|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from deepspeed.utils import log_dist |
|
import numpy as np |
|
import logging |
|
from deepspeed.utils.torch import required_torch_version |
|
|
|
|
|
class Eigenvalue(object): |
|
|
|
def __init__(self, |
|
verbose=False, |
|
max_iter=100, |
|
tol=1e-2, |
|
stability=0, |
|
gas_boundary_resolution=1, |
|
layer_name='', |
|
layer_num=0): |
|
super().__init__() |
|
|
|
self.verbose = verbose |
|
self.max_iter = max_iter |
|
self.tol = tol |
|
self.stability = stability |
|
self.gas_boundary_resolution = gas_boundary_resolution |
|
self.layer_name = layer_name |
|
self.layer_num = layer_num |
|
|
|
assert len(self.layer_name) > 0 and layer_num > 0 |
|
|
|
log_dist( |
|
f'enabled eigenvalue with verbose={verbose}, max_iter={max_iter}, tol={tol}, stability={stability}, gas_boundary_resolution={gas_boundary_resolution}, layer_name={layer_name}, layer_num={layer_num}', |
|
ranks=[0]) |
|
|
|
|
|
def nan_to_num(self, x): |
|
if required_torch_version(min_version=1.8): |
|
return torch.nan_to_num(x, nan=0.0, posinf=0.0, neginf=0.0) |
|
else: |
|
|
|
device = x.device |
|
x = x.cpu().numpy() |
|
x = np.nan_to_num(x=x, copy=False, nan=0.0, posinf=0.0, neginf=0.0) |
|
return torch.from_numpy(x).to(device) |
|
|
|
def normalize(self, v): |
|
norm_squared = self.inner_product(v, v) |
|
norm = norm_squared**0.5 + self.stability |
|
normalized_vectors = [vector / norm for vector in v] |
|
normalized_vectors = [self.nan_to_num(vector) for vector in normalized_vectors] |
|
return normalized_vectors |
|
|
|
def inner_product(self, xs, ys): |
|
return sum([torch.sum(x * y) for (x, y) in zip(xs, ys)]) |
|
|
|
def get_layers(self, module): |
|
scope_names = self.layer_name.split('.') |
|
assert len(scope_names) > 0 |
|
|
|
m = module |
|
for name in scope_names: |
|
assert hasattr(m, name), "layer_name configuration is invalid." |
|
m = getattr(m, name) |
|
|
|
return m |
|
|
|
def compute_eigenvalue(self, module, device=None, scale=1.0): |
|
block_eigenvalue = [] |
|
param_keys = [] |
|
layers = self.get_layers(module) |
|
|
|
for block in range(self.layer_num): |
|
model_block = layers[block] |
|
|
|
|
|
rng_state = torch.random.get_rng_state() |
|
if device is None: |
|
v = [ |
|
torch.randn(p.size()) for p in model_block.parameters() |
|
if p.grad is not None and p.grad.grad_fn is not None |
|
] |
|
else: |
|
v = [ |
|
torch.randn(p.size(), device=device) for p in model_block.parameters() |
|
if p.grad is not None and p.grad.grad_fn is not None |
|
] |
|
torch.random.set_rng_state(rng_state) |
|
|
|
grads = [ |
|
param.grad for param in model_block.parameters() |
|
if param.grad is not None and param.grad.grad_fn is not None |
|
] |
|
params = [ |
|
param for param in model_block.parameters() |
|
if param.grad is not None and param.grad.grad_fn is not None |
|
] |
|
|
|
layer_keys = [id(p) for p in model_block.parameters()] |
|
param_keys.append(layer_keys) |
|
|
|
v = self.normalize(v) |
|
|
|
|
|
|
|
if len(grads) == 0 or len(params) == 0: |
|
log_dist(f'The model does NOT support eigenvalue computation.', ranks=[0], level=logging.WARNING) |
|
return [] |
|
|
|
i = 0 |
|
eigenvalue_current, eigenvalue_previous = 1., 0. |
|
|
|
while (i < self.max_iter) and abs(eigenvalue_current) > 0 and (abs( |
|
(eigenvalue_current - eigenvalue_previous) / eigenvalue_current) |
|
>= self.tol): |
|
eigenvalue_previous = eigenvalue_current |
|
|
|
Hv = torch.autograd.grad(grads, params, grad_outputs=v, only_inputs=True, retain_graph=True) |
|
|
|
Hv = [self.nan_to_num(hv).float() for hv in Hv] |
|
|
|
eigenvalue_current = self.inner_product(Hv, v).item() |
|
|
|
v = self.normalize(Hv) |
|
v = [x / scale for x in v] |
|
i += 1 |
|
|
|
eigenvalue_current *= scale |
|
block_eigenvalue.append(eigenvalue_current) |
|
|
|
if self.verbose: |
|
log_dist(f'block: {block}, power iteration: {i}, eigenvalue: {eigenvalue_current}', ranks=[0]) |
|
|
|
block_eigenvalue = self.post_process(block_eigenvalue) |
|
|
|
if self.verbose: |
|
log_dist(f'post processed block_eigenvalue: {block_eigenvalue}', ranks=[0]) |
|
|
|
|
|
ev_dict = {} |
|
for i, (layer_keys, value) in enumerate(zip(param_keys, block_eigenvalue)): |
|
ev_dict.update(dict.fromkeys(layer_keys, (value, i))) |
|
|
|
return ev_dict |
|
|
|
|
|
|
|
def post_process(self, value_list): |
|
max_value = abs(max(value_list, key=abs)) |
|
return [abs(v) / max_value if v != 0.0 else 1.0 for v in value_list] |
|
|