|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import random |
|
from typing import Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from ..state import AcceleratorState |
|
from .constants import CUDA_DISTRIBUTED_TYPES |
|
from .dataclasses import DistributedType, RNGType |
|
from .imports import ( |
|
is_hpu_available, |
|
is_mlu_available, |
|
is_musa_available, |
|
is_npu_available, |
|
is_sdaa_available, |
|
is_torch_xla_available, |
|
is_xpu_available, |
|
) |
|
|
|
|
|
if is_torch_xla_available(): |
|
import torch_xla.core.xla_model as xm |
|
|
|
|
|
def set_seed(seed: int, device_specific: bool = False, deterministic: bool = False): |
|
""" |
|
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`. |
|
|
|
Args: |
|
seed (`int`): |
|
The seed to set. |
|
device_specific (`bool`, *optional*, defaults to `False`): |
|
Whether to differ the seed on each device slightly with `self.process_index`. |
|
deterministic (`bool`, *optional*, defaults to `False`): |
|
Whether to use deterministic algorithms where available. Can slow down training. |
|
""" |
|
if device_specific: |
|
seed += AcceleratorState().process_index |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
if is_xpu_available(): |
|
torch.xpu.manual_seed_all(seed) |
|
elif is_npu_available(): |
|
torch.npu.manual_seed_all(seed) |
|
elif is_mlu_available(): |
|
torch.mlu.manual_seed_all(seed) |
|
elif is_sdaa_available(): |
|
torch.sdaa.manual_seed_all(seed) |
|
elif is_musa_available(): |
|
torch.musa.manual_seed_all(seed) |
|
elif is_hpu_available(): |
|
torch.hpu.manual_seed_all(seed) |
|
else: |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
if is_torch_xla_available(): |
|
xm.set_rng_state(seed) |
|
|
|
if deterministic: |
|
torch.use_deterministic_algorithms(True) |
|
|
|
|
|
def synchronize_rng_state(rng_type: Optional[RNGType] = None, generator: Optional[torch.Generator] = None): |
|
|
|
if rng_type == RNGType.TORCH: |
|
rng_state = torch.get_rng_state() |
|
elif rng_type == RNGType.CUDA: |
|
rng_state = torch.cuda.get_rng_state() |
|
elif rng_type == RNGType.XLA: |
|
assert is_torch_xla_available(), "Can't synchronize XLA seeds as torch_xla is unavailable." |
|
rng_state = torch.tensor(xm.get_rng_state()) |
|
elif rng_type == RNGType.NPU: |
|
assert is_npu_available(), "Can't synchronize NPU seeds on an environment without NPUs." |
|
rng_state = torch.npu.get_rng_state() |
|
elif rng_type == RNGType.MLU: |
|
assert is_mlu_available(), "Can't synchronize MLU seeds on an environment without MLUs." |
|
rng_state = torch.mlu.get_rng_state() |
|
elif rng_type == RNGType.SDAA: |
|
assert is_sdaa_available(), "Can't synchronize SDAA seeds on an environment without SDAAs." |
|
rng_state = torch.sdaa.get_rng_state() |
|
elif rng_type == RNGType.MUSA: |
|
assert is_musa_available(), "Can't synchronize MUSA seeds on an environment without MUSAs." |
|
rng_state = torch.musa.get_rng_state() |
|
elif rng_type == RNGType.XPU: |
|
assert is_xpu_available(), "Can't synchronize XPU seeds on an environment without XPUs." |
|
rng_state = torch.xpu.get_rng_state() |
|
elif rng_type == RNGType.HPU: |
|
assert is_hpu_available(), "Can't synchronize HPU seeds on an environment without HPUs." |
|
rng_state = torch.hpu.get_rng_state() |
|
elif rng_type == RNGType.GENERATOR: |
|
assert generator is not None, "Need a generator to synchronize its seed." |
|
rng_state = generator.get_state() |
|
|
|
|
|
state = AcceleratorState() |
|
if state.distributed_type == DistributedType.XLA: |
|
rng_state = rng_state.to(xm.xla_device()) |
|
xm.collective_broadcast([rng_state]) |
|
xm.mark_step() |
|
rng_state = rng_state.cpu() |
|
elif ( |
|
state.distributed_type in CUDA_DISTRIBUTED_TYPES |
|
or state.distributed_type == DistributedType.MULTI_MLU |
|
or state.distributed_type == DistributedType.MULTI_SDAA |
|
or state.distributed_type == DistributedType.MULTI_MUSA |
|
or state.distributed_type == DistributedType.MULTI_NPU |
|
or state.distributed_type == DistributedType.MULTI_XPU |
|
or state.distributed_type == DistributedType.MULTI_HPU |
|
): |
|
rng_state = rng_state.to(state.device) |
|
torch.distributed.broadcast(rng_state, 0) |
|
rng_state = rng_state.cpu() |
|
elif state.distributed_type == DistributedType.MULTI_CPU: |
|
torch.distributed.broadcast(rng_state, 0) |
|
|
|
|
|
if rng_type == RNGType.TORCH: |
|
torch.set_rng_state(rng_state) |
|
elif rng_type == RNGType.CUDA: |
|
torch.cuda.set_rng_state(rng_state) |
|
elif rng_type == RNGType.NPU: |
|
torch.npu.set_rng_state(rng_state) |
|
elif rng_type == RNGType.MLU: |
|
torch.mlu.set_rng_state(rng_state) |
|
elif rng_type == RNGType.SDAA: |
|
torch.sdaa.set_rng_state(rng_state) |
|
elif rng_type == RNGType.MUSA: |
|
torch.musa.set_rng_state(rng_state) |
|
elif rng_type == RNGType.XPU: |
|
torch.xpu.set_rng_state(rng_state) |
|
elif rng_state == RNGType.HPU: |
|
torch.hpu.set_rng_state(rng_state) |
|
elif rng_type == RNGType.XLA: |
|
xm.set_rng_state(rng_state.item()) |
|
elif rng_type == RNGType.GENERATOR: |
|
generator.set_state(rng_state) |
|
|
|
|
|
def synchronize_rng_states(rng_types: list[Union[str, RNGType]], generator: Optional[torch.Generator] = None): |
|
for rng_type in rng_types: |
|
synchronize_rng_state(RNGType(rng_type), generator=generator) |
|
|