jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# coding=utf-8
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
import torch
from .initialize import get_model_parallel_group
from .utils import split_tensor_along_last_dim
def _reduce(ctx: Any, input_: torch.Tensor) -> torch.Tensor:
"""All-reduce the the input tensor across model parallel group."""
group = get_model_parallel_group()
if ctx:
ctx.mark_dirty(input_)
# Bypass the function if we are using only 1 GPU.
if torch.distributed.get_world_size(group=group) == 1:
return input_
# All-reduce.
torch.distributed.all_reduce(input_, group=group)
return input_
def _split(input_: torch.Tensor) -> torch.Tensor:
"""Split the tensor along its last dimension and keep the
corresponding slice."""
group = get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if torch.distributed.get_world_size(group=group) == 1:
return input_
# Split along last dimension.
world_size = torch.distributed.get_world_size(group=group)
input_list = split_tensor_along_last_dim(input_, world_size)
# Note: torch.split does not create contiguous tensors by default.
rank = torch.distributed.get_rank(group=group)
output = input_list[rank].contiguous()
return output
def _gather(input_: torch.Tensor) -> torch.Tensor:
"""Gather tensors and concatinate along the last dimension."""
group = get_model_parallel_group()
# Bypass the function if we are using only 1 GPU.
if torch.distributed.get_world_size(group=group) == 1:
return input_
# Size and dimension.
last_dim = input_.dim() - 1
rank = torch.distributed.get_rank(group=group)
world_size = torch.distributed.get_world_size(group=group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
torch.distributed.all_gather(tensor_list, input_, group=group)
# Note: torch.cat already creates a contiguous tensor.
output = torch.cat(tensor_list, dim=last_dim).contiguous()
return output
class _CopyToModelParallelRegion(torch.autograd.Function):
"""Pass the input to the model parallel region."""
@staticmethod
def forward(ctx, input_): # type: ignore
return input_
@staticmethod
def backward(ctx, grad_output): # type: ignore
return _reduce(None, grad_output)
class _ReduceFromModelParallelRegion(torch.autograd.Function):
"""All-redcue the input from the model parallel region."""
@staticmethod
def forward(ctx, input_): # type: ignore
return _reduce(ctx, input_)
@staticmethod
def backward(ctx, grad_output): # type: ignore
return grad_output
class _ScatterToModelParallelRegion(torch.autograd.Function):
"""Split the input and keep only the corresponding chuck to the rank."""
@staticmethod
def forward(ctx, input_): # type: ignore
return _split(input_)
@staticmethod
def backward(ctx, grad_output): # type: ignore
return _gather(grad_output)
class _GatherFromModelParallelRegion(torch.autograd.Function):
"""Gather the input from model parallel region and concatinate."""
@staticmethod
def forward(ctx, input_): # type: ignore
return _gather(input_)
@staticmethod
def backward(ctx, grad_output): # type: ignore
return _split(grad_output)
# -----------------
# Helper functions.
# -----------------
def copy_to_model_parallel_region(input_: torch.Tensor) -> torch.Tensor:
return _CopyToModelParallelRegion.apply(input_)
def reduce_from_model_parallel_region(input_: torch.Tensor) -> torch.Tensor:
return _ReduceFromModelParallelRegion.apply(input_)
def scatter_to_model_parallel_region(input_: torch.Tensor) -> torch.Tensor:
return _ScatterToModelParallelRegion.apply(input_)
def gather_from_model_parallel_region(input_: torch.Tensor) -> torch.Tensor:
return _GatherFromModelParallelRegion.apply(input_)