jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import MutableSequence
from typing import Optional, Union
import torch
from lightning.fabric.utilities.exceptions import MisconfigurationException
from lightning.fabric.utilities.types import _DEVICE
def _determine_root_gpu_device(gpus: list[_DEVICE]) -> Optional[_DEVICE]:
"""
Args:
gpus: Non-empty list of ints representing which GPUs to use
Returns:
Designated root GPU device id
Raises:
TypeError:
If ``gpus`` is not a list
AssertionError:
If GPU list is empty
"""
if gpus is None:
return None
if not isinstance(gpus, list):
raise TypeError("GPUs should be a list")
assert len(gpus) > 0, "GPUs should be a non-empty list"
# set root gpu
return gpus[0]
def _parse_gpu_ids(
gpus: Optional[Union[int, str, list[int]]],
include_cuda: bool = False,
include_mps: bool = False,
) -> Optional[list[int]]:
"""Parses the GPU IDs given in the format as accepted by the :class:`~lightning.pytorch.trainer.trainer.Trainer`.
Args:
gpus: An int -1 or string '-1' indicate that all available GPUs should be used.
A list of unique ints or a string containing a list of comma separated unique integers
indicates specific GPUs to use.
An int of 0 means that no GPUs should be used.
Any int N > 0 indicates that GPUs [0..N) should be used.
include_cuda: A boolean value indicating whether to include CUDA devices for GPU parsing.
include_mps: A boolean value indicating whether to include MPS devices for GPU parsing.
Returns:
A list of GPUs to be used or ``None`` if no GPUs were requested
Raises:
MisconfigurationException:
If no GPUs are available but the value of gpus variable indicates request for GPUs
.. note::
``include_cuda`` and ``include_mps`` default to ``False`` so that you only
have to specify which device type to use and all other devices are not disabled.
"""
# Check that gpus param is None, Int, String or Sequence of Ints
_check_data_type(gpus)
# Handle the case when no GPUs are requested
if gpus is None or (isinstance(gpus, int) and gpus == 0) or str(gpus).strip() in ("0", "[]"):
return None
# We know the user requested GPUs therefore if some of the
# requested GPUs are not available an exception is thrown.
gpus = _normalize_parse_gpu_string_input(gpus)
gpus = _normalize_parse_gpu_input_to_list(gpus, include_cuda=include_cuda, include_mps=include_mps)
if not gpus:
raise MisconfigurationException("GPUs requested but none are available.")
if (
torch.distributed.is_available()
and torch.distributed.is_torchelastic_launched()
and len(gpus) != 1
and len(_get_all_available_gpus(include_cuda=include_cuda, include_mps=include_mps)) == 1
):
# Omit sanity check on torchelastic because by default it shows one visible GPU per process
return gpus
# Check that GPUs are unique. Duplicate GPUs are not supported by the backend.
_check_unique(gpus)
return _sanitize_gpu_ids(gpus, include_cuda=include_cuda, include_mps=include_mps)
def _normalize_parse_gpu_string_input(s: Union[int, str, list[int]]) -> Union[int, list[int]]:
if not isinstance(s, str):
return s
if s == "-1":
return -1
if "," in s:
return [int(x.strip()) for x in s.split(",") if len(x) > 0]
return int(s.strip())
def _sanitize_gpu_ids(gpus: list[int], include_cuda: bool = False, include_mps: bool = False) -> list[int]:
"""Checks that each of the GPUs in the list is actually available. Raises a MisconfigurationException if any of the
GPUs is not available.
Args:
gpus: List of ints corresponding to GPU indices
Returns:
Unmodified gpus variable
Raises:
MisconfigurationException:
If machine has fewer available GPUs than requested.
"""
if sum((include_cuda, include_mps)) == 0:
raise ValueError("At least one gpu type should be specified!")
all_available_gpus = _get_all_available_gpus(include_cuda=include_cuda, include_mps=include_mps)
for gpu in gpus:
if gpu not in all_available_gpus:
raise MisconfigurationException(
f"You requested gpu: {gpus}\n But your machine only has: {all_available_gpus}"
)
return gpus
def _normalize_parse_gpu_input_to_list(
gpus: Union[int, list[int], tuple[int, ...]], include_cuda: bool, include_mps: bool
) -> Optional[list[int]]:
assert gpus is not None
if isinstance(gpus, (MutableSequence, tuple)):
return list(gpus)
# must be an int
if not gpus: # gpus==0
return None
if gpus == -1:
return _get_all_available_gpus(include_cuda=include_cuda, include_mps=include_mps)
return list(range(gpus))
def _get_all_available_gpus(include_cuda: bool = False, include_mps: bool = False) -> list[int]:
"""
Returns:
A list of all available GPUs
"""
from lightning.fabric.accelerators.cuda import _get_all_visible_cuda_devices
from lightning.fabric.accelerators.mps import _get_all_available_mps_gpus
cuda_gpus = _get_all_visible_cuda_devices() if include_cuda else []
mps_gpus = _get_all_available_mps_gpus() if include_mps else []
return cuda_gpus + mps_gpus
def _check_unique(device_ids: list[int]) -> None:
"""Checks that the device_ids are unique.
Args:
device_ids: List of ints corresponding to GPUs indices
Raises:
MisconfigurationException:
If ``device_ids`` of GPUs aren't unique
"""
if len(device_ids) != len(set(device_ids)):
raise MisconfigurationException("Device ID's (GPU) must be unique.")
def _check_data_type(device_ids: object) -> None:
"""Checks that the device_ids argument is one of the following: int, string, or sequence of integers.
Args:
device_ids: gpus/tpu_cores parameter as passed to the Trainer
Raises:
TypeError:
If ``device_ids`` of GPU/TPUs aren't ``int``, ``str`` or sequence of ``int```
"""
msg = "Device IDs (GPU/TPU) must be an int, a string, a sequence of ints, but you passed"
if device_ids is None:
raise TypeError(f"{msg} None")
if isinstance(device_ids, (MutableSequence, tuple)):
for id_ in device_ids:
id_type = type(id_) # because `isinstance(False, int)` -> True
if id_type is not int:
raise TypeError(f"{msg} a sequence of {type(id_).__name__}.")
elif type(device_ids) not in (int, str):
raise TypeError(f"{msg} {device_ids!r}.")