jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
import math
import torch
import torch.nn as nn
from fairscale.nn.moe.moe_layer import MOELayer
from fairscale.nn.moe.top2gate import Top2Gate
# TODO(anj-s): Identify if we need this initialization logic for the below wrapped layers.
class EmbeddingLayer(nn.Embedding):
"""Wrapped nn.Embedding layer to allow for weight initialization."""
def __init__(self, ntoken, ninp, initrange):
super().__init__(ntoken, ninp)
self.ninp_sqrt = math.sqrt(ninp)
self.weight.data.uniform_(-initrange, initrange)
def forward(self, src):
return super().forward(src) * self.ninp_sqrt
class PositionalEncodingLayer(nn.Module):
"""PositionalEncoding layer for a given Transformer model."""
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncodingLayer, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer("pe", pe)
def forward(self, x):
x = x + self.pe[: x.size(0), :]
return self.dropout(x)
class FeedForwardLayer(nn.Module):
"""FeedForward layer for a given Transformer model."""
def __init__(self, d_model, dim_feedforward, activation, dropout) -> None:
super(FeedForwardLayer, self).__init__()
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.activation = activation
self.dropout1 = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.dropout2 = nn.Dropout(dropout)
def forward(self, x):
return self.dropout2(self.linear2(self.dropout1(self.activation(self.linear1(x)))))
# Forked from https://pytorch.org/docs/stable/_modules/torch/nn/modules/transformer.html#TransformerEncoderLayer.
# Parameters is_moe and num_local_experts are added.
class TransformerEncoderLayer(nn.Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of the intermediate layer, can be a string
("relu" or "gelu") or a unary callable. Default: relu
layer_norm_eps: the eps value in layer normalization components (default=1e-5).
norm_first: if ``True``, layer norm is done prior to attention and feedforward
operations, respectivaly. Otherwise it's done after. Default: ``False`` (after).
is_moe: if ``True``, the feedforward layer will have MOE enabled.
num_local_experts: number of local experts for MOE.
Examples::
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
"""
__constants__ = ["norm_first"]
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation=nn.ReLU(),
layer_norm_eps=1e-5,
norm_first=False,
is_moe=False,
num_local_experts=1,
):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
self.norm_first = norm_first
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout = nn.Dropout(dropout)
self.is_moe = is_moe
if is_moe:
world_size = 1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size()
num_global_experts = num_local_experts * world_size
self.gate = Top2Gate(d_model, num_global_experts)
experts = nn.ModuleList(
[FeedForwardLayer(d_model, dim_feedforward, activation, dropout) for _ in range(num_local_experts)]
)
self.moe_layer = MOELayer(self.gate, experts)
else:
self.ff_block = FeedForwardLayer(d_model, dim_feedforward, activation, dropout)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
# see Fig. 1 of https://arxiv.org/pdf/2002.04745v1.pdf
x = src
if self.norm_first:
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
x = x + self._ff_block(self.norm2(x))
else:
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask))
x = self.norm2(x + self._ff_block(x))
return x
# self-attention block
def _sa_block(self, x, attn_mask, key_padding_mask):
x = self.self_attn(x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)[0]
return self.dropout(x)
# feed forward block
def _ff_block(self, x):
if self.is_moe:
return self.moe_layer(x)
else:
return self.ff_block(x)
class TransformerDecoderLayer(TransformerEncoderLayer):
"""TransformerDecoder layer which inherits from TransformerEncoderLayer."""
def __init__(self, ninp, nhead, nhid, dropout, is_moe=False, num_local_experts=1):
super().__init__(ninp, nhead, nhid, dropout, is_moe=is_moe, num_local_experts=num_local_experts)
self.src_mask = None
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float("-inf")).masked_fill(mask == 1, float(0.0))
return mask
def forward(self, src):
# TODO(anj-s): Fix the data format so that we have [seq_len, batch_size, embedding dim].
# Currently real data has seq_len as the second dimension and batch_size as the first dimension.
# We need to mask the sequence length dimension and not the batch size.
if self.src_mask is None or self.src_mask.size(0) != len(src):
device = src.device
mask = self._generate_square_subsequent_mask(len(src)).to(device)
self.src_mask = mask
return super().forward(src, self.src_mask)
class LinearLayer(nn.Linear):
"""Wrapped nn.Linear layer to allow for weight initialization."""
def __init__(self, ninp, ntoken, initrange):
super().__init__(ninp, ntoken)
self.bias.data.zero_()
self.weight.data.uniform_(-initrange, initrange)
class TransformerLM(nn.Sequential):
"""A GPT-2 based nn.Sequential language model."""
def __init__(self, ntokens, ninp, nhead, nhid, dropout, initrange, ndecoder, is_moe=False, num_local_experts=1):
layers = [
EmbeddingLayer(ntokens, ninp, initrange),
PositionalEncodingLayer(ninp, dropout),
]
for _ in range(ndecoder):
layers.append(TransformerDecoderLayer(ninp, nhead, nhid, dropout, is_moe, num_local_experts))
layers.append(LinearLayer(ninp, ntokens, initrange))
super(TransformerLM, self).__init__(*layers)