torch.set_rng_state(rng_state_dict["torch"])
# torch.cuda rng_state is only included since v1.8.
if "torch.cuda" in rng_state_dict:
torch.cuda.set_rng_state_all(rng_state_dict["torch.cuda"])
if _NUMPY_AVAILABLE and "numpy" in rng_state_dict:
import numpy as np
np.random.set_state(rng_state_dict["numpy"])
version, state, gauss = rng_state_dict["python"]
python_set_rng_state((version, tuple(state), gauss))