|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
import torch |
|
import sys |
|
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors |
|
from deepspeed import comm as dist |
|
from deepspeed.runtime.constants import PIPE_REPLICATED |
|
from deepspeed.runtime.base_optimizer import ZeROOptimizer |
|
from packaging import version as pkg_version |
|
from deepspeed.git_version_info import version |
|
from deepspeed.runtime.utils import (get_global_norm_of_tensors, clip_tensors_by_global_norm, DummyOptim, |
|
align_dense_tensors, all_gather_dp_groups, is_model_parallel_parameter, |
|
see_memory_usage, graph_process, get_norm_with_moe_layers) |
|
from deepspeed.utils import link_hp_params, lazy_init_hp_params_optimizer_state, fragment_address, groups |
|
from deepspeed.moe.utils import is_moe_param, is_moe_param_group |
|
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank |
|
from deepspeed.utils.torch import register_grad_hook |
|
from deepspeed.checkpoint import enable_universal_checkpoint |
|
from deepspeed.checkpoint.constants import (DS_VERSION, PARTITION_COUNT, BASE_OPTIMIZER_STATE, |
|
SINGLE_PARTITION_OF_FP32_GROUPS, CLIP_GRAD, GROUP_PADDINGS, |
|
PARAM_SLICE_MAPPINGS) |
|
|
|
setattr(sys.modules[__name__], 'fragment_address', fragment_address) |
|
|
|
|
|
def print_rank_0(message, debug=False, force=False): |
|
if dist.get_rank() == 0 and (debug or force): |
|
print(message) |
|
|
|
|
|
class BF16_Optimizer(ZeROOptimizer): |
|
|
|
def __init__(self, |
|
init_optimizer, |
|
param_names, |
|
bfloat16_config, |
|
mpu=None, |
|
clip_grad=0.0, |
|
norm_type=2, |
|
allgather_bucket_size=5000000000, |
|
dp_process_group=None, |
|
timers=None, |
|
grad_acc_dtype=None, |
|
graph_harvesting=False, |
|
has_moe_layers=False): |
|
super().__init__() |
|
see_memory_usage('begin bf16_optimizer', force=True) |
|
self.timers = timers |
|
self.optimizer = init_optimizer |
|
self.param_names = param_names |
|
self.using_real_optimizer = not isinstance(self.optimizer, DummyOptim) |
|
|
|
assert bfloat16_config.enabled, f"BF16Optimizer: requires bfloat16 to be enabled" |
|
assert grad_acc_dtype in [torch.float32, torch.bfloat16 |
|
], f"BF16Optimizer: Unsupported gradient accumulation data type: {grad_acc_dtype}" |
|
self.grad_acc_dtype = grad_acc_dtype |
|
|
|
self.immediate_grad_update = bfloat16_config.immediate_grad_update |
|
|
|
self.clip_grad = clip_grad |
|
self.norm_type = norm_type |
|
self.mpu = mpu |
|
self.allgather_bucket_size = int(allgather_bucket_size) |
|
self.dp_process_group = dp_process_group |
|
self.dp_rank = dist.get_rank(group=self.dp_process_group) |
|
self.has_moe_layers = has_moe_layers |
|
self.non_expert_gradients = [] |
|
self.real_dp_process_group = [dp_process_group for i in range(len(self.optimizer.param_groups))] |
|
if self.has_moe_layers: |
|
self._configure_moe_settings() |
|
|
|
|
|
self.flatten = _flatten_dense_tensors |
|
self.unflatten = _unflatten_dense_tensors |
|
|
|
|
|
self.nccl_start_alignment_factor = 2 |
|
|
|
|
|
self.bf16_groups = [] |
|
self.bf16_groups_flat = [] |
|
self.bf16_partitioned_groups = [] |
|
|
|
self.fp32_groups_flat_partition = [] |
|
|
|
|
|
self.fp32_groups_gradients = [] |
|
self.fp32_groups_gradient_dict = {} |
|
self.fp32_groups_gradients_flat = [] |
|
self.fp32_groups_actual_gradients_flat = [] |
|
self.fp32_groups_gradient_flat_partition = [] |
|
self.fp32_groups_has_gradients = [] |
|
|
|
self.group_paddings = [] |
|
self.graph_harvesting = graph_harvesting |
|
if self.using_real_optimizer: |
|
self._setup_for_real_optimizer() |
|
|
|
see_memory_usage('end bf16_ optimizer', force=True) |
|
|
|
def destroy(self): |
|
for i, _ in enumerate(self.optimizer.param_groups): |
|
for p in self.bf16_groups[i]: |
|
if getattr(p, '_hp_mapping', None): |
|
p._hp_mapping = None |
|
for hook in self._grad_acc_hooks: |
|
hook.remove() |
|
print_rank_0("Removed grad acc hooks") |
|
|
|
def _configure_moe_settings(self): |
|
assert any( |
|
[is_moe_param_group(group) for group in self.optimizer.param_groups] |
|
), "The model has moe layers, but None of the param groups are marked as MoE. Create a param group with 'moe' key set to True before creating optimizer" |
|
|
|
for i, group in enumerate(self.optimizer.param_groups): |
|
if is_moe_param_group(group): |
|
assert all([is_moe_param(param) |
|
for param in group['params']]), "All params in MoE group must be MoE params" |
|
self.real_dp_process_group[i] = groups._get_expert_data_parallel_group(group['name']) |
|
self.expert_gradients = {} |
|
if self.has_moe_layers: |
|
for key in groups._get_expert_data_parallel_group_dict().keys(): |
|
self.expert_gradients[key] = [] |
|
|
|
def _setup_for_real_optimizer(self): |
|
self.partition_count = [dist.get_world_size(group=pg) for pg in self.real_dp_process_group] |
|
|
|
for i, param_group in enumerate(self.optimizer.param_groups): |
|
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i]) |
|
see_memory_usage(f'before initializing group {i}', force=True) |
|
|
|
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) |
|
|
|
|
|
trainable_parameters = [param for param in param_group['params'] if param.requires_grad] |
|
self.bf16_groups.append(trainable_parameters) |
|
|
|
|
|
self.bf16_groups_flat.append( |
|
self._flatten_dense_tensors_aligned(self.bf16_groups[i], |
|
self.nccl_start_alignment_factor * real_dp_world_size)) |
|
|
|
self._update_storage_to_flattened_tensor(tensor_list=self.bf16_groups[i], |
|
flat_tensor=self.bf16_groups_flat[i]) |
|
|
|
|
|
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size |
|
bf16_dp_partitions = [ |
|
self.bf16_groups_flat[i].narrow(0, dp_index * partition_size, partition_size) |
|
for dp_index in range(real_dp_world_size) |
|
] |
|
self.bf16_partitioned_groups.append(bf16_dp_partitions) |
|
|
|
|
|
self.fp32_groups_flat_partition.append(bf16_dp_partitions[partition_id].clone().float().detach()) |
|
self.fp32_groups_flat_partition[i].requires_grad = True |
|
|
|
num_elem_list = [t.numel() for t in self.bf16_groups[i]] |
|
|
|
|
|
fp32_flat_buffer = torch.zeros_like(self.bf16_groups_flat[i], dtype=self.grad_acc_dtype) |
|
self.fp32_groups_gradients_flat.append(fp32_flat_buffer) |
|
if self.has_moe_layers and is_moe_param_group(param_group): |
|
self.expert_gradients[param_group['name']].append(fp32_flat_buffer) |
|
else: |
|
self.non_expert_gradients.append(fp32_flat_buffer) |
|
|
|
|
|
fp32_gradients = self._split_flat_tensor(flat_tensor=self.fp32_groups_gradients_flat[i], |
|
num_elem_list=num_elem_list) |
|
self.fp32_groups_gradients.append(fp32_gradients) |
|
self.fp32_groups_gradient_dict[i] = fp32_gradients |
|
|
|
|
|
length_without_padding = sum(num_elem_list) |
|
self.fp32_groups_actual_gradients_flat.append( |
|
torch.narrow(self.fp32_groups_gradients_flat[i], 0, 0, length_without_padding)) |
|
|
|
|
|
self.fp32_groups_gradient_flat_partition.append( |
|
torch.narrow(self.fp32_groups_gradients_flat[i], 0, partition_id * partition_size, partition_size)) |
|
|
|
|
|
self.fp32_groups_has_gradients.append([False] * len(self.bf16_groups[i])) |
|
|
|
|
|
if partition_id == dist.get_world_size(group=self.real_dp_process_group[i]) - 1: |
|
padding = self.bf16_groups_flat[i].numel() - length_without_padding |
|
else: |
|
padding = 0 |
|
|
|
self.group_paddings.append(padding) |
|
|
|
|
|
param_group['params'] = [self.fp32_groups_flat_partition[i]] |
|
|
|
see_memory_usage(f'after initializing group {i}', force=True) |
|
|
|
self._grad_acc_hooks = [] |
|
if self.immediate_grad_update: |
|
self.create_grad_acc_hooks() |
|
|
|
|
|
self._link_all_hp_params() |
|
self._hp_optimizer_states_linked = False |
|
self._enable_universal_checkpoint() |
|
self._param_slice_mappings = self._create_param_mapping() |
|
|
|
def _enable_universal_checkpoint(self): |
|
for lp_param_group in self.bf16_groups: |
|
enable_universal_checkpoint(param_list=lp_param_group) |
|
|
|
def _create_param_mapping(self): |
|
param_mapping = [] |
|
for i, _ in enumerate(self.optimizer.param_groups): |
|
param_mapping_per_group = OrderedDict() |
|
for lp in self.bf16_groups[i]: |
|
if lp._hp_mapping is not None: |
|
lp_name = self.param_names[lp] |
|
param_mapping_per_group[lp_name] = lp._hp_mapping.get_hp_fragment_address() |
|
param_mapping.append(param_mapping_per_group) |
|
|
|
return param_mapping |
|
|
|
def _link_all_hp_params(self): |
|
for i, _ in enumerate(self.optimizer.param_groups): |
|
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i]) |
|
|
|
|
|
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) |
|
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size |
|
flat_hp_partition = self.fp32_groups_flat_partition[i] |
|
link_hp_params(lp_param_list=self.bf16_groups[i], |
|
flat_hp_partition=flat_hp_partition, |
|
gradient_dict=self.fp32_groups_gradient_dict, |
|
offload_gradient_dict=None, |
|
use_offload=False, |
|
param_group_index=i, |
|
partition_start=partition_id * partition_size, |
|
partition_size=partition_size, |
|
dp_group=self.real_dp_process_group[i]) |
|
|
|
def _lazy_init_hp_params_optimizer_state(self): |
|
if not self._hp_optimizer_states_linked: |
|
for i, _ in enumerate(self.optimizer.param_groups): |
|
lazy_init_hp_params_optimizer_state(self.bf16_groups[i], self.fp32_groups_flat_partition[i], |
|
self.optimizer.state) |
|
self._hp_optimizer_states_linked = True |
|
|
|
def _split_flat_tensor(self, flat_tensor, num_elem_list): |
|
assert sum(num_elem_list) <= flat_tensor.numel() |
|
tensor_list = [] |
|
offset = 0 |
|
for num_elem in num_elem_list: |
|
dense_tensor = torch.narrow(flat_tensor, 0, offset, num_elem) |
|
tensor_list.append(dense_tensor) |
|
offset += num_elem |
|
|
|
return tensor_list |
|
|
|
def _update_storage_to_flattened_tensor(self, tensor_list, flat_tensor): |
|
updated_params = self.unflatten(flat_tensor, tensor_list) |
|
for p, q in zip(tensor_list, updated_params): |
|
p.data = q.data |
|
|
|
def _flatten_dense_tensors_aligned(self, tensor_list, alignment): |
|
return self.flatten(align_dense_tensors(tensor_list, alignment)) |
|
|
|
@torch.no_grad() |
|
def step(self, closure=None): |
|
if closure is not None: |
|
raise NotImplementedError(f'{self.__class__} does not support closure.') |
|
|
|
non_expert_grads_for_norm, expert_grads_for_norm = self.get_grads_for_norm() |
|
non_expert_groups_norm = get_global_norm_of_tensors(input_tensors=non_expert_grads_for_norm, |
|
mpu=self.mpu, |
|
norm_type=self.norm_type, |
|
use_graph=self.graph_harvesting) |
|
all_groups_norm = non_expert_groups_norm |
|
if self.has_moe_layers: |
|
all_groups_norm = get_norm_with_moe_layers(non_expert_groups_norm, |
|
mpu=self.mpu, |
|
expert_tensors=expert_grads_for_norm, |
|
norm_type=self.norm_type) |
|
|
|
self._global_grad_norm = all_groups_norm |
|
|
|
assert all_groups_norm > 0. |
|
if self.clip_grad > 0.: |
|
clip_tensors_by_global_norm(input_tensors=self.get_grads_for_norm(for_clipping=True), |
|
max_norm=self.clip_grad, |
|
global_norm=all_groups_norm, |
|
mpu=self.mpu, |
|
use_graph=self.graph_harvesting) |
|
|
|
for param_partition, grad_partition in zip(self.fp32_groups_flat_partition, |
|
self.fp32_groups_gradient_flat_partition): |
|
|
|
param_partition.grad = grad_partition.to( |
|
param_partition.dtype) if grad_partition.dtype != param_partition.dtype else grad_partition |
|
|
|
self.optimizer.step() |
|
|
|
if self.grad_acc_dtype is not torch.float32: |
|
for param_partition in self.fp32_groups_flat_partition: |
|
param_partition.grad = None |
|
|
|
|
|
self._lazy_init_hp_params_optimizer_state() |
|
|
|
self.update_lp_params() |
|
|
|
self.clear_hp_grads() |
|
|
|
def backward(self, loss, retain_graph=False, update_hp_grads=True, clear_lp_grads=False, **bwd_kwargs): |
|
"""Perform a backward pass and copy the low-precision gradients to the |
|
high-precision copy. |
|
|
|
We copy/accumulate to the high-precision grads now to prevent accumulating in the |
|
bf16 grads after successive backward() calls (i.e., grad accumulation steps > 1) |
|
|
|
The low-precision grads are deallocated during this procedure. |
|
""" |
|
self.clear_lp_grads() |
|
loss.backward(retain_graph=retain_graph, **bwd_kwargs) |
|
|
|
if update_hp_grads: |
|
self.update_hp_grads(clear_lp_grads=clear_lp_grads) |
|
|
|
@torch.no_grad() |
|
def _update_hp_grad(self, lp, group_idx, param_idx, clear_lp_grads): |
|
if lp.grad is None: |
|
return |
|
|
|
hp_grad = self.fp32_groups_gradients[group_idx][param_idx] |
|
assert hp_grad is not None, \ |
|
f'high precision param has no gradient, lp param_id = {id(lp)} group_info = [{group_idx}][{param_idx}]' |
|
|
|
hp_grad.data.add_(lp.grad.data.to(hp_grad.dtype).view(hp_grad.shape)) |
|
lp._hp_grad = hp_grad |
|
self.fp32_groups_has_gradients[group_idx][param_idx] = True |
|
|
|
|
|
if clear_lp_grads: |
|
lp.grad.zero_() |
|
|
|
@torch.no_grad() |
|
def _update_hp_grads_func(self, clear_lp_grads=False): |
|
for i, group in enumerate(self.bf16_groups): |
|
for j, lp in enumerate(group): |
|
self._update_hp_grad(lp, i, j, clear_lp_grads) |
|
|
|
@torch.no_grad() |
|
def update_hp_grads(self, clear_lp_grads=False): |
|
if self.immediate_grad_update: |
|
return |
|
|
|
if self.graph_harvesting: |
|
graph_process(False, self._update_hp_grads_func, clear_lp_grads) |
|
else: |
|
self._update_hp_grads_func(clear_lp_grads) |
|
|
|
for i, group in enumerate(self.bf16_groups): |
|
for j, lp in enumerate(group): |
|
if lp.grad is None: |
|
continue |
|
self.fp32_groups_has_gradients[i][j] = True |
|
|
|
@torch.no_grad() |
|
def get_grads_for_reduction(self): |
|
if self.has_moe_layers: |
|
return self.non_expert_gradients, self.expert_gradients |
|
return self.non_expert_gradients, {} |
|
|
|
@torch.no_grad() |
|
def get_grads_for_norm(self, for_clipping=False): |
|
""" |
|
Returns: |
|
tuple[list[Tensor], dict[ep_name, List[Tensor]] | list: |
|
If for_clipping, return all gradients. |
|
Otherwise, separate and return dict of expert_grad and list of non_expert_grad |
|
""" |
|
|
|
expert_grads_for_norm = {} |
|
|
|
|
|
non_expert_grads_for_norm = [] |
|
all_grads_for_clip = [] |
|
|
|
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=self.mpu) |
|
assert len(self.bf16_groups) == len(self.optimizer.param_groups) |
|
for i, group in enumerate(self.bf16_groups): |
|
for j, lp in enumerate(group): |
|
if not for_clipping: |
|
if hasattr(lp, PIPE_REPLICATED) and lp.ds_pipe_replicated: |
|
continue |
|
|
|
|
|
|
|
|
|
|
|
if not (tensor_mp_rank == 0 or is_model_parallel_parameter(lp) or is_moe_param(lp)): |
|
continue |
|
|
|
if not self.fp32_groups_has_gradients[i][j]: |
|
continue |
|
if not for_clipping: |
|
param_group = self.optimizer.param_groups[i] |
|
if self.has_moe_layers and is_moe_param_group(param_group): |
|
if param_group['name'] not in expert_grads_for_norm: |
|
expert_grads_for_norm[param_group['name']] = [] |
|
expert_grads_for_norm[param_group['name']].append(self.fp32_groups_gradients[i][j]) |
|
else: |
|
non_expert_grads_for_norm.append(self.fp32_groups_gradients[i][j]) |
|
else: |
|
all_grads_for_clip.append(self.fp32_groups_gradients[i][j]) |
|
if not for_clipping: |
|
return non_expert_grads_for_norm, expert_grads_for_norm |
|
return all_grads_for_clip |
|
|
|
@torch.no_grad() |
|
def update_lp_params(self): |
|
for i, (bf16_partitions, |
|
fp32_partition) in enumerate(zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition)): |
|
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) |
|
bf16_partitions[partition_id].data.copy_(fp32_partition.data) |
|
|
|
all_gather_dp_groups(groups_flat=self.bf16_groups_flat, |
|
partitioned_param_groups=self.bf16_partitioned_groups, |
|
dp_process_group=self.real_dp_process_group, |
|
start_alignment_factor=self.nccl_start_alignment_factor, |
|
allgather_bucket_size=self.allgather_bucket_size) |
|
|
|
def clear_hp_grads(self): |
|
for flat_gradients in self.fp32_groups_gradients_flat: |
|
flat_gradients.zero_() |
|
|
|
for i, group in enumerate(self.fp32_groups_gradients): |
|
self.fp32_groups_has_gradients[i] = [False] * len(group) |
|
|
|
def clear_lp_grads(self, set_to_none=False): |
|
|
|
|
|
if self.graph_harvesting: |
|
assert not set_to_none, "graph harvesting is incompatible with setting lp grads to None" |
|
|
|
zero_grads_list = [] |
|
for group in self.bf16_groups: |
|
for param in group: |
|
if set_to_none: |
|
param.grad = None |
|
elif param.grad is not None: |
|
if param.grad.grad_fn is not None: |
|
param.grad.detach_() |
|
zero_grads_list.append(param.grad) |
|
if not set_to_none and len(zero_grads_list) > 0: |
|
torch._foreach_zero_(zero_grads_list) |
|
|
|
def zero_grad(self, set_to_none=True): |
|
self.clear_lp_grads(set_to_none) |
|
self.clear_hp_grads() |
|
|
|
def state_dict(self): |
|
state_dict = {} |
|
state_dict[CLIP_GRAD] = self.clip_grad |
|
state_dict[BASE_OPTIMIZER_STATE] = self.optimizer.state_dict() |
|
state_dict[SINGLE_PARTITION_OF_FP32_GROUPS] = self.fp32_groups_flat_partition |
|
state_dict[GROUP_PADDINGS] = self.group_paddings |
|
state_dict[PARTITION_COUNT] = self.partition_count |
|
state_dict[DS_VERSION] = version |
|
state_dict[PARAM_SLICE_MAPPINGS] = self._param_slice_mappings |
|
|
|
return state_dict |
|
|
|
|
|
def _restore_from_bit16_weights(self): |
|
for i, (bf16_partitions, |
|
fp32_partition) in enumerate(zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition)): |
|
partition_id = dist.get_rank(group=self.real_dp_process_group[i]) |
|
fp32_partition.data.copy_(bf16_partitions[partition_id].data) |
|
|
|
def refresh_fp32_params(self): |
|
self._restore_from_bit16_weights() |
|
|
|
def load_state_dict(self, |
|
state_dict_list, |
|
checkpoint_folder=None, |
|
load_optimizer_states=True, |
|
load_from_fp32_weights=False, |
|
load_serial=None, |
|
param_shapes=None): |
|
if checkpoint_folder: |
|
self._load_universal_checkpoint(checkpoint_folder, load_optimizer_states, load_from_fp32_weights) |
|
else: |
|
self._load_legacy_checkpoint(state_dict_list, load_optimizer_states, load_from_fp32_weights) |
|
|
|
def _load_legacy_checkpoint(self, state_dict_list, load_optimizer_states=True, load_from_fp32_weights=False): |
|
|
|
dp_rank = dist.get_rank(group=self.dp_process_group) |
|
current_rank_sd = state_dict_list[dp_rank] |
|
|
|
ckpt_version = current_rank_sd.get(DS_VERSION, False) |
|
assert ckpt_version, f"Empty ds_version in checkpoint, not clear how to proceed" |
|
ckpt_version = pkg_version.parse(ckpt_version) |
|
|
|
self.clip_grad = current_rank_sd.get(CLIP_GRAD, self.clip_grad) |
|
|
|
if load_optimizer_states: |
|
print(f"_load_legacy_checkpoint current_rank_sd[BASE_OPTIMIZER_STATE]") |
|
self.optimizer.load_state_dict(current_rank_sd[BASE_OPTIMIZER_STATE]) |
|
|
|
if load_from_fp32_weights: |
|
for current, saved in zip(self.fp32_groups_flat_partition, |
|
current_rank_sd[SINGLE_PARTITION_OF_FP32_GROUPS]): |
|
src_tensor = _get_padded_tensor(saved, current.numel()) |
|
current.data.copy_(src_tensor.data) |
|
|
|
if load_optimizer_states: |
|
self._link_all_hp_params() |
|
|
|
def _load_universal_checkpoint(self, checkpoint_folder, load_optimizer_states, load_from_fp32_weights): |
|
self.load_hp_checkpoint_state_from_checkpoint_dir("bf16_groups", checkpoint_folder) |
|
|
|
def _load_global_state(self, sd): |
|
pass |
|
|
|
@property |
|
def param_groups(self): |
|
"""Forward the wrapped optimizer's parameters.""" |
|
return self.optimizer.param_groups |
|
|
|
@property |
|
def state(self): |
|
"""Forward the wrapped optimizer's states.""" |
|
return self.optimizer.state |
|
|
|
def accumulate_hp_grads_and_remove_lp(self, lp_param, group_idx, param_idx): |
|
assert self.immediate_grad_update |
|
self._update_hp_grad(lp_param, group_idx, param_idx, clear_lp_grads=False) |
|
|
|
def create_grad_acc_hooks(self): |
|
for i, param_group in enumerate(self.bf16_groups): |
|
for j, param in enumerate(param_group): |
|
if param.requires_grad: |
|
|
|
def wrapper(param, i, j): |
|
|
|
def accumulate_hp_grads_and_remove_lp(*notneeded): |
|
self.accumulate_hp_grads_and_remove_lp(param, i, j) |
|
|
|
self._grad_acc_hooks.append(register_grad_hook(param, accumulate_hp_grads_and_remove_lp)) |
|
|
|
wrapper(param, i, j) |
|
|
|
|
|
def _get_padded_tensor(src_tensor, size): |
|
if src_tensor.numel() >= size: |
|
return src_tensor |
|
padded_tensor = torch.zeros(size, dtype=src_tensor.dtype, device=src_tensor.device) |
|
slice_tensor = torch.narrow(padded_tensor, 0, 0, src_tensor.numel()) |
|
slice_tensor.data.copy_(src_tensor.data) |
|
return padded_tensor |
|
|