|
|
|
|
|
|
|
|
|
|
|
from enum import Enum, auto |
|
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple |
|
|
|
import torch |
|
|
|
if TYPE_CHECKING: |
|
from torch.optim.optimizer import _params_t |
|
else: |
|
_params_t = Any |
|
|
|
try: |
|
from fairscale import fused_adam_cuda |
|
|
|
class Precision(Enum): |
|
FULL_PRECISION = auto() |
|
MIXED_PRECISION = auto() |
|
MEMORY_EFFICIENT_MIXED_PRECISION = auto() |
|
PURE_FP16 = auto() |
|
|
|
class _MultiDeviceReplicator(object): |
|
""" |
|
Lazily serves copies of a tensor to requested devices. Copies are cached per-device. |
|
""" |
|
|
|
def __init__(self, master_tensor: torch.Tensor): |
|
assert master_tensor.is_cuda |
|
self.master = master_tensor |
|
self._per_device_tensors: Dict[torch.device, torch.Tensor] = {} |
|
|
|
def get(self, device: torch.device) -> torch.Tensor: |
|
retval = self._per_device_tensors.get(device, None) |
|
if retval is None: |
|
retval = self.master.to(device=device, non_blocking=True, copy=True) |
|
self._per_device_tensors[device] = retval |
|
return retval |
|
|
|
class Adam(torch.optim.Optimizer): |
|
state: dict |
|
defaults: dict |
|
""" |
|
Implements Adam algorithm. Currently GPU-only. |
|
It has been proposed in `Adam: A Method for Stochastic Optimization`_. |
|
Compared to the original version in Apex, the fairseq version casts grads |
|
and params to FP32 internally to support ``--memory-efficient-fp16``. |
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) NOT SUPPORTED in FusedAdam! |
|
eps_inside_sqrt (boolean, optional): in the 'update parameters' step, |
|
adds eps to the bias-corrected second moment estimate before |
|
evaluating square root instead of adding it to the square root of |
|
second moment estimate as in the original paper. (default: False) |
|
precision (Precision, optional): One of Precision.FULL_PRECISION, |
|
Precision.MIXED_PRECISION, Precision.MEMORY_EFFICIENT_MIXED_PRECISION |
|
or Precision.PURE_FP16. Inferred based on model parameter precision if |
|
None. (default: None) |
|
.. _Adam: A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__( |
|
self, |
|
params: _params_t, |
|
lr: Optional[float] = 1e-3, |
|
bias_correction: Optional[bool] = True, |
|
betas: Optional[Tuple[float, float]] = (0.9, 0.999), |
|
eps: Optional[float] = 1e-8, |
|
eps_inside_sqrt: Optional[bool] = False, |
|
weight_decay: Optional[float] = 0.0, |
|
max_grad_norm: Optional[float] = 0.0, |
|
amsgrad: Optional[bool] = False, |
|
precision: Optional[Precision] = None, |
|
): |
|
parameters: List[Any] = list(params) |
|
self.precision = precision |
|
|
|
if self.precision is None: |
|
self.precision = ( |
|
Precision.FULL_PRECISION if parameters[0].dtype == torch.float32 else Precision.MIXED_PRECISION |
|
) |
|
|
|
if self.precision is not Precision.FULL_PRECISION: |
|
assert parameters[0].dtype == torch.float16 |
|
|
|
self.optim_type = torch.float16 if precision is Precision.PURE_FP16 else torch.float32 |
|
self._optim_scale = float(2**16) if precision is Precision.PURE_FP16 else 1.0 |
|
self._steps_since_optim_scale_change = 0 |
|
self._optim_scale_update_freq = 2000 |
|
self._overflow_buf = torch.cuda.IntTensor([0]) |
|
|
|
if amsgrad: |
|
raise RuntimeError("FusedAdam does not support the AMSGrad variant.") |
|
defaults = { |
|
"lr": lr, |
|
"bias_correction": bias_correction, |
|
"betas": betas, |
|
"eps": eps, |
|
"weight_decay": weight_decay, |
|
"max_grad_norm": max_grad_norm, |
|
} |
|
super().__init__(parameters, defaults) |
|
self.eps_mode = 0 if eps_inside_sqrt else 1 |
|
|
|
self.fp32_param_groups: List[Any] = [] |
|
if self.mixed_precision: |
|
self._build_fp32_params(parameters) |
|
|
|
def _build_fp32_params(self, params: Any) -> None: |
|
|
|
fp32_params = [] |
|
for p in params: |
|
p32 = torch.nn.Parameter(p.data.float()).to(p.device) |
|
p32.grad = torch.zeros_like(p32.data) |
|
fp32_params.append(p32) |
|
params = fp32_params |
|
|
|
self.fp32_param_groups = [] |
|
param_groups = list(params) |
|
if not isinstance(param_groups[0], dict): |
|
param_groups = [{"params": param_groups}] |
|
|
|
for param_group in param_groups: |
|
params = param_group["params"] |
|
if isinstance(params, torch.Tensor): |
|
param_group["params"] = [params] |
|
else: |
|
param_group["params"] = list(params) |
|
|
|
for name, default in self.defaults.items(): |
|
param_group.setdefault(name, default) |
|
|
|
params = param_group["params"] |
|
|
|
param_set = set() |
|
for group in self.param_groups: |
|
param_set.update(set(group["params"])) |
|
|
|
self.fp32_param_groups.append(param_group) |
|
|
|
@property |
|
def supports_memory_efficient_fp16(self) -> bool: |
|
return True |
|
|
|
@property |
|
def _step_supports_amp_scaling(self) -> bool: |
|
return False |
|
|
|
@property |
|
def mixed_precision(self) -> bool: |
|
return self.precision is Precision.MIXED_PRECISION |
|
|
|
def state_dict(self) -> Dict[str, Any]: |
|
d = super().state_dict() |
|
d["optim_scale"] = self._optim_scale |
|
return d |
|
|
|
def load_state_dict(self, state_dict: Dict[str, Any]) -> None: |
|
super().load_state_dict(state_dict) |
|
self._optim_scale = state_dict["optim_scale"] |
|
|
|
|
|
|
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
self.state[p]["exp_avg"] = self.state[p]["exp_avg"].type(self.optim_type) |
|
self.state[p]["exp_avg_sq"] = self.state[p]["exp_avg_sq"].type(self.optim_type) |
|
|
|
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]: |
|
"""Performs a single optimization step. |
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
grads (list of tensors, optional): weight gradient to use for the |
|
optimizer update. If gradients have type torch.half, parameters |
|
are expected to be in type torch.float. (default: None) |
|
output params (list of tensors, optional): A reduced precision copy |
|
of the updated weights written out in addition to the regular |
|
updated weights. Have to be of same type as gradients. (default: None) |
|
scale (float, optional): factor to divide gradient tensor values |
|
by before applying to weights. (default: 1) |
|
""" |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for i in range(len(self.param_groups)): |
|
group = self.param_groups[i] |
|
bias_correction = 1 if group["bias_correction"] else 0 |
|
tensorlists: Dict[torch.device, List[List[torch.Tensor]]] = dict() |
|
|
|
for j in range(len(group["params"])): |
|
p = group["params"][j] |
|
|
|
|
|
|
|
if p.grad is None: |
|
continue |
|
grad = p.grad.data |
|
if grad.is_sparse: |
|
raise RuntimeError( |
|
"FusedAdam does not support sparse gradients, " "please consider SparseAdam instead" |
|
) |
|
|
|
state = self.state[p] |
|
|
|
|
|
if len(state) == 0: |
|
state["step"] = 0 |
|
|
|
state["exp_avg"] = torch.zeros_like(p, dtype=self.optim_type) |
|
|
|
state["exp_avg_sq"] = torch.zeros_like(p, dtype=self.optim_type) |
|
|
|
exp_avg = state["exp_avg"] |
|
exp_avg_sq = state["exp_avg_sq"] |
|
beta1, beta2 = group["betas"] |
|
|
|
state["step"] += 1 |
|
out_p = p.data if self.mixed_precision else torch.tensor([]) |
|
param = self.fp32_param_groups[i]["params"][j] if self.mixed_precision else p |
|
|
|
scale = 1.0 |
|
|
|
if self.mixed_precision: |
|
pl = [param.data, exp_avg, exp_avg_sq, grad, out_p] |
|
if p.device not in tensorlists: |
|
tensorlists[p.device] = [[], [], [], [], []] |
|
|
|
for tl, t in zip(tensorlists[p.device], pl): |
|
tl.append(t) |
|
else: |
|
pl = [param.data, exp_avg, exp_avg_sq, grad] |
|
|
|
if p.device not in tensorlists: |
|
tensorlists[p.device] = [[], [], [], []] |
|
|
|
for tl, t in zip(tensorlists[p.device], pl): |
|
tl.append(t) |
|
|
|
found_inf = torch.full((1,), 0.0, dtype=torch.float32, device=list(tensorlists.keys())[0]) |
|
per_device_found_inf = _MultiDeviceReplicator(found_inf) |
|
|
|
for tensordevice, tensorlist in tensorlists.items(): |
|
with torch.cuda.device(tensordevice): |
|
fused_adam_cuda.adam( |
|
2048 * 32, |
|
self._overflow_buf, |
|
tensorlist, |
|
group["lr"], |
|
beta1, |
|
beta2, |
|
group["eps"], |
|
scale, |
|
self._optim_scale, |
|
per_device_found_inf.get(tensordevice), |
|
state["step"], |
|
self.eps_mode, |
|
bias_correction, |
|
group["weight_decay"], |
|
) |
|
|
|
if sum(v.item() for v in per_device_found_inf._per_device_tensors.values()): |
|
self._steps_since_optim_scale_change = 0 |
|
self._optim_scale /= 2 |
|
|
|
if self._optim_scale < 1.0: |
|
raise RuntimeError("Optimizer state scale < 1. This may mean that gradients are exploding") |
|
|
|
for group in self.param_groups: |
|
for p in group["params"]: |
|
self.state[p]["exp_avg"] = torch.zeros_like(p, dtype=self.optim_type) |
|
self.state[p]["exp_avg_sq"] = torch.zeros_like(p, dtype=self.optim_type) |
|
else: |
|
self._steps_since_optim_scale_change += 1 |
|
|
|
if self._steps_since_optim_scale_change == self._optim_scale_update_freq: |
|
self._steps_since_optim_scale_change = 0 |
|
if self._optim_scale < 2**16: |
|
self._optim_scale *= 2 |
|
|
|
return loss |
|
|
|
except ImportError: |
|
pass |
|
|