|
from dataclasses import field |
|
from typing import Optional, Dict, cast |
|
|
|
import flax.linen as nn |
|
import jax |
|
import jax.numpy as jnp |
|
|
|
from . import RearrangeMixin, ReduceMixin |
|
from ._einmix import _EinmixMixin |
|
|
|
__author__ = "Alex Rogozhnikov" |
|
|
|
|
|
class Reduce(nn.Module): |
|
pattern: str |
|
reduction: str |
|
sizes: dict = field(default_factory=lambda: {}) |
|
|
|
def setup(self): |
|
self.reducer = ReduceMixin(self.pattern, self.reduction, **self.sizes) |
|
|
|
def __call__(self, input): |
|
return self.reducer._apply_recipe(input) |
|
|
|
|
|
class Rearrange(nn.Module): |
|
pattern: str |
|
sizes: dict = field(default_factory=lambda: {}) |
|
|
|
def setup(self): |
|
self.rearranger = RearrangeMixin(self.pattern, **self.sizes) |
|
|
|
def __call__(self, input): |
|
return self.rearranger._apply_recipe(input) |
|
|
|
|
|
class EinMix(nn.Module, _EinmixMixin): |
|
pattern: str |
|
weight_shape: str |
|
bias_shape: Optional[str] = None |
|
sizes: dict = field(default_factory=lambda: {}) |
|
|
|
def setup(self): |
|
self.initialize_einmix( |
|
pattern=self.pattern, |
|
weight_shape=self.weight_shape, |
|
bias_shape=self.bias_shape, |
|
axes_lengths=self.sizes, |
|
) |
|
|
|
def _create_parameters(self, weight_shape, weight_bound, bias_shape, bias_bound): |
|
self.weight = self.param("weight", jax.nn.initializers.uniform(weight_bound), weight_shape) |
|
|
|
if bias_shape is not None: |
|
self.bias = self.param("bias", jax.nn.initializers.uniform(bias_bound), bias_shape) |
|
else: |
|
self.bias = None |
|
|
|
def _create_rearrange_layers( |
|
self, |
|
pre_reshape_pattern: Optional[str], |
|
pre_reshape_lengths: Optional[Dict], |
|
post_reshape_pattern: Optional[str], |
|
post_reshape_lengths: Optional[Dict], |
|
): |
|
self.pre_rearrange = None |
|
if pre_reshape_pattern is not None: |
|
self.pre_rearrange = Rearrange(pre_reshape_pattern, sizes=cast(dict, pre_reshape_lengths)) |
|
|
|
self.post_rearrange = None |
|
if post_reshape_pattern is not None: |
|
self.post_rearrange = Rearrange(post_reshape_pattern, sizes=cast(dict, post_reshape_lengths)) |
|
|
|
def __call__(self, input): |
|
if self.pre_rearrange is not None: |
|
input = self.pre_rearrange(input) |
|
result = jnp.einsum(self.einsum_pattern, input, self.weight) |
|
if self.bias is not None: |
|
result += self.bias |
|
if self.post_rearrange is not None: |
|
result = self.post_rearrange(result) |
|
return result |
|
|