jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
from dataclasses import dataclass, field
from typing import List
import torch
@dataclass
class LoRAConfig:
"""
Configuration settings for LoRAOptimizedLinear.
Attributes:
lora_r (int): LoRA attention dimension, also known as the rank. Defaults is 64.
lora_alpha (float): LoRA scaling factor, default is 16.
base_weight_sharding (int): The degree to which the base weights are sharded,
should typically be set to the data-parallel world size to maximize the memory
reduction benefits. Defaults to 1, which means this feature is disabled.
offload (bool): offload frozen parameters to cpu when not in use
offload_ratio (float): ratio of parameters to offload to cpu when not in use
delay_lora_init (bool): initialize lora parameters at time of model init or allow manual init later
target_mods (str): target module names to apply LoRA to, defaults to llama-3.1 arch
"""
lora_r: int = 64
lora_alpha: float = 16.
base_weight_sharding: int = 1
offload: bool = False
offload_ratio: float = 0.0
delay_lora_init: bool = False
target_mods: List[str] = field(
default_factory=lambda: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj'])
@dataclass
class QuantizationConfig:
"""
Configuration settings for quantization for LoRAOptimizedLinear, QuantizedLinear,
and QuantizedParameter
Attributes:
q_bits (int): The number of bits used for quantization. Default is 8.
mantissa_bits (int): The number of bits reserved for the mantissa in fixed-point quantization. Default is 3.
group_size (int): The number of elements used for quantization. Default is 512.
q_dtype (torch.dtype): The data type to quantize to. Default is uint8. (in CUDA, buffers are allocated as
uint8, but inside the kernels the quantization is done to fp8)
"""
q_bits: int = 8
mantissa_bits: int = 3
group_size: int = 512
q_dtype: torch.dtype = torch.uint8