|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from contextlib import AbstractContextManager, nullcontext |
|
from typing import Any, Literal, Optional, Union |
|
|
|
from torch import Tensor |
|
from torch.nn import Module |
|
from torch.optim import Optimizer |
|
|
|
from lightning.fabric.utilities.types import _PARAMETERS, Optimizable |
|
|
|
_PRECISION_INPUT_INT = Literal[64, 32, 16] |
|
_PRECISION_INPUT_STR_ALIAS_CONVERSION = {"64": "64-true", "32": "32-true", "16": "16-mixed", "bf16": "bf16-mixed"} |
|
_PRECISION_INPUT_STR_ALIAS = Literal["64", "32", "16", "bf16"] |
|
_PRECISION_INPUT_STR = Literal[ |
|
"transformer-engine", |
|
"transformer-engine-float16", |
|
"16-true", |
|
"16-mixed", |
|
"bf16-true", |
|
"bf16-mixed", |
|
"32-true", |
|
"64-true", |
|
] |
|
_PRECISION_INPUT = Union[_PRECISION_INPUT_INT, _PRECISION_INPUT_STR, _PRECISION_INPUT_STR_ALIAS] |
|
|
|
|
|
class Precision: |
|
"""Base class for all plugins handling the precision-specific parts of the training. |
|
|
|
The class attribute precision must be overwritten in child classes. The default value reflects fp32 training. |
|
|
|
""" |
|
|
|
precision: _PRECISION_INPUT_STR = "32-true" |
|
|
|
def convert_module(self, module: Module) -> Module: |
|
"""Convert the module parameters to the precision type this plugin handles. |
|
|
|
This is optional and depends on the precision limitations during optimization. |
|
|
|
""" |
|
return module |
|
|
|
def tensor_init_context(self) -> AbstractContextManager: |
|
"""Controls how tensors get created (device, dtype).""" |
|
return nullcontext() |
|
|
|
def module_init_context(self) -> AbstractContextManager: |
|
"""Instantiate module parameters or tensors in the precision type this plugin handles. |
|
|
|
This is optional and depends on the precision limitations during optimization. |
|
|
|
""" |
|
return nullcontext() |
|
|
|
def forward_context(self) -> AbstractContextManager: |
|
"""A contextmanager for managing model forward/training_step/evaluation_step/predict_step.""" |
|
return nullcontext() |
|
|
|
def convert_input(self, data: Any) -> Any: |
|
"""Convert model inputs (forward) to the floating point precision type of this plugin. |
|
|
|
This is a no-op in the base precision plugin, since we assume the data already has the desired type (default is |
|
torch.float32). |
|
|
|
""" |
|
return data |
|
|
|
def convert_output(self, data: Any) -> Any: |
|
"""Convert outputs to the floating point precision type expected after model's forward. |
|
|
|
This is a no-op in the base precision plugin, since we assume the data already has the desired type (default is |
|
torch.float32). |
|
|
|
""" |
|
return data |
|
|
|
def pre_backward(self, tensor: Tensor, module: Optional[Module]) -> Any: |
|
"""Runs before precision plugin executes backward. |
|
|
|
Args: |
|
tensor: The tensor that will be used for backpropagation |
|
module: The module that was involved in producing the tensor and whose parameters need the gradients |
|
|
|
""" |
|
|
|
def backward(self, tensor: Tensor, model: Optional[Module], *args: Any, **kwargs: Any) -> None: |
|
"""Performs the actual backpropagation. |
|
|
|
Args: |
|
tensor: The tensor that will be used for backpropagation |
|
model: The module that was involved in producing the tensor and whose parameters need the gradients |
|
|
|
""" |
|
tensor.backward(*args, **kwargs) |
|
|
|
def post_backward(self, tensor: Tensor, module: Optional[Module]) -> Any: |
|
"""Runs after precision plugin executes backward. |
|
|
|
Args: |
|
tensor: The tensor that will be used for backpropagation |
|
module: The module that was involved in producing the tensor and whose parameters need the gradients |
|
|
|
""" |
|
|
|
def optimizer_step( |
|
self, |
|
optimizer: Optimizable, |
|
**kwargs: Any, |
|
) -> Any: |
|
"""Hook to run the optimizer step.""" |
|
return optimizer.step(**kwargs) |
|
|
|
def main_params(self, optimizer: Optimizer) -> _PARAMETERS: |
|
"""The main params of the model. |
|
|
|
Returns the plain model params here. Maybe different in other precision plugins. |
|
|
|
""" |
|
for group in optimizer.param_groups: |
|
yield from group["params"] |
|
|
|
def unscale_gradients(self, optimizer: Optimizer) -> None: |
|
return |
|
|
|
def state_dict(self) -> dict[str, Any]: |
|
"""Called when saving a checkpoint, implement to generate precision plugin state_dict. |
|
|
|
Returns: |
|
A dictionary containing precision plugin state. |
|
|
|
""" |
|
return {} |
|
|
|
def load_state_dict(self, state_dict: dict[str, Any]) -> None: |
|
"""Called when loading a checkpoint, implement to reload precision plugin state given precision plugin |
|
state_dict. |
|
|
|
Args: |
|
state_dict: the precision plugin state returned by ``state_dict``. |
|
|
|
""" |
|
pass |
|
|
|
def teardown(self) -> None: |
|
"""This method is called to teardown the training process. |
|
|
|
It is the right place to release memory and free other resources. |
|
|
|
""" |
|
|