jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import copy
import torch
from deepspeed.accelerator import get_accelerator
from .passes import zero1_compile, zero3_compile
from .backend import make_backend, launch_compile_passes, init_schedule
from .util import get_deepcompile_handle, add_pre_backward_hook, is_backend_inductor
WARMUP = 5
def init_z1(engine, backend, compile_config, compile_kwargs, schedule=None):
optimizer = engine.optimizer
optimizer.contiguous_gradients = False # Avoid creating unnecessary buffer
for hook in optimizer._grad_acc_hooks:
hook.remove()
optimizer._grad_acc_hooks.clear()
dc = get_deepcompile_handle()
dc.init(engine.data_parallel_group,
engine.zero_reduce_bucket_size(), compile_config.double_buffer, compile_config.symmetric_memory,
is_backend_inductor(backend), compile_config.sync_before_reduce, compile_config.sync_after_reduce, False,
False)
grad_buffer = {}
for i, group in enumerate(optimizer.bit16_groups):
grad_buffer[i] = optimizer.get_flat_partition(optimizer.params_in_partition[i],
optimizer.first_offset[i],
optimizer.partition_size[i],
dtype=optimizer.gradient_accumulation_dtype,
device=get_accelerator().current_device_name(),
return_tensor_list=True)
grad_buffer[i] = [p.clone().detach() for p in grad_buffer[i]] # Maybe not necessary
index_in_partition = 0
first_in_partition = True
for p in group:
param_id = optimizer.get_param_id(p)
p.param_id = param_id
in_partition = optimizer.is_param_in_current_partition[param_id]
if in_partition:
buf = grad_buffer[i][index_in_partition]
offset = optimizer.first_offset[i] if first_in_partition else 0
# print(f"[r{dist.get_rank()}] Registering group {i} param {param_id} in_partition={in_partition} p={p.shape} buf={buf.shape} partition_offset={offset}")
dc.register_z1_param(p.param_id, p.shape, p, buf, int(offset))
index_in_partition += 1
first_in_partition = False
else:
# print(f"[r{dist.get_rank()}] Registering group {i} param {param_id} in_partition={in_partition} p={p.shape} buf=None")
dc.register_z1_param(p.param_id, p.shape, p, torch.empty([0], dtype=p.dtype, device=p.device), 0)
def set_grad_buffer():
optimizer.averaged_gradients = copy.copy(grad_buffer)
add_pre_backward_hook(set_grad_buffer)
if schedule is None:
schedule = []
schedule.append((0, [zero1_compile.add_z1_reduce]))
else:
for opt in schedule:
# avoid typical misconfiguration
if zero3_compile.add_z3_gather_release in opt[1]:
raise ValueError("A pass for ZeRO3 is not specified though ZeRO1 is enabled")
init_schedule(schedule)
engine.launch_compile_passes = launch_compile_passes
return make_backend(backend,
compile_kwargs=compile_kwargs,
free_activation=False,
debug_log=compile_config.debug_log)