jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
import importlib
import importlib.metadata
import logging
import os
import platform
from pathlib import Path
from typing import Optional
from huggingface_hub import constants
from packaging import version
logger = logging.getLogger(__name__.split(".", 1)[0]) # to avoid circular import from .utils.logging
# Datasets
S3_DATASETS_BUCKET_PREFIX = "https://s3.amazonaws.com/datasets.huggingface.co/datasets/datasets"
CLOUDFRONT_DATASETS_DISTRIB_PREFIX = "https://cdn-datasets.huggingface.co/datasets/datasets"
REPO_DATASETS_URL = "https://raw.githubusercontent.com/huggingface/datasets/{revision}/datasets/{path}/{name}"
# Hub
HF_ENDPOINT = os.environ.get("HF_ENDPOINT", "https://huggingface.co")
HUB_DATASETS_URL = HF_ENDPOINT + "/datasets/{repo_id}/resolve/{revision}/{path}"
HUB_DATASETS_HFFS_URL = "hf://datasets/{repo_id}@{revision}/{path}"
HUB_DEFAULT_VERSION = "main"
PY_VERSION = version.parse(platform.python_version())
# General environment variables accepted values for booleans
ENV_VARS_TRUE_VALUES = {"1", "ON", "YES", "TRUE"}
ENV_VARS_FALSE_VALUES = {"0", "OFF", "NO", "FALSE"}
ENV_VARS_TRUE_AND_AUTO_VALUES = ENV_VARS_TRUE_VALUES.union({"AUTO"})
ENV_VARS_FALSE_AND_AUTO_VALUES = ENV_VARS_FALSE_VALUES.union({"AUTO"})
# Imports
DILL_VERSION = version.parse(importlib.metadata.version("dill"))
FSSPEC_VERSION = version.parse(importlib.metadata.version("fsspec"))
PANDAS_VERSION = version.parse(importlib.metadata.version("pandas"))
PYARROW_VERSION = version.parse(importlib.metadata.version("pyarrow"))
HF_HUB_VERSION = version.parse(importlib.metadata.version("huggingface_hub"))
USE_TF = os.environ.get("USE_TF", "AUTO").upper()
USE_TORCH = os.environ.get("USE_TORCH", "AUTO").upper()
USE_JAX = os.environ.get("USE_JAX", "AUTO").upper()
TORCH_VERSION = "N/A"
TORCH_AVAILABLE = False
if USE_TORCH in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TF not in ENV_VARS_TRUE_VALUES:
TORCH_AVAILABLE = importlib.util.find_spec("torch") is not None
if TORCH_AVAILABLE:
try:
TORCH_VERSION = version.parse(importlib.metadata.version("torch"))
logger.info(f"PyTorch version {TORCH_VERSION} available.")
except importlib.metadata.PackageNotFoundError:
pass
else:
logger.info("Disabling PyTorch because USE_TF is set")
POLARS_VERSION = "N/A"
POLARS_AVAILABLE = importlib.util.find_spec("polars") is not None
if POLARS_AVAILABLE:
try:
POLARS_VERSION = version.parse(importlib.metadata.version("polars"))
logger.info(f"Polars version {POLARS_VERSION} available.")
except importlib.metadata.PackageNotFoundError:
pass
DUCKDB_VERSION = "N/A"
DUCKDB_AVAILABLE = importlib.util.find_spec("duckdb") is not None
if DUCKDB_AVAILABLE:
try:
DUCKDB_VERSION = version.parse(importlib.metadata.version("duckdb"))
logger.info(f"Duckdb version {DUCKDB_VERSION} available.")
except importlib.metadata.PackageNotFoundError:
pass
TF_VERSION = "N/A"
TF_AVAILABLE = False
if USE_TF in ENV_VARS_TRUE_AND_AUTO_VALUES and USE_TORCH not in ENV_VARS_TRUE_VALUES:
TF_AVAILABLE = importlib.util.find_spec("tensorflow") is not None
if TF_AVAILABLE:
# For the metadata, we have to look for both tensorflow and tensorflow-cpu
for package in [
"tensorflow",
"tensorflow-cpu",
"tensorflow-gpu",
"tf-nightly",
"tf-nightly-cpu",
"tf-nightly-gpu",
"intel-tensorflow",
"tensorflow-rocm",
"tensorflow-macos",
]:
try:
TF_VERSION = version.parse(importlib.metadata.version(package))
except importlib.metadata.PackageNotFoundError:
continue
else:
break
else:
TF_AVAILABLE = False
if TF_AVAILABLE:
if TF_VERSION.major < 2:
logger.info(f"TensorFlow found but with version {TF_VERSION}. `datasets` requires version 2 minimum.")
TF_AVAILABLE = False
else:
logger.info(f"TensorFlow version {TF_VERSION} available.")
else:
logger.info("Disabling Tensorflow because USE_TORCH is set")
JAX_VERSION = "N/A"
JAX_AVAILABLE = False
if USE_JAX in ENV_VARS_TRUE_AND_AUTO_VALUES:
JAX_AVAILABLE = importlib.util.find_spec("jax") is not None and importlib.util.find_spec("jaxlib") is not None
if JAX_AVAILABLE:
try:
JAX_VERSION = version.parse(importlib.metadata.version("jax"))
logger.info(f"JAX version {JAX_VERSION} available.")
except importlib.metadata.PackageNotFoundError:
pass
else:
logger.info("Disabling JAX because USE_JAX is set to False")
# Optional tools for data loading
SQLALCHEMY_AVAILABLE = importlib.util.find_spec("sqlalchemy") is not None
# Optional tools for feature decoding
PIL_AVAILABLE = importlib.util.find_spec("PIL") is not None
IS_OPUS_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse(
importlib.import_module("soundfile").__libsndfile_version__
) >= version.parse("1.0.31")
IS_MP3_SUPPORTED = importlib.util.find_spec("soundfile") is not None and version.parse(
importlib.import_module("soundfile").__libsndfile_version__
) >= version.parse("1.1.0")
TORCHVISION_AVAILABLE = importlib.util.find_spec("torchvision") is not None
PDFPLUMBER_AVAILABLE = importlib.util.find_spec("pdfplumber") is not None
# Optional compression tools
RARFILE_AVAILABLE = importlib.util.find_spec("rarfile") is not None
ZSTANDARD_AVAILABLE = importlib.util.find_spec("zstandard") is not None
LZ4_AVAILABLE = importlib.util.find_spec("lz4") is not None
PY7ZR_AVAILABLE = importlib.util.find_spec("py7zr") is not None
# Cache location
DEFAULT_XDG_CACHE_HOME = "~/.cache"
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME)
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface")
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME))
DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets")
HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE))
DEFAULT_HF_MODULES_CACHE = os.path.join(HF_CACHE_HOME, "modules")
HF_MODULES_CACHE = Path(os.getenv("HF_MODULES_CACHE", DEFAULT_HF_MODULES_CACHE))
DOWNLOADED_DATASETS_DIR = "downloads"
DEFAULT_DOWNLOADED_DATASETS_PATH = os.path.join(HF_DATASETS_CACHE, DOWNLOADED_DATASETS_DIR)
DOWNLOADED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_DOWNLOADED_DATASETS_PATH", DEFAULT_DOWNLOADED_DATASETS_PATH))
EXTRACTED_DATASETS_DIR = "extracted"
DEFAULT_EXTRACTED_DATASETS_PATH = os.path.join(DEFAULT_DOWNLOADED_DATASETS_PATH, EXTRACTED_DATASETS_DIR)
EXTRACTED_DATASETS_PATH = Path(os.getenv("HF_DATASETS_EXTRACTED_DATASETS_PATH", DEFAULT_EXTRACTED_DATASETS_PATH))
# Download count for the website
HF_UPDATE_DOWNLOAD_COUNTS = (
os.environ.get("HF_UPDATE_DOWNLOAD_COUNTS", "AUTO").upper() in ENV_VARS_TRUE_AND_AUTO_VALUES
)
# For downloads and to check remote files metadata
HF_DATASETS_MULTITHREADING_MAX_WORKERS = 16
# Remote dataset scripts support
__HF_DATASETS_TRUST_REMOTE_CODE = os.environ.get("HF_DATASETS_TRUST_REMOTE_CODE", "ask")
HF_DATASETS_TRUST_REMOTE_CODE: Optional[bool] = (
True
if __HF_DATASETS_TRUST_REMOTE_CODE.upper() in ENV_VARS_TRUE_VALUES
else False
if __HF_DATASETS_TRUST_REMOTE_CODE.upper() in ENV_VARS_FALSE_VALUES
else None
)
TIME_OUT_REMOTE_CODE = 15
# Dataset viewer API
USE_PARQUET_EXPORT = True
# Batch size constants. For more info, see:
# https://github.com/apache/arrow/blob/master/docs/source/cpp/arrays.rst#size-limitations-and-recommendations)
DEFAULT_MAX_BATCH_SIZE = 1000
# Size of the preloaded record batch in `Dataset.__iter__`
ARROW_READER_BATCH_SIZE_IN_DATASET_ITER = 10
# Max shard size in bytes (e.g. to shard parquet datasets in push_to_hub or download_and_prepare)
MAX_SHARD_SIZE = "500MB"
# Parquet configuration
PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS = 100
PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS = 100
PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS = 100
PARQUET_ROW_GROUP_SIZE_FOR_VIDEO_DATASETS = 10
# Offline mode
_offline = os.environ.get("HF_DATASETS_OFFLINE")
HF_HUB_OFFLINE = constants.HF_HUB_OFFLINE if _offline is None else _offline.upper() in ENV_VARS_TRUE_VALUES
HF_DATASETS_OFFLINE = HF_HUB_OFFLINE # kept for backward-compatibility
# Here, `True` will disable progress bars globally without possibility of enabling it
# programmatically. `False` will enable them without possibility of disabling them.
# If environment variable is not set (None), then the user is free to enable/disable
# them programmatically.
# TL;DR: env variable has priority over code
__HF_DATASETS_DISABLE_PROGRESS_BARS = os.environ.get("HF_DATASETS_DISABLE_PROGRESS_BARS")
HF_DATASETS_DISABLE_PROGRESS_BARS: Optional[bool] = (
__HF_DATASETS_DISABLE_PROGRESS_BARS.upper() in ENV_VARS_TRUE_VALUES
if __HF_DATASETS_DISABLE_PROGRESS_BARS is not None
else None
)
# In-memory
DEFAULT_IN_MEMORY_MAX_SIZE = 0 # Disabled
IN_MEMORY_MAX_SIZE = float(os.environ.get("HF_DATASETS_IN_MEMORY_MAX_SIZE", DEFAULT_IN_MEMORY_MAX_SIZE))
# File names
DATASET_ARROW_FILENAME = "dataset.arrow"
DATASET_INDICES_FILENAME = "indices.arrow"
DATASET_STATE_JSON_FILENAME = "state.json"
DATASET_INFO_FILENAME = "dataset_info.json"
DATASETDICT_INFOS_FILENAME = "dataset_infos.json"
LICENSE_FILENAME = "LICENSE"
DATASETDICT_JSON_FILENAME = "dataset_dict.json"
METADATA_CONFIGS_FIELD = "configs"
REPOCARD_FILENAME = "README.md"
REPOYAML_FILENAME = ".huggingface.yaml"
MODULE_NAME_FOR_DYNAMIC_MODULES = "datasets_modules"
MAX_DATASET_CONFIG_ID_READABLE_LENGTH = 255
# Temporary cache directory prefix
TEMP_CACHE_DIR_PREFIX = "hf_datasets-"
# Streaming
STREAMING_READ_MAX_RETRIES = 20
STREAMING_READ_RETRY_INTERVAL = 5
# Datasets without script
DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200
GLOBBED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 10
ARCHIVED_DATA_FILES_MAX_NUMBER_FOR_MODULE_INFERENCE = 200
# Async map functions
MAX_NUM_RUNNING_ASYNC_MAP_FUNCTIONS_IN_PARALLEL = 1000
# Progress bars
PBAR_REFRESH_TIME_INTERVAL = 0.05 # 20 progress updates per sec
# Maximum number of uploaded files per commit
UPLOADS_MAX_NUMBER_PER_COMMIT = 50
# Backward compatibility
MAX_TABLE_NBYTES_FOR_PICKLING = 4 << 30