|
import itertools |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import pyarrow as pa |
|
|
|
import datasets |
|
from datasets.table import table_cast |
|
|
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class ArrowConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Arrow.""" |
|
|
|
features: Optional[datasets.Features] = None |
|
|
|
def __post_init__(self): |
|
super().__post_init__() |
|
|
|
|
|
class Arrow(datasets.ArrowBasedBuilder): |
|
BUILDER_CONFIG_CLASS = ArrowConfig |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo(features=self.config.features) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""We handle string, list and dicts in datafiles""" |
|
if not self.config.data_files: |
|
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}") |
|
dl_manager.download_config.extract_on_the_fly = True |
|
data_files = dl_manager.download_and_extract(self.config.data_files) |
|
splits = [] |
|
for split_name, files in data_files.items(): |
|
if isinstance(files, str): |
|
files = [files] |
|
|
|
files = [dl_manager.iter_files(file) for file in files] |
|
|
|
if self.info.features is None: |
|
for file in itertools.chain.from_iterable(files): |
|
with open(file, "rb") as f: |
|
try: |
|
reader = pa.ipc.open_stream(f) |
|
except (OSError, pa.lib.ArrowInvalid): |
|
reader = pa.ipc.open_file(f) |
|
self.info.features = datasets.Features.from_arrow_schema(reader.schema) |
|
break |
|
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files})) |
|
return splits |
|
|
|
def _cast_table(self, pa_table: pa.Table) -> pa.Table: |
|
if self.info.features is not None: |
|
|
|
|
|
pa_table = table_cast(pa_table, self.info.features.arrow_schema) |
|
return pa_table |
|
|
|
def _generate_tables(self, files): |
|
for file_idx, file in enumerate(itertools.chain.from_iterable(files)): |
|
with open(file, "rb") as f: |
|
try: |
|
try: |
|
batches = pa.ipc.open_stream(f) |
|
except (OSError, pa.lib.ArrowInvalid): |
|
reader = pa.ipc.open_file(f) |
|
batches = (reader.get_batch(i) for i in range(reader.num_record_batches)) |
|
for batch_idx, record_batch in enumerate(batches): |
|
pa_table = pa.Table.from_batches([record_batch]) |
|
|
|
|
|
|
|
yield f"{file_idx}_{batch_idx}", self._cast_table(pa_table) |
|
except ValueError as e: |
|
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}") |
|
raise |
|
|