|
|
|
|
|
|
|
|
|
""" |
|
Copyright NVIDIA/apex |
|
This file is adapted from fused adam in NVIDIA/apex, commit 6bd01c4 |
|
""" |
|
|
|
import torch |
|
from .multi_tensor_apply import MultiTensorApply |
|
|
|
multi_tensor_applier = MultiTensorApply(2048 * 32) |
|
from deepspeed.accelerator import get_accelerator |
|
from deepspeed.ops.op_builder import FusedAdamBuilder |
|
|
|
|
|
class FusedAdam(torch.optim.Optimizer): |
|
"""Implements Adam algorithm. |
|
|
|
Currently GPU-only. Requires Apex to be installed via |
|
``pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./``. |
|
|
|
This version of fused Adam implements 2 fusions. |
|
|
|
* Fusion of the Adam update's elementwise operations |
|
* A multi-tensor apply launch that batches the elementwise updates applied to all the model's parameters into one or a few kernel launches. |
|
|
|
:class:`apex.optimizers.FusedAdam` may be used as a drop-in replacement for ``torch.optim.AdamW``, |
|
or ``torch.optim.Adam`` with ``adam_w_mode=False``:: |
|
|
|
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) |
|
... |
|
opt.step() |
|
|
|
:class:`apex.optimizers.FusedAdam` may be used with or without Amp. If you wish to use :class:`FusedAdam` with Amp, |
|
you may choose any ``opt_level``:: |
|
|
|
opt = apex.optimizers.FusedAdam(model.parameters(), lr = ....) |
|
model, opt = amp.initialize(model, opt, opt_level="O0" or "O1 or "O2") |
|
... |
|
opt.step() |
|
|
|
In general, ``opt_level="O1"`` is recommended. |
|
|
|
|
|
.. warning:: |
|
A previous version of :class:`FusedAdam` allowed a number of additional arguments to ``step``. These additional arguments |
|
are now deprecated and unnecessary. |
|
|
|
Adam was been proposed in `Adam: A Method for Stochastic Optimization`_. |
|
|
|
Arguments: |
|
params (iterable): iterable of parameters to optimize or dicts defining |
|
parameter groups. |
|
lr (float, optional): learning rate. (default: 1e-3) |
|
betas (Tuple[float, float], optional): coefficients used for computing |
|
running averages of gradient and its square. (default: (0.9, 0.999)) |
|
eps (float, optional): term added to the denominator to improve |
|
numerical stability. (default: 1e-8) |
|
weight_decay (float, optional): weight decay (L2 penalty) (default: 0) |
|
amsgrad (boolean, optional): whether to use the AMSGrad variant of this |
|
algorithm from the paper `On the Convergence of Adam and Beyond`_ |
|
(default: False) NOT SUPPORTED in FusedAdam! |
|
adam_w_mode (boolean, optional): Apply L2 regularization or weight decay |
|
True for decoupled weight decay(also known as AdamW) (default: True) |
|
set_grad_none (bool, optional): whether set grad to None when zero_grad() |
|
method is called. (default: True) |
|
|
|
.. _Adam - A Method for Stochastic Optimization: |
|
https://arxiv.org/abs/1412.6980 |
|
.. _On the Convergence of Adam and Beyond: |
|
https://openreview.net/forum?id=ryQu7f-RZ |
|
""" |
|
|
|
def __init__(self, |
|
params, |
|
lr=1e-3, |
|
bias_correction=True, |
|
betas=(0.9, 0.999), |
|
eps=1e-8, |
|
adam_w_mode=True, |
|
weight_decay=0., |
|
amsgrad=False, |
|
set_grad_none=True): |
|
|
|
if amsgrad: |
|
raise RuntimeError('FusedAdam does not support the AMSGrad variant.') |
|
defaults = dict(lr=lr, bias_correction=bias_correction, betas=betas, eps=eps, weight_decay=weight_decay) |
|
super(FusedAdam, self).__init__(params, defaults) |
|
self.adam_w_mode = 1 if adam_w_mode else 0 |
|
self.set_grad_none = set_grad_none |
|
|
|
fused_adam_cuda = FusedAdamBuilder().load() |
|
|
|
self._dummy_overflow_buf = get_accelerator().IntTensor([0]) |
|
self.multi_tensor_adam = fused_adam_cuda.multi_tensor_adam |
|
|
|
def zero_grad(self): |
|
if self.set_grad_none: |
|
for group in self.param_groups: |
|
for p in group['params']: |
|
p.grad = None |
|
else: |
|
super(FusedAdam, self).zero_grad() |
|
|
|
def step(self, closure=None, grads=None, output_params=None, scale=None, grad_norms=None, grad_scaler=None): |
|
"""Performs a single optimization step. |
|
|
|
Arguments: |
|
closure (callable, optional): A closure that reevaluates the model |
|
and returns the loss. |
|
|
|
The remaining arguments are deprecated, and are only retained (for the moment) for error-checking purposes. |
|
""" |
|
if any(p is not None for p in [grads, output_params, scale, grad_norms]): |
|
raise RuntimeError( |
|
'FusedAdam has been updated. Simply initialize it identically to torch.optim.Adam, and call step() with no arguments.' |
|
) |
|
loss = None |
|
if closure is not None: |
|
loss = closure() |
|
|
|
for group in self.param_groups: |
|
if len(group['params']) == 0: |
|
continue |
|
bias_correction = 1 if group['bias_correction'] else 0 |
|
beta1, beta2 = group['betas'] |
|
|
|
|
|
|
|
if 'step' not in group: |
|
group['step'] = 0 |
|
|
|
|
|
g_16, p_16, m_16, v_16 = [], [], [], [] |
|
g_bf, p_bf, m_bf, v_bf = [], [], [], [] |
|
g_32, p_32, m_32, v_32 = [], [], [], [] |
|
|
|
for p in group['params']: |
|
if p.grad is None: |
|
continue |
|
if p.grad.data.is_sparse: |
|
raise RuntimeError( |
|
'FusedAdam does not support sparse gradients, please consider SparseAdam instead') |
|
|
|
state = self.state[p] |
|
|
|
if len(state) == 0: |
|
|
|
|
|
|
|
state['step'] = group.get('step', 0) |
|
|
|
state['exp_avg'] = torch.zeros_like(p.data) |
|
|
|
state['exp_avg_sq'] = torch.zeros_like(p.data) |
|
|
|
if p.dtype == torch.float16: |
|
g_16.append(p.grad.data) |
|
p_16.append(p.data) |
|
m_16.append(state['exp_avg']) |
|
v_16.append(state['exp_avg_sq']) |
|
elif p.dtype == torch.bfloat16: |
|
g_bf.append(p.grad) |
|
p_bf.append(p) |
|
m_bf.append(state['exp_avg']) |
|
v_bf.append(state['exp_avg_sq']) |
|
elif p.dtype == torch.float32: |
|
g_32.append(p.grad.data) |
|
p_32.append(p.data) |
|
m_32.append(state['exp_avg']) |
|
v_32.append(state['exp_avg_sq']) |
|
else: |
|
raise RuntimeError('FusedAdam only support fp16, bf16 and fp32.') |
|
|
|
if len(g_16) > 0: |
|
state['step'] += 1 |
|
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_16, p_16, m_16, v_16], |
|
group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode, |
|
bias_correction, group['weight_decay']) |
|
|
|
if len(g_bf) > 0: |
|
state['step'] += 1 |
|
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_bf, p_bf, m_bf, v_bf], |
|
group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode, |
|
bias_correction, group['weight_decay']) |
|
|
|
if len(g_32) > 0: |
|
state['step'] += 1 |
|
multi_tensor_applier(self.multi_tensor_adam, self._dummy_overflow_buf, [g_32, p_32, m_32, v_32], |
|
group['lr'], beta1, beta2, group['eps'], state['step'], self.adam_w_mode, |
|
bias_correction, group['weight_decay']) |
|
|
|
return loss |
|
|