jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from collections import OrderedDict
import torch
import sys
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from deepspeed import comm as dist
from deepspeed.runtime.constants import PIPE_REPLICATED
from deepspeed.runtime.base_optimizer import ZeROOptimizer
from packaging import version as pkg_version
from deepspeed.git_version_info import version
from deepspeed.runtime.utils import (get_global_norm_of_tensors, clip_tensors_by_global_norm, DummyOptim,
align_dense_tensors, all_gather_dp_groups, is_model_parallel_parameter,
see_memory_usage, graph_process, get_norm_with_moe_layers)
from deepspeed.utils import link_hp_params, lazy_init_hp_params_optimizer_state, fragment_address, groups
from deepspeed.moe.utils import is_moe_param, is_moe_param_group
from deepspeed.utils.bwc import bwc_tensor_model_parallel_rank
from deepspeed.utils.torch import register_grad_hook
from deepspeed.checkpoint import enable_universal_checkpoint
from deepspeed.checkpoint.constants import (DS_VERSION, PARTITION_COUNT, BASE_OPTIMIZER_STATE,
SINGLE_PARTITION_OF_FP32_GROUPS, CLIP_GRAD, GROUP_PADDINGS,
PARAM_SLICE_MAPPINGS)
setattr(sys.modules[__name__], 'fragment_address', fragment_address)
def print_rank_0(message, debug=False, force=False):
if dist.get_rank() == 0 and (debug or force):
print(message)
class BF16_Optimizer(ZeROOptimizer):
def __init__(self,
init_optimizer,
param_names,
bfloat16_config,
mpu=None,
clip_grad=0.0,
norm_type=2,
allgather_bucket_size=5000000000,
dp_process_group=None,
timers=None,
grad_acc_dtype=None,
graph_harvesting=False,
has_moe_layers=False):
super().__init__()
see_memory_usage('begin bf16_optimizer', force=True)
self.timers = timers
self.optimizer = init_optimizer
self.param_names = param_names
self.using_real_optimizer = not isinstance(self.optimizer, DummyOptim)
assert bfloat16_config.enabled, f"BF16Optimizer: requires bfloat16 to be enabled"
assert grad_acc_dtype in [torch.float32, torch.bfloat16
], f"BF16Optimizer: Unsupported gradient accumulation data type: {grad_acc_dtype}"
self.grad_acc_dtype = grad_acc_dtype
self.immediate_grad_update = bfloat16_config.immediate_grad_update
self.clip_grad = clip_grad
self.norm_type = norm_type
self.mpu = mpu
self.allgather_bucket_size = int(allgather_bucket_size)
self.dp_process_group = dp_process_group
self.dp_rank = dist.get_rank(group=self.dp_process_group)
self.has_moe_layers = has_moe_layers
self.non_expert_gradients = []
self.real_dp_process_group = [dp_process_group for i in range(len(self.optimizer.param_groups))]
if self.has_moe_layers:
self._configure_moe_settings()
# Use torch (un)flatten ops
self.flatten = _flatten_dense_tensors
self.unflatten = _unflatten_dense_tensors
#align nccl all-gather send buffers to 4-bye boundary
self.nccl_start_alignment_factor = 2 # 4-byte alignment/sizeof(fp16) = 2
# Build BF16/FP32 groups
self.bf16_groups = []
self.bf16_groups_flat = []
self.bf16_partitioned_groups = []
self.fp32_groups_flat_partition = []
# Maintain different fp32 gradients views for convenience
self.fp32_groups_gradients = []
self.fp32_groups_gradient_dict = {}
self.fp32_groups_gradients_flat = []
self.fp32_groups_actual_gradients_flat = []
self.fp32_groups_gradient_flat_partition = []
self.fp32_groups_has_gradients = []
self.group_paddings = []
self.graph_harvesting = graph_harvesting
if self.using_real_optimizer:
self._setup_for_real_optimizer()
see_memory_usage('end bf16_ optimizer', force=True)
def destroy(self):
for i, _ in enumerate(self.optimizer.param_groups):
for p in self.bf16_groups[i]:
if getattr(p, '_hp_mapping', None):
p._hp_mapping = None
for hook in self._grad_acc_hooks:
hook.remove()
print_rank_0("Removed grad acc hooks")
def _configure_moe_settings(self):
assert any(
[is_moe_param_group(group) for group in self.optimizer.param_groups]
), "The model has moe layers, but None of the param groups are marked as MoE. Create a param group with 'moe' key set to True before creating optimizer"
for i, group in enumerate(self.optimizer.param_groups):
if is_moe_param_group(group):
assert all([is_moe_param(param)
for param in group['params']]), "All params in MoE group must be MoE params"
self.real_dp_process_group[i] = groups._get_expert_data_parallel_group(group['name'])
self.expert_gradients = {}
if self.has_moe_layers:
for key in groups._get_expert_data_parallel_group_dict().keys():
self.expert_gradients[key] = []
def _setup_for_real_optimizer(self):
self.partition_count = [dist.get_world_size(group=pg) for pg in self.real_dp_process_group]
for i, param_group in enumerate(self.optimizer.param_groups):
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i])
see_memory_usage(f'before initializing group {i}', force=True)
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
# grab the original list
trainable_parameters = [param for param in param_group['params'] if param.requires_grad]
self.bf16_groups.append(trainable_parameters)
# create flat bf16 params
self.bf16_groups_flat.append(
self._flatten_dense_tensors_aligned(self.bf16_groups[i],
self.nccl_start_alignment_factor * real_dp_world_size))
# Make bf16 params point to flat tensor storage
self._update_storage_to_flattened_tensor(tensor_list=self.bf16_groups[i],
flat_tensor=self.bf16_groups_flat[i])
# divide flat weights into equal sized partitions
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size
bf16_dp_partitions = [
self.bf16_groups_flat[i].narrow(0, dp_index * partition_size, partition_size)
for dp_index in range(real_dp_world_size)
]
self.bf16_partitioned_groups.append(bf16_dp_partitions)
# create fp32 params partition
self.fp32_groups_flat_partition.append(bf16_dp_partitions[partition_id].clone().float().detach())
self.fp32_groups_flat_partition[i].requires_grad = True
num_elem_list = [t.numel() for t in self.bf16_groups[i]]
# create fp32 gradients
fp32_flat_buffer = torch.zeros_like(self.bf16_groups_flat[i], dtype=self.grad_acc_dtype)
self.fp32_groups_gradients_flat.append(fp32_flat_buffer)
if self.has_moe_layers and is_moe_param_group(param_group):
self.expert_gradients[param_group['name']].append(fp32_flat_buffer)
else:
self.non_expert_gradients.append(fp32_flat_buffer)
# track individual fp32 gradients for entire model
fp32_gradients = self._split_flat_tensor(flat_tensor=self.fp32_groups_gradients_flat[i],
num_elem_list=num_elem_list)
self.fp32_groups_gradients.append(fp32_gradients)
self.fp32_groups_gradient_dict[i] = fp32_gradients
# flat tensor corresponding to actual fp32 gradients (i.e., minus alignment padding)
length_without_padding = sum(num_elem_list)
self.fp32_groups_actual_gradients_flat.append(
torch.narrow(self.fp32_groups_gradients_flat[i], 0, 0, length_without_padding))
# flat tensor corresponding to gradient partition
self.fp32_groups_gradient_flat_partition.append(
torch.narrow(self.fp32_groups_gradients_flat[i], 0, partition_id * partition_size, partition_size))
# track fp32 gradient updates
self.fp32_groups_has_gradients.append([False] * len(self.bf16_groups[i]))
# Record padding required for alignment
if partition_id == dist.get_world_size(group=self.real_dp_process_group[i]) - 1:
padding = self.bf16_groups_flat[i].numel() - length_without_padding
else:
padding = 0
self.group_paddings.append(padding)
# update optimizer param groups to reference fp32 params partition
param_group['params'] = [self.fp32_groups_flat_partition[i]]
see_memory_usage(f'after initializing group {i}', force=True)
self._grad_acc_hooks = []
if self.immediate_grad_update:
self.create_grad_acc_hooks()
# Need optimizer states initialized before linking lp to optimizer state
self._link_all_hp_params()
self._hp_optimizer_states_linked = False
self._enable_universal_checkpoint()
self._param_slice_mappings = self._create_param_mapping()
def _enable_universal_checkpoint(self):
for lp_param_group in self.bf16_groups:
enable_universal_checkpoint(param_list=lp_param_group)
def _create_param_mapping(self):
param_mapping = []
for i, _ in enumerate(self.optimizer.param_groups):
param_mapping_per_group = OrderedDict()
for lp in self.bf16_groups[i]:
if lp._hp_mapping is not None:
lp_name = self.param_names[lp]
param_mapping_per_group[lp_name] = lp._hp_mapping.get_hp_fragment_address()
param_mapping.append(param_mapping_per_group)
return param_mapping
def _link_all_hp_params(self):
for i, _ in enumerate(self.optimizer.param_groups):
real_dp_world_size = dist.get_world_size(group=self.real_dp_process_group[i])
# Link bf16 and fp32 params in partition
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
partition_size = self.bf16_groups_flat[i].numel() // real_dp_world_size
flat_hp_partition = self.fp32_groups_flat_partition[i]
link_hp_params(lp_param_list=self.bf16_groups[i],
flat_hp_partition=flat_hp_partition,
gradient_dict=self.fp32_groups_gradient_dict,
offload_gradient_dict=None,
use_offload=False,
param_group_index=i,
partition_start=partition_id * partition_size,
partition_size=partition_size,
dp_group=self.real_dp_process_group[i])
def _lazy_init_hp_params_optimizer_state(self):
if not self._hp_optimizer_states_linked:
for i, _ in enumerate(self.optimizer.param_groups):
lazy_init_hp_params_optimizer_state(self.bf16_groups[i], self.fp32_groups_flat_partition[i],
self.optimizer.state)
self._hp_optimizer_states_linked = True
def _split_flat_tensor(self, flat_tensor, num_elem_list):
assert sum(num_elem_list) <= flat_tensor.numel()
tensor_list = []
offset = 0
for num_elem in num_elem_list:
dense_tensor = torch.narrow(flat_tensor, 0, offset, num_elem)
tensor_list.append(dense_tensor)
offset += num_elem
return tensor_list
def _update_storage_to_flattened_tensor(self, tensor_list, flat_tensor):
updated_params = self.unflatten(flat_tensor, tensor_list)
for p, q in zip(tensor_list, updated_params):
p.data = q.data
def _flatten_dense_tensors_aligned(self, tensor_list, alignment):
return self.flatten(align_dense_tensors(tensor_list, alignment))
@torch.no_grad()
def step(self, closure=None):
if closure is not None:
raise NotImplementedError(f'{self.__class__} does not support closure.')
non_expert_grads_for_norm, expert_grads_for_norm = self.get_grads_for_norm()
non_expert_groups_norm = get_global_norm_of_tensors(input_tensors=non_expert_grads_for_norm,
mpu=self.mpu,
norm_type=self.norm_type,
use_graph=self.graph_harvesting)
all_groups_norm = non_expert_groups_norm
if self.has_moe_layers:
all_groups_norm = get_norm_with_moe_layers(non_expert_groups_norm,
mpu=self.mpu,
expert_tensors=expert_grads_for_norm,
norm_type=self.norm_type)
self._global_grad_norm = all_groups_norm
assert all_groups_norm > 0.
if self.clip_grad > 0.:
clip_tensors_by_global_norm(input_tensors=self.get_grads_for_norm(for_clipping=True),
max_norm=self.clip_grad,
global_norm=all_groups_norm,
mpu=self.mpu,
use_graph=self.graph_harvesting)
for param_partition, grad_partition in zip(self.fp32_groups_flat_partition,
self.fp32_groups_gradient_flat_partition):
# In case of grad acc dtype different than FP32, need to cast to high precision.
param_partition.grad = grad_partition.to(
param_partition.dtype) if grad_partition.dtype != param_partition.dtype else grad_partition
self.optimizer.step()
if self.grad_acc_dtype is not torch.float32:
for param_partition in self.fp32_groups_flat_partition:
param_partition.grad = None
# We need to link optimizer state after the first step() call
self._lazy_init_hp_params_optimizer_state()
self.update_lp_params()
self.clear_hp_grads()
def backward(self, loss, retain_graph=False, update_hp_grads=True, clear_lp_grads=False, **bwd_kwargs):
"""Perform a backward pass and copy the low-precision gradients to the
high-precision copy.
We copy/accumulate to the high-precision grads now to prevent accumulating in the
bf16 grads after successive backward() calls (i.e., grad accumulation steps > 1)
The low-precision grads are deallocated during this procedure.
"""
self.clear_lp_grads()
loss.backward(retain_graph=retain_graph, **bwd_kwargs)
if update_hp_grads:
self.update_hp_grads(clear_lp_grads=clear_lp_grads)
@torch.no_grad()
def _update_hp_grad(self, lp, group_idx, param_idx, clear_lp_grads):
if lp.grad is None:
return
hp_grad = self.fp32_groups_gradients[group_idx][param_idx]
assert hp_grad is not None, \
f'high precision param has no gradient, lp param_id = {id(lp)} group_info = [{group_idx}][{param_idx}]'
hp_grad.data.add_(lp.grad.data.to(hp_grad.dtype).view(hp_grad.shape))
lp._hp_grad = hp_grad
self.fp32_groups_has_gradients[group_idx][param_idx] = True
# clear gradients
if clear_lp_grads:
lp.grad.zero_()
@torch.no_grad()
def _update_hp_grads_func(self, clear_lp_grads=False):
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
self._update_hp_grad(lp, i, j, clear_lp_grads)
@torch.no_grad()
def update_hp_grads(self, clear_lp_grads=False):
if self.immediate_grad_update:
return
if self.graph_harvesting:
graph_process(False, self._update_hp_grads_func, clear_lp_grads)
else:
self._update_hp_grads_func(clear_lp_grads)
#cpu op
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
if lp.grad is None:
continue
self.fp32_groups_has_gradients[i][j] = True
@torch.no_grad()
def get_grads_for_reduction(self):
if self.has_moe_layers:
return self.non_expert_gradients, self.expert_gradients
return self.non_expert_gradients, {}
@torch.no_grad()
def get_grads_for_norm(self, for_clipping=False):
"""
Returns:
tuple[list[Tensor], dict[ep_name, List[Tensor]] | list:
If for_clipping, return all gradients.
Otherwise, separate and return dict of expert_grad and list of non_expert_grad
"""
# (grads, expert_group_name)
expert_grads_for_norm = {}
# grads
non_expert_grads_for_norm = []
all_grads_for_clip = []
tensor_mp_rank = bwc_tensor_model_parallel_rank(mpu=self.mpu)
assert len(self.bf16_groups) == len(self.optimizer.param_groups)
for i, group in enumerate(self.bf16_groups):
for j, lp in enumerate(group):
if not for_clipping:
if hasattr(lp, PIPE_REPLICATED) and lp.ds_pipe_replicated:
continue
# skip duplicated parameters. perform norm only on cards with tp_rank=0.
# non-duplicated parameters include:
# - Parameters with tp: Use allreducesum of mp_group.
# - Moe Parameters with ep: Use allreducesum of ep_group.
if not (tensor_mp_rank == 0 or is_model_parallel_parameter(lp) or is_moe_param(lp)):
continue
if not self.fp32_groups_has_gradients[i][j]:
continue
if not for_clipping:
param_group = self.optimizer.param_groups[i]
if self.has_moe_layers and is_moe_param_group(param_group):
if param_group['name'] not in expert_grads_for_norm:
expert_grads_for_norm[param_group['name']] = []
expert_grads_for_norm[param_group['name']].append(self.fp32_groups_gradients[i][j])
else:
non_expert_grads_for_norm.append(self.fp32_groups_gradients[i][j])
else:
all_grads_for_clip.append(self.fp32_groups_gradients[i][j])
if not for_clipping:
return non_expert_grads_for_norm, expert_grads_for_norm
return all_grads_for_clip
@torch.no_grad()
def update_lp_params(self):
for i, (bf16_partitions,
fp32_partition) in enumerate(zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition)):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
bf16_partitions[partition_id].data.copy_(fp32_partition.data)
all_gather_dp_groups(groups_flat=self.bf16_groups_flat,
partitioned_param_groups=self.bf16_partitioned_groups,
dp_process_group=self.real_dp_process_group,
start_alignment_factor=self.nccl_start_alignment_factor,
allgather_bucket_size=self.allgather_bucket_size)
def clear_hp_grads(self):
for flat_gradients in self.fp32_groups_gradients_flat:
flat_gradients.zero_()
for i, group in enumerate(self.fp32_groups_gradients):
self.fp32_groups_has_gradients[i] = [False] * len(group)
def clear_lp_grads(self, set_to_none=False):
# using zero_() fixed memory address for graph replay
if self.graph_harvesting:
assert not set_to_none, "graph harvesting is incompatible with setting lp grads to None"
zero_grads_list = []
for group in self.bf16_groups:
for param in group:
if set_to_none:
param.grad = None
elif param.grad is not None:
if param.grad.grad_fn is not None:
param.grad.detach_()
zero_grads_list.append(param.grad)
if not set_to_none and len(zero_grads_list) > 0:
torch._foreach_zero_(zero_grads_list)
def zero_grad(self, set_to_none=True):
self.clear_lp_grads(set_to_none)
self.clear_hp_grads()
def state_dict(self):
state_dict = {}
state_dict[CLIP_GRAD] = self.clip_grad
state_dict[BASE_OPTIMIZER_STATE] = self.optimizer.state_dict()
state_dict[SINGLE_PARTITION_OF_FP32_GROUPS] = self.fp32_groups_flat_partition
state_dict[GROUP_PADDINGS] = self.group_paddings
state_dict[PARTITION_COUNT] = self.partition_count
state_dict[DS_VERSION] = version
state_dict[PARAM_SLICE_MAPPINGS] = self._param_slice_mappings
return state_dict
# Restore base optimizer fp32 weights bfloat16 weights
def _restore_from_bit16_weights(self):
for i, (bf16_partitions,
fp32_partition) in enumerate(zip(self.bf16_partitioned_groups, self.fp32_groups_flat_partition)):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
fp32_partition.data.copy_(bf16_partitions[partition_id].data)
def refresh_fp32_params(self):
self._restore_from_bit16_weights()
def load_state_dict(self,
state_dict_list,
checkpoint_folder=None,
load_optimizer_states=True,
load_from_fp32_weights=False,
load_serial=None,
param_shapes=None):
if checkpoint_folder:
self._load_universal_checkpoint(checkpoint_folder, load_optimizer_states, load_from_fp32_weights)
else:
self._load_legacy_checkpoint(state_dict_list, load_optimizer_states, load_from_fp32_weights)
def _load_legacy_checkpoint(self, state_dict_list, load_optimizer_states=True, load_from_fp32_weights=False):
dp_rank = dist.get_rank(group=self.dp_process_group)
current_rank_sd = state_dict_list[dp_rank]
ckpt_version = current_rank_sd.get(DS_VERSION, False)
assert ckpt_version, f"Empty ds_version in checkpoint, not clear how to proceed"
ckpt_version = pkg_version.parse(ckpt_version)
self.clip_grad = current_rank_sd.get(CLIP_GRAD, self.clip_grad)
if load_optimizer_states:
print(f"_load_legacy_checkpoint current_rank_sd[BASE_OPTIMIZER_STATE]")
self.optimizer.load_state_dict(current_rank_sd[BASE_OPTIMIZER_STATE])
if load_from_fp32_weights:
for current, saved in zip(self.fp32_groups_flat_partition,
current_rank_sd[SINGLE_PARTITION_OF_FP32_GROUPS]):
src_tensor = _get_padded_tensor(saved, current.numel())
current.data.copy_(src_tensor.data)
if load_optimizer_states:
self._link_all_hp_params()
def _load_universal_checkpoint(self, checkpoint_folder, load_optimizer_states, load_from_fp32_weights):
self.load_hp_checkpoint_state_from_checkpoint_dir("bf16_groups", checkpoint_folder)
def _load_global_state(self, sd):
pass
@property
def param_groups(self):
"""Forward the wrapped optimizer's parameters."""
return self.optimizer.param_groups
@property
def state(self):
"""Forward the wrapped optimizer's states."""
return self.optimizer.state
def accumulate_hp_grads_and_remove_lp(self, lp_param, group_idx, param_idx):
assert self.immediate_grad_update
self._update_hp_grad(lp_param, group_idx, param_idx, clear_lp_grads=False)
def create_grad_acc_hooks(self):
for i, param_group in enumerate(self.bf16_groups):
for j, param in enumerate(param_group):
if param.requires_grad:
def wrapper(param, i, j):
def accumulate_hp_grads_and_remove_lp(*notneeded):
self.accumulate_hp_grads_and_remove_lp(param, i, j)
self._grad_acc_hooks.append(register_grad_hook(param, accumulate_hp_grads_and_remove_lp))
wrapper(param, i, j)
def _get_padded_tensor(src_tensor, size):
if src_tensor.numel() >= size:
return src_tensor
padded_tensor = torch.zeros(size, dtype=src_tensor.dtype, device=src_tensor.device)
slice_tensor = torch.narrow(padded_tensor, 0, 0, src_tensor.numel())
slice_tensor.data.copy_(src_tensor.data)
return padded_tensor