|
|
|
|
|
|
|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from fairscale.nn.moe.moe_layer import MOELayer |
|
from fairscale.nn.moe.top2gate import Top2Gate |
|
|
|
|
|
|
|
class EmbeddingLayer(nn.Embedding): |
|
"""Wrapped nn.Embedding layer to allow for weight initialization.""" |
|
|
|
def __init__(self, ntoken, ninp, initrange): |
|
super().__init__(ntoken, ninp) |
|
self.ninp_sqrt = math.sqrt(ninp) |
|
self.weight.data.uniform_(-initrange, initrange) |
|
|
|
def forward(self, src): |
|
return super().forward(src) * self.ninp_sqrt |
|
|
|
|
|
class PositionalEncodingLayer(nn.Module): |
|
"""PositionalEncoding layer for a given Transformer model.""" |
|
|
|
def __init__(self, d_model, dropout=0.1, max_len=5000): |
|
super(PositionalEncodingLayer, self).__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
pe = torch.zeros(max_len, d_model) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0).transpose(0, 1) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[: x.size(0), :] |
|
return self.dropout(x) |
|
|
|
|
|
class FeedForwardLayer(nn.Module): |
|
"""FeedForward layer for a given Transformer model.""" |
|
|
|
def __init__(self, d_model, dim_feedforward, activation, dropout) -> None: |
|
super(FeedForwardLayer, self).__init__() |
|
self.linear1 = nn.Linear(d_model, dim_feedforward) |
|
self.activation = activation |
|
self.dropout1 = nn.Dropout(dropout) |
|
self.linear2 = nn.Linear(dim_feedforward, d_model) |
|
self.dropout2 = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
return self.dropout2(self.linear2(self.dropout1(self.activation(self.linear1(x))))) |
|
|
|
|
|
|
|
|
|
class TransformerEncoderLayer(nn.Module): |
|
r"""TransformerEncoderLayer is made up of self-attn and feedforward network. |
|
This standard encoder layer is based on the paper "Attention Is All You Need". |
|
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, |
|
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in |
|
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement |
|
in a different way during application. |
|
|
|
Args: |
|
d_model: the number of expected features in the input (required). |
|
nhead: the number of heads in the multiheadattention models (required). |
|
dim_feedforward: the dimension of the feedforward network model (default=2048). |
|
dropout: the dropout value (default=0.1). |
|
activation: the activation function of the intermediate layer, can be a string |
|
("relu" or "gelu") or a unary callable. Default: relu |
|
layer_norm_eps: the eps value in layer normalization components (default=1e-5). |
|
norm_first: if ``True``, layer norm is done prior to attention and feedforward |
|
operations, respectivaly. Otherwise it's done after. Default: ``False`` (after). |
|
is_moe: if ``True``, the feedforward layer will have MOE enabled. |
|
num_local_experts: number of local experts for MOE. |
|
|
|
|
|
Examples:: |
|
>>> encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8) |
|
>>> src = torch.rand(10, 32, 512) |
|
>>> out = encoder_layer(src) |
|
""" |
|
__constants__ = ["norm_first"] |
|
|
|
def __init__( |
|
self, |
|
d_model, |
|
nhead, |
|
dim_feedforward=2048, |
|
dropout=0.1, |
|
activation=nn.ReLU(), |
|
layer_norm_eps=1e-5, |
|
norm_first=False, |
|
is_moe=False, |
|
num_local_experts=1, |
|
): |
|
super(TransformerEncoderLayer, self).__init__() |
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) |
|
self.norm_first = norm_first |
|
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps) |
|
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
self.is_moe = is_moe |
|
if is_moe: |
|
world_size = 1 if not torch.distributed.is_initialized() else torch.distributed.get_world_size() |
|
num_global_experts = num_local_experts * world_size |
|
self.gate = Top2Gate(d_model, num_global_experts) |
|
experts = nn.ModuleList( |
|
[FeedForwardLayer(d_model, dim_feedforward, activation, dropout) for _ in range(num_local_experts)] |
|
) |
|
self.moe_layer = MOELayer(self.gate, experts) |
|
else: |
|
self.ff_block = FeedForwardLayer(d_model, dim_feedforward, activation, dropout) |
|
|
|
def forward(self, src, src_mask=None, src_key_padding_mask=None): |
|
r"""Pass the input through the encoder layer. |
|
|
|
Args: |
|
src: the sequence to the encoder layer (required). |
|
src_mask: the mask for the src sequence (optional). |
|
src_key_padding_mask: the mask for the src keys per batch (optional). |
|
|
|
Shape: |
|
see the docs in Transformer class. |
|
""" |
|
|
|
|
|
|
|
x = src |
|
if self.norm_first: |
|
x = x + self._sa_block(self.norm1(x), src_mask, src_key_padding_mask) |
|
x = x + self._ff_block(self.norm2(x)) |
|
else: |
|
x = self.norm1(x + self._sa_block(x, src_mask, src_key_padding_mask)) |
|
x = self.norm2(x + self._ff_block(x)) |
|
|
|
return x |
|
|
|
|
|
def _sa_block(self, x, attn_mask, key_padding_mask): |
|
x = self.self_attn(x, x, x, attn_mask=attn_mask, key_padding_mask=key_padding_mask, need_weights=False)[0] |
|
return self.dropout(x) |
|
|
|
|
|
def _ff_block(self, x): |
|
if self.is_moe: |
|
return self.moe_layer(x) |
|
else: |
|
return self.ff_block(x) |
|
|
|
|
|
class TransformerDecoderLayer(TransformerEncoderLayer): |
|
"""TransformerDecoder layer which inherits from TransformerEncoderLayer.""" |
|
|
|
def __init__(self, ninp, nhead, nhid, dropout, is_moe=False, num_local_experts=1): |
|
super().__init__(ninp, nhead, nhid, dropout, is_moe=is_moe, num_local_experts=num_local_experts) |
|
self.src_mask = None |
|
|
|
def _generate_square_subsequent_mask(self, sz): |
|
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) |
|
mask = mask.float().masked_fill(mask == 0, float("-inf")).masked_fill(mask == 1, float(0.0)) |
|
return mask |
|
|
|
def forward(self, src): |
|
|
|
|
|
|
|
if self.src_mask is None or self.src_mask.size(0) != len(src): |
|
device = src.device |
|
mask = self._generate_square_subsequent_mask(len(src)).to(device) |
|
self.src_mask = mask |
|
|
|
return super().forward(src, self.src_mask) |
|
|
|
|
|
class LinearLayer(nn.Linear): |
|
"""Wrapped nn.Linear layer to allow for weight initialization.""" |
|
|
|
def __init__(self, ninp, ntoken, initrange): |
|
super().__init__(ninp, ntoken) |
|
self.bias.data.zero_() |
|
self.weight.data.uniform_(-initrange, initrange) |
|
|
|
|
|
class TransformerLM(nn.Sequential): |
|
"""A GPT-2 based nn.Sequential language model.""" |
|
|
|
def __init__(self, ntokens, ninp, nhead, nhid, dropout, initrange, ndecoder, is_moe=False, num_local_experts=1): |
|
layers = [ |
|
EmbeddingLayer(ntokens, ninp, initrange), |
|
PositionalEncodingLayer(ninp, dropout), |
|
] |
|
for _ in range(ndecoder): |
|
layers.append(TransformerDecoderLayer(ninp, nhead, nhid, dropout, is_moe, num_local_experts)) |
|
|
|
layers.append(LinearLayer(ninp, ntokens, initrange)) |
|
super(TransformerLM, self).__init__(*layers) |
|
|