|
from typing import Optional, Dict, cast |
|
|
|
import oneflow as flow |
|
|
|
from . import RearrangeMixin, ReduceMixin |
|
from ._einmix import _EinmixMixin |
|
|
|
__author__ = "Tianhe Ren & Depeng Liang" |
|
|
|
|
|
class Rearrange(RearrangeMixin, flow.nn.Module): |
|
def forward(self, input): |
|
return self._apply_recipe(input) |
|
|
|
|
|
class Reduce(ReduceMixin, flow.nn.Module): |
|
def forward(self, input): |
|
return self._apply_recipe(input) |
|
|
|
|
|
class EinMix(_EinmixMixin, flow.nn.Module): |
|
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound): |
|
self.weight = flow.nn.Parameter( |
|
flow.zeros(weight_shape).uniform_(-weight_bound, weight_bound), requires_grad=True |
|
) |
|
if bias_shape is not None: |
|
self.bias = flow.nn.Parameter(flow.zeros(bias_shape).uniform_(-bias_bound, bias_bound), requires_grad=True) |
|
else: |
|
self.bias = None |
|
|
|
def _create_rearrange_layers( |
|
self, |
|
pre_reshape_pattern: Optional[str], |
|
pre_reshape_lengths: Optional[Dict], |
|
post_reshape_pattern: Optional[str], |
|
post_reshape_lengths: Optional[Dict], |
|
): |
|
self.pre_rearrange = None |
|
if pre_reshape_pattern is not None: |
|
self.pre_rearrange = Rearrange(pre_reshape_pattern, **cast(dict, pre_reshape_lengths)) |
|
|
|
self.post_rearrange = None |
|
if post_reshape_pattern is not None: |
|
self.post_rearrange = Rearrange(post_reshape_pattern, **cast(dict, post_reshape_lengths)) |
|
|
|
def forward(self, input): |
|
if self.pre_rearrange is not None: |
|
input = self.pre_rearrange(input) |
|
result = flow.einsum(self.einsum_pattern, input, self.weight) |
|
if self.bias is not None: |
|
result += self.bias |
|
if self.post_rearrange is not None: |
|
result = self.post_rearrange(result) |
|
return result |
|
|