|
|
|
|
|
|
|
|
|
""" |
|
This file is modified from fused_adam.py |
|
""" |
|
|
|
import torch |
|
from .multi_tensor_apply import MultiTensorApply |
|
|
|
multi_tensor_applier = MultiTensorApply(2048 * 32) |
|
from deepspeed.accelerator import get_accelerator |
|
from deepspeed.ops.op_builder import FusedLionBuilder |
|
|
|
|
|
class FusedLion(torch.optim.Optimizer): |
|
"""Implements Lion algorithm. |
|
|
|
Currently GPU-only. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square. (default: (0.9, 0.999)) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
set_grad_none (bool, optional): whether set grad to None when zero_grad() |
|
method is called. (default: True) |
|
|
|
.. _Symbolic Discovery of Optimization Algorithms: |
|
https://doi.org/10.48550/arXiv.2302.06675 |
|
""" |
|
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), weight_decay=0., set_grad_none=True): |
|
|
|
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay) |
|
super(FusedLion, self).__init__(params, defaults) |
|
self.set_grad_none = set_grad_none |
|
|
|
fused_lion_cuda = FusedLionBuilder().load() |
|
|
|
self._dummy_overflow_buf = get_accelerator().IntTensor([0]) |
|
self.multi_tensor_lion = fused_lion_cuda.multi_tensor_lion |
|
|
|
def zero_grad(self): |
|
if self.set_grad_none: |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
p.grad = None |
|
else: |
|
super(FusedLion, self).zero_grad() |
|
|
|
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
|
|
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. |
|
""" |
|
if any(p is not None for p in [grads, output_params, scale, grad_norms]): |
|
raise RuntimeError('FusedLion has been updated.') |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
if len(group['params']) == 0: |
|
continue |
|
beta1, beta2 = group['betas'] |
|
|
|
|
|
|
|
if 'step' not in group: |
|
group['step'] = 0 |
|
|
|
|
|
g_16, p_16, m_16 = [], [], [] |
|
g_bf, p_bf, m_bf = [], [], [] |
|
g_32, p_32, m_32 = [], [], [] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
if p.grad.data.is_sparse: |
|
raise NotImplementedError('FusedLion does not support sparse gradients') |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
|
|
|
|
state['step'] = group.get('step', 0) |
|
|
|
state['exp_avg'] = torch.zeros_like(p.data) |
|
|
|
if p.dtype == torch.float16: |
|
g_16.append(p.grad.data) |
|
p_16.append(p.data) |
|
m_16.append(state['exp_avg']) |
|
elif p.dtype == torch.bfloat16: |
|
g_bf.append(p.grad) |
|
p_bf.append(p) |
|
m_bf.append(state['exp_avg']) |
|
elif p.dtype == torch.float32: |
|
g_32.append(p.grad.data) |
|
p_32.append(p.data) |
|
m_32.append(state['exp_avg']) |
|
else: |
|
raise RuntimeError('FusedLion only support fp16, bf16 and fp32.') |
|
|
|
if len(g_16) > 0: |
|
state['step'] += 1 |
|
multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_16, p_16, m_16], group['lr'], |
|
beta1, beta2, state['step'], group['weight_decay']) |
|
|
|
if len(g_bf) > 0: |
|
state['step'] += 1 |
|
multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_bf, p_bf, m_bf], group['lr'], |
|
beta1, beta2, state['step'], group['weight_decay']) |
|
|
|
if len(g_32) > 0: |
|
state['step'] += 1 |
|
multi_tensor_applier(self.multi_tensor_lion, self._dummy_overflow_buf, [g_32, p_32, m_32], group['lr'], |
|
beta1, beta2, state['step'], group['weight_decay']) |
|
|
|
return loss |
|
|