|
from doctest import testmod |
|
|
|
import numpy |
|
import pytest |
|
|
|
import einops |
|
import einops.layers |
|
import einops.parsing |
|
from einops._backends import AbstractBackend |
|
from einops.einops import rearrange, parse_shape, _optimize_transformation |
|
from einops.tests import collect_test_backends, is_backend_tested |
|
|
|
__author__ = "Alex Rogozhnikov" |
|
|
|
|
|
def test_doctests_examples(): |
|
|
|
testmod(einops.layers, raise_on_error=True, extraglobs=dict(np=numpy)) |
|
testmod(einops.einops, raise_on_error=True, extraglobs=dict(np=numpy)) |
|
|
|
|
|
def test_backends_installed(): |
|
""" |
|
This test will fail if some of backends are not installed or can't be imported |
|
Other tests will just work and only test installed backends. |
|
""" |
|
from . import parse_backends_to_test |
|
|
|
backends_to_test = parse_backends_to_test() |
|
errors = [] |
|
for backend_type in AbstractBackend.__subclasses__(): |
|
if backend_type.framework_name not in backends_to_test: |
|
continue |
|
try: |
|
|
|
backend_type() |
|
except Exception as e: |
|
errors.append((backend_type.framework_name, e)) |
|
assert len(errors) == 0, errors |
|
|
|
|
|
def test_optimize_transformations_numpy(): |
|
print("Testing optimizations") |
|
shapes = [[2] * n_dimensions for n_dimensions in range(14)] |
|
shapes += [[3] * n_dimensions for n_dimensions in range(6)] |
|
shapes += [[2, 3, 5, 7]] |
|
shapes += [[2, 3, 5, 7, 11, 17]] |
|
|
|
for shape in shapes: |
|
for attempt in range(5): |
|
n_dimensions = len(shape) |
|
x = numpy.random.randint(0, 2**12, size=shape).reshape([-1]) |
|
init_shape = shape[:] |
|
n_reduced = numpy.random.randint(0, n_dimensions + 1) |
|
reduced_axes = tuple(numpy.random.permutation(n_dimensions)[:n_reduced]) |
|
axes_reordering = numpy.random.permutation(n_dimensions - n_reduced) |
|
final_shape = numpy.random.randint(0, 1024, size=333) |
|
|
|
init_shape2, reduced_axes2, axes_reordering2, final_shape2 = combination2 = _optimize_transformation( |
|
init_shape, reduced_axes, axes_reordering, final_shape |
|
) |
|
|
|
assert numpy.array_equal(final_shape, final_shape2) |
|
result1 = x.reshape(init_shape).sum(axis=reduced_axes).transpose(axes_reordering).reshape([-1]) |
|
result2 = x.reshape(init_shape2).sum(axis=reduced_axes2).transpose(axes_reordering2).reshape([-1]) |
|
assert numpy.array_equal(result1, result2) |
|
|
|
|
|
combination3 = _optimize_transformation(*combination2) |
|
for a, b in zip(combination2, combination3): |
|
assert numpy.array_equal(a, b) |
|
|
|
|
|
_IMPERATIVE_BACKENDS = collect_test_backends(symbolic=False, layers=False) |
|
|
|
x_np = numpy.zeros([10, 20, 30, 40]) |
|
|
|
|
|
def test_parse_shape_imperative(): |
|
for backend in _IMPERATIVE_BACKENDS: |
|
print("Shape parsing for ", backend.framework_name) |
|
parsed1 = parse_shape(x_np, "a b c d") |
|
parsed2 = parse_shape(backend.from_numpy(x_np), "a b c d") |
|
assert parsed1 == parsed2 == dict(a=10, b=20, c=30, d=40) |
|
assert parsed1 != dict(a=1, b=20, c=30, d=40) != parsed2 |
|
|
|
|
|
def test_underscore(): |
|
for backend in _IMPERATIVE_BACKENDS: |
|
parsed1 = parse_shape(x_np, "_ _ _ _") |
|
parsed2 = parse_shape(backend.from_numpy(x_np), "_ _ _ _") |
|
assert parsed1 == parsed2 == dict() |
|
|
|
|
|
def test_underscore_one(): |
|
for backend in _IMPERATIVE_BACKENDS: |
|
parsed1 = parse_shape(x_np, "_ _ _ hello") |
|
parsed2 = parse_shape(backend.from_numpy(x_np), "_ _ _ hello") |
|
assert parsed1 == parsed2 == dict(hello=40) |
|
|
|
|
|
def test_underscore_several(): |
|
for backend in _IMPERATIVE_BACKENDS: |
|
parsed1 = parse_shape(x_np, "_ _ a1 a1a111a") |
|
parsed2 = parse_shape(backend.from_numpy(x_np), "_ _ a1 a1a111a") |
|
assert parsed1 == parsed2 == dict(a1=30, a1a111a=40) |
|
|
|
|
|
def test_repeating(): |
|
with pytest.raises(einops.EinopsError): |
|
parse_shape(x_np, "a a b b") |
|
|
|
for backend in _IMPERATIVE_BACKENDS: |
|
with pytest.raises(einops.EinopsError): |
|
parse_shape(backend.from_numpy(x_np), "a a b b") |
|
|
|
|
|
def test_ellipsis(): |
|
for backend in _IMPERATIVE_BACKENDS: |
|
for shape, pattern, expected in [ |
|
([10, 20], "...", dict()), |
|
([10], "... a", dict(a=10)), |
|
([10, 20], "... a", dict(a=20)), |
|
([10, 20, 30], "... a", dict(a=30)), |
|
([10, 20, 30, 40], "... a", dict(a=40)), |
|
([10], "a ...", dict(a=10)), |
|
([10, 20], "a ...", dict(a=10)), |
|
([10, 20, 30], "a ...", dict(a=10)), |
|
([10, 20, 30, 40], "a ...", dict(a=10)), |
|
([10, 20, 30, 40], " a ... b", dict(a=10, b=40)), |
|
([10, 40], " a ... b", dict(a=10, b=40)), |
|
]: |
|
x = numpy.ones(shape) |
|
parsed1 = parse_shape(x, pattern) |
|
parsed2 = parse_shape(backend.from_numpy(x), pattern) |
|
assert parsed1 == parsed2 == expected |
|
|
|
|
|
def test_parse_with_anonymous_axes(): |
|
for backend in _IMPERATIVE_BACKENDS: |
|
for shape, pattern, expected in [ |
|
([1, 2, 3, 4], "1 2 3 a", dict(a=4)), |
|
([10, 1, 2], "a 1 2", dict(a=10)), |
|
([10, 1, 2], "a () 2", dict(a=10)), |
|
]: |
|
x = numpy.ones(shape) |
|
parsed1 = parse_shape(x, pattern) |
|
parsed2 = parse_shape(backend.from_numpy(x), pattern) |
|
assert parsed1 == parsed2 == expected |
|
|
|
|
|
def test_failures(): |
|
for backend in _IMPERATIVE_BACKENDS: |
|
|
|
for shape, pattern in [ |
|
([1, 2, 3, 4], "a b c"), |
|
([1, 2, 3, 4], "2 a b c"), |
|
([1, 2, 3, 4], "a b c ()"), |
|
([1, 2, 3, 4], "a b c d e"), |
|
([1, 2, 3, 4], "a b c d e ..."), |
|
([1, 2, 3, 4], "a b c ()"), |
|
]: |
|
with pytest.raises(RuntimeError): |
|
x = numpy.ones(shape) |
|
parse_shape(backend.from_numpy(x), pattern) |
|
|
|
|
|
_SYMBOLIC_BACKENDS = [ |
|
*collect_test_backends(symbolic=True, layers=False), |
|
*collect_test_backends(symbolic=True, layers=True), |
|
] |
|
|
|
|
|
|
|
_SYMBOLIC_BACKENDS = [backend for backend in _SYMBOLIC_BACKENDS if backend.framework_name != "tensorflow.keras"] |
|
|
|
|
|
@pytest.mark.parametrize("backend", _SYMBOLIC_BACKENDS) |
|
def test_parse_shape_symbolic(backend): |
|
for shape in [ |
|
[10, 20, 30, 40], |
|
[10, 20, None, None], |
|
[None, None, None, None], |
|
]: |
|
print( |
|
f"special shape parsing {backend.framework_name=} {shape=}", |
|
) |
|
input_symbol = backend.create_symbol(shape) |
|
|
|
shape_placeholder = parse_shape(input_symbol, "a b c d") |
|
shape = {} |
|
for name, symbol in shape_placeholder.items(): |
|
shape[name] = ( |
|
symbol |
|
if isinstance(symbol, int) |
|
else backend.eval_symbol(symbol, [(input_symbol, numpy.zeros([10, 20, 30, 40]))]) |
|
) |
|
print(shape) |
|
result_placeholder = rearrange( |
|
input_symbol, "a b (c1 c2) (d1 d2) -> (a b d1) c1 (c2 d2)", **parse_shape(input_symbol, "a b c1 _"), d2=2 |
|
) |
|
result = backend.eval_symbol(result_placeholder, [(input_symbol, numpy.zeros([10, 20, 30, 40]))]) |
|
print(result.shape) |
|
assert result.shape == (10 * 20 * 20, 30, 1 * 2) |
|
assert numpy.allclose(result, 0) |
|
|
|
|
|
@pytest.mark.parametrize("backend", _SYMBOLIC_BACKENDS) |
|
def test_parse_shape_symbolic_ellipsis(backend): |
|
for static_shape, shape, pattern, expected in [ |
|
([10, 20], [None, None], "...", dict()), |
|
([10], [None], "... a", dict(a=10)), |
|
([10, 20], [None, None], "... a", dict(a=20)), |
|
([10, 20, 30], [None, None, None], "... a", dict(a=30)), |
|
([10, 20, 30, 40], [None, None, None, None], "... a", dict(a=40)), |
|
([10], [None], "a ...", dict(a=10)), |
|
([10, 20], [None, None], "a ...", dict(a=10)), |
|
([10, 20, 30], [None, None, None], "a ...", dict(a=10)), |
|
([10, 20, 30, 40], [None, None, None, None], "a ...", dict(a=10)), |
|
([10, 20, 30, 40], [None, None, None, None], " a ... b", dict(a=10, b=40)), |
|
([10, 40], [None, None], " a ... b ", dict(a=10, b=40)), |
|
]: |
|
input_symbol = backend.create_symbol(shape) |
|
shape_placeholder = parse_shape(input_symbol, pattern) |
|
out_shape = {} |
|
for name, symbol in shape_placeholder.items(): |
|
if isinstance(symbol, int): |
|
out_shape[name] = symbol |
|
else: |
|
out_shape[name] = backend.eval_symbol(symbol, [(input_symbol, numpy.zeros(static_shape))]) |
|
assert out_shape == expected |
|
|
|
|
|
def test_is_float_type(): |
|
backends = collect_test_backends(symbolic=False, layers=False) |
|
backends += collect_test_backends(symbolic=False, layers=True) |
|
for backend in backends: |
|
for dtype in ["int32", "int64", "float32", "float64"]: |
|
is_float = "float" in dtype |
|
input = numpy.zeros([3, 4, 5], dtype=dtype) |
|
input = backend.from_numpy(input) |
|
assert backend.is_float_type(input) == is_float, (dtype, backend, input.dtype) |
|
|
|
|
|
def test_torch_compile(): |
|
""" |
|
Test ensures that allow_ops_in_compiled_graph allows compiling in a single graph |
|
Additionally we ensure that after compilation cache works properly |
|
(by changing shapes and patterns) |
|
We additionally check that pack/unpack still can be handled |
|
despite variable number of inputs/outputs |
|
""" |
|
if not is_backend_tested("torch"): |
|
pytest.skip() |
|
import torch |
|
from torch import nn |
|
from einops import repeat, reduce, pack, unpack, einsum |
|
from einops._torch_specific import allow_ops_in_compiled_graph |
|
|
|
allow_ops_in_compiled_graph() |
|
|
|
class TorchModuleWithOperations(nn.Module): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
def forward(self, x_abc, suffix=""): |
|
a, b, c = x_abc.shape |
|
|
|
def suf(pattern): |
|
parts = pattern.split() |
|
return " ".join([p if p[-1] not in "acd" else p + suffix for p in parts]) |
|
|
|
|
|
|
|
x_abcd = repeat(x_abc, suf("a b c -> a b c 4")) |
|
x_abc = reduce(x_abcd, suf("a b c d -> a b c"), "min") |
|
x_abdc, ps = pack([x_abc] * (2 + len(suffix)), suf("a b * c")) |
|
x_array = unpack(rearrange(x_abdc, suf("a b d c -> (a b ) 1 c d")), ps, "ab one1 c *") |
|
x1 = x_array[0] + len(x_array) |
|
x1 = rearrange(x1, suf("(a b ) 1 c -> a b c"), b=b) |
|
addition = einsum(x_abc, x_abcd, suf("a b c , a b c d -> d"))[0] |
|
return x1 + addition |
|
|
|
original = TorchModuleWithOperations() |
|
compiled = torch.compile(original, fullgraph=True, backend="aot_eager") |
|
for size in [10, 20, 40]: |
|
x = torch.rand([size, size + 1, size + 2]) |
|
for suffix in ["", "suf1", "other_suffix"]: |
|
result1 = compiled(x, suffix) |
|
result2 = original(x, suffix) |
|
assert torch.allclose(result1, result2) |
|
|