|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import importlib.metadata |
|
import os |
|
import warnings |
|
from functools import lru_cache, wraps |
|
|
|
import torch |
|
from packaging import version |
|
from packaging.version import parse |
|
|
|
from .environment import parse_flag_from_env, patch_environment, str_to_bool |
|
from .versions import compare_versions, is_torch_version |
|
|
|
|
|
|
|
USE_TORCH_XLA = parse_flag_from_env("USE_TORCH_XLA", default=True) |
|
|
|
_torch_xla_available = False |
|
if USE_TORCH_XLA: |
|
try: |
|
import torch_xla.core.xla_model as xm |
|
import torch_xla.runtime |
|
|
|
_torch_xla_available = True |
|
except ImportError: |
|
pass |
|
|
|
|
|
_tpu_available = _torch_xla_available |
|
|
|
|
|
_torch_distributed_available = torch.distributed.is_available() |
|
|
|
|
|
def _is_package_available(pkg_name, metadata_name=None): |
|
|
|
package_exists = importlib.util.find_spec(pkg_name) is not None |
|
if package_exists: |
|
try: |
|
|
|
_ = importlib.metadata.metadata(pkg_name if metadata_name is None else metadata_name) |
|
return True |
|
except importlib.metadata.PackageNotFoundError: |
|
return False |
|
|
|
|
|
def is_torch_distributed_available() -> bool: |
|
return _torch_distributed_available |
|
|
|
|
|
def is_xccl_available(): |
|
if is_torch_version(">=", "2.7.0"): |
|
return torch.distributed.distributed_c10d.is_xccl_available() |
|
if is_ipex_available(): |
|
return False |
|
return False |
|
|
|
|
|
def is_ccl_available(): |
|
try: |
|
pass |
|
except ImportError: |
|
print( |
|
"Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) XPUs, but it is not" |
|
" detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL" |
|
" Bindings for PyTorch*." |
|
) |
|
return importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None |
|
|
|
|
|
def get_ccl_version(): |
|
return importlib.metadata.version("oneccl_bind_pt") |
|
|
|
|
|
def is_import_timer_available(): |
|
return _is_package_available("import_timer") |
|
|
|
|
|
def is_pynvml_available(): |
|
return _is_package_available("pynvml") or _is_package_available("pynvml", "nvidia-ml-py") |
|
|
|
|
|
def is_pytest_available(): |
|
return _is_package_available("pytest") |
|
|
|
|
|
def is_msamp_available(): |
|
return _is_package_available("msamp", "ms-amp") |
|
|
|
|
|
def is_schedulefree_available(): |
|
return _is_package_available("schedulefree") |
|
|
|
|
|
def is_transformer_engine_available(): |
|
if is_hpu_available(): |
|
return _is_package_available("intel_transformer_engine", "intel-transformer-engine") |
|
else: |
|
return _is_package_available("transformer_engine", "transformer-engine") |
|
|
|
|
|
def is_lomo_available(): |
|
return _is_package_available("lomo_optim") |
|
|
|
|
|
def is_cuda_available(): |
|
""" |
|
Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda |
|
uninitialized. |
|
""" |
|
with patch_environment(PYTORCH_NVML_BASED_CUDA_CHECK="1"): |
|
available = torch.cuda.is_available() |
|
|
|
return available |
|
|
|
|
|
@lru_cache |
|
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False): |
|
""" |
|
Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set |
|
the USE_TORCH_XLA to false. |
|
""" |
|
assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true." |
|
|
|
if not _torch_xla_available: |
|
return False |
|
elif check_is_gpu: |
|
return torch_xla.runtime.device_type() in ["GPU", "CUDA"] |
|
elif check_is_tpu: |
|
return torch_xla.runtime.device_type() == "TPU" |
|
|
|
return True |
|
|
|
|
|
def is_torchao_available(): |
|
package_exists = _is_package_available("torchao") |
|
if package_exists: |
|
torchao_version = version.parse(importlib.metadata.version("torchao")) |
|
return compare_versions(torchao_version, ">=", "0.6.1") |
|
return False |
|
|
|
|
|
def is_deepspeed_available(): |
|
return _is_package_available("deepspeed") |
|
|
|
|
|
def is_pippy_available(): |
|
return is_torch_version(">=", "2.4.0") |
|
|
|
|
|
def is_bf16_available(ignore_tpu=False): |
|
"Checks if bf16 is supported, optionally ignoring the TPU" |
|
if is_torch_xla_available(check_is_tpu=True): |
|
return not ignore_tpu |
|
if is_cuda_available(): |
|
return torch.cuda.is_bf16_supported() |
|
if is_mlu_available(): |
|
return torch.mlu.is_bf16_supported() |
|
if is_xpu_available(): |
|
return torch.xpu.is_bf16_supported() |
|
if is_mps_available(): |
|
return False |
|
return True |
|
|
|
|
|
def is_fp16_available(): |
|
"Checks if fp16 is supported" |
|
if is_habana_gaudi1(): |
|
return False |
|
|
|
return True |
|
|
|
|
|
def is_fp8_available(): |
|
"Checks if fp8 is supported" |
|
return is_msamp_available() or is_transformer_engine_available() or is_torchao_available() |
|
|
|
|
|
def is_4bit_bnb_available(): |
|
package_exists = _is_package_available("bitsandbytes") |
|
if package_exists: |
|
bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) |
|
return compare_versions(bnb_version, ">=", "0.39.0") |
|
return False |
|
|
|
|
|
def is_8bit_bnb_available(): |
|
package_exists = _is_package_available("bitsandbytes") |
|
if package_exists: |
|
bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) |
|
return compare_versions(bnb_version, ">=", "0.37.2") |
|
return False |
|
|
|
|
|
def is_bnb_available(min_version=None): |
|
package_exists = _is_package_available("bitsandbytes") |
|
if package_exists and min_version is not None: |
|
bnb_version = version.parse(importlib.metadata.version("bitsandbytes")) |
|
return compare_versions(bnb_version, ">=", min_version) |
|
else: |
|
return package_exists |
|
|
|
|
|
def is_bitsandbytes_multi_backend_available(): |
|
if not is_bnb_available(): |
|
return False |
|
import bitsandbytes as bnb |
|
|
|
return "multi_backend" in getattr(bnb, "features", set()) |
|
|
|
|
|
def is_torchvision_available(): |
|
return _is_package_available("torchvision") |
|
|
|
|
|
def is_megatron_lm_available(): |
|
if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1: |
|
if importlib.util.find_spec("megatron") is not None: |
|
try: |
|
megatron_version = parse(importlib.metadata.version("megatron-core")) |
|
if compare_versions(megatron_version, ">=", "0.8.0"): |
|
return importlib.util.find_spec(".training", "megatron") |
|
except Exception as e: |
|
warnings.warn(f"Parse Megatron version failed. Exception:{e}") |
|
return False |
|
|
|
|
|
def is_transformers_available(): |
|
return _is_package_available("transformers") |
|
|
|
|
|
def is_datasets_available(): |
|
return _is_package_available("datasets") |
|
|
|
|
|
def is_peft_available(): |
|
return _is_package_available("peft") |
|
|
|
|
|
def is_timm_available(): |
|
return _is_package_available("timm") |
|
|
|
|
|
def is_triton_available(): |
|
if is_xpu_available(): |
|
return _is_package_available("triton", "pytorch-triton-xpu") |
|
return _is_package_available("triton") |
|
|
|
|
|
def is_aim_available(): |
|
package_exists = _is_package_available("aim") |
|
if package_exists: |
|
aim_version = version.parse(importlib.metadata.version("aim")) |
|
return compare_versions(aim_version, "<", "4.0.0") |
|
return False |
|
|
|
|
|
def is_tensorboard_available(): |
|
return _is_package_available("tensorboard") or _is_package_available("tensorboardX") |
|
|
|
|
|
def is_wandb_available(): |
|
return _is_package_available("wandb") |
|
|
|
|
|
def is_comet_ml_available(): |
|
return _is_package_available("comet_ml") |
|
|
|
|
|
def is_swanlab_available(): |
|
return _is_package_available("swanlab") |
|
|
|
|
|
def is_boto3_available(): |
|
return _is_package_available("boto3") |
|
|
|
|
|
def is_rich_available(): |
|
if _is_package_available("rich"): |
|
return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False) |
|
return False |
|
|
|
|
|
def is_sagemaker_available(): |
|
return _is_package_available("sagemaker") |
|
|
|
|
|
def is_tqdm_available(): |
|
return _is_package_available("tqdm") |
|
|
|
|
|
def is_clearml_available(): |
|
return _is_package_available("clearml") |
|
|
|
|
|
def is_pandas_available(): |
|
return _is_package_available("pandas") |
|
|
|
|
|
def is_matplotlib_available(): |
|
return _is_package_available("matplotlib") |
|
|
|
|
|
def is_mlflow_available(): |
|
if _is_package_available("mlflow"): |
|
return True |
|
|
|
if importlib.util.find_spec("mlflow") is not None: |
|
try: |
|
_ = importlib.metadata.metadata("mlflow-skinny") |
|
return True |
|
except importlib.metadata.PackageNotFoundError: |
|
return False |
|
return False |
|
|
|
|
|
def is_mps_available(min_version="1.12"): |
|
"Checks if MPS device is available. The minimum version required is 1.12." |
|
|
|
|
|
return is_torch_version(">=", min_version) and torch.backends.mps.is_available() and torch.backends.mps.is_built() |
|
|
|
|
|
def is_ipex_available(): |
|
"Checks if ipex is installed." |
|
|
|
def get_major_and_minor_from_version(full_version): |
|
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor) |
|
|
|
_torch_version = importlib.metadata.version("torch") |
|
if importlib.util.find_spec("intel_extension_for_pytorch") is None: |
|
return False |
|
_ipex_version = "N/A" |
|
try: |
|
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch") |
|
except importlib.metadata.PackageNotFoundError: |
|
return False |
|
torch_major_and_minor = get_major_and_minor_from_version(_torch_version) |
|
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version) |
|
if torch_major_and_minor != ipex_major_and_minor: |
|
warnings.warn( |
|
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*," |
|
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again." |
|
) |
|
return False |
|
return True |
|
|
|
|
|
@lru_cache |
|
def is_mlu_available(check_device=False): |
|
""" |
|
Checks if `mlu` is available via an `cndev-based` check which won't trigger the drivers and leave mlu |
|
uninitialized. |
|
""" |
|
if importlib.util.find_spec("torch_mlu") is None: |
|
return False |
|
|
|
import torch_mlu |
|
|
|
with patch_environment(PYTORCH_CNDEV_BASED_MLU_CHECK="1"): |
|
available = torch.mlu.is_available() |
|
|
|
return available |
|
|
|
|
|
@lru_cache |
|
def is_musa_available(check_device=False): |
|
"Checks if `torch_musa` is installed and potentially if a MUSA is in the environment" |
|
if importlib.util.find_spec("torch_musa") is None: |
|
return False |
|
|
|
import torch_musa |
|
|
|
if check_device: |
|
try: |
|
|
|
_ = torch.musa.device_count() |
|
return torch.musa.is_available() |
|
except RuntimeError: |
|
return False |
|
return hasattr(torch, "musa") and torch.musa.is_available() |
|
|
|
|
|
@lru_cache |
|
def is_npu_available(check_device=False): |
|
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment" |
|
if importlib.util.find_spec("torch_npu") is None: |
|
return False |
|
|
|
import torch_npu |
|
|
|
if check_device: |
|
try: |
|
|
|
_ = torch.npu.device_count() |
|
return torch.npu.is_available() |
|
except RuntimeError: |
|
return False |
|
return hasattr(torch, "npu") and torch.npu.is_available() |
|
|
|
|
|
@lru_cache |
|
def is_sdaa_available(check_device=False): |
|
"Checks if `torch_sdaa` is installed and potentially if a SDAA is in the environment" |
|
if importlib.util.find_spec("torch_sdaa") is None: |
|
return False |
|
|
|
import torch_sdaa |
|
|
|
if check_device: |
|
try: |
|
|
|
_ = torch.sdaa.device_count() |
|
return torch.sdaa.is_available() |
|
except RuntimeError: |
|
return False |
|
return hasattr(torch, "sdaa") and torch.sdaa.is_available() |
|
|
|
|
|
@lru_cache |
|
def is_hpu_available(init_hccl=False): |
|
"Checks if `torch.hpu` is installed and potentially if a HPU is in the environment" |
|
if ( |
|
importlib.util.find_spec("habana_frameworks") is None |
|
or importlib.util.find_spec("habana_frameworks.torch") is None |
|
): |
|
return False |
|
|
|
import habana_frameworks.torch |
|
|
|
if init_hccl: |
|
import habana_frameworks.torch.distributed.hccl as hccl |
|
|
|
return hasattr(torch, "hpu") and torch.hpu.is_available() |
|
|
|
|
|
def is_habana_gaudi1(): |
|
if is_hpu_available(): |
|
import habana_frameworks.torch.utils.experimental as htexp |
|
|
|
if htexp._get_device_type() == htexp.synDeviceType.synDeviceGaudi: |
|
return True |
|
|
|
return False |
|
|
|
|
|
@lru_cache |
|
def is_xpu_available(check_device=False): |
|
""" |
|
Checks if XPU acceleration is available either via `intel_extension_for_pytorch` or via stock PyTorch (>=2.4) and |
|
potentially if a XPU is in the environment |
|
""" |
|
|
|
if is_ipex_available(): |
|
import intel_extension_for_pytorch |
|
else: |
|
if is_torch_version("<=", "2.3"): |
|
return False |
|
|
|
if check_device: |
|
try: |
|
|
|
_ = torch.xpu.device_count() |
|
return torch.xpu.is_available() |
|
except RuntimeError: |
|
return False |
|
return hasattr(torch, "xpu") and torch.xpu.is_available() |
|
|
|
|
|
def is_dvclive_available(): |
|
return _is_package_available("dvclive") |
|
|
|
|
|
def is_torchdata_available(): |
|
return _is_package_available("torchdata") |
|
|
|
|
|
|
|
def is_torchdata_stateful_dataloader_available(): |
|
package_exists = _is_package_available("torchdata") |
|
if package_exists: |
|
torchdata_version = version.parse(importlib.metadata.version("torchdata")) |
|
return compare_versions(torchdata_version, ">=", "0.8.0") |
|
return False |
|
|
|
|
|
def torchao_required(func): |
|
""" |
|
A decorator that ensures the decorated function is only called when torchao is available. |
|
""" |
|
|
|
@wraps(func) |
|
def wrapper(*args, **kwargs): |
|
if not is_torchao_available(): |
|
raise ImportError( |
|
"`torchao` is not available, please install it before calling this function via `pip install torchao`." |
|
) |
|
return func(*args, **kwargs) |
|
|
|
return wrapper |
|
|
|
|
|
|
|
def deepspeed_required(func): |
|
""" |
|
A decorator that ensures the decorated function is only called when deepspeed is enabled. |
|
""" |
|
|
|
@wraps(func) |
|
def wrapper(*args, **kwargs): |
|
from accelerate.state import AcceleratorState |
|
from accelerate.utils.dataclasses import DistributedType |
|
|
|
if AcceleratorState._shared_state != {} and AcceleratorState().distributed_type != DistributedType.DEEPSPEED: |
|
raise ValueError( |
|
"DeepSpeed is not enabled, please make sure that an `Accelerator` is configured for `deepspeed` " |
|
"before calling this function." |
|
) |
|
return func(*args, **kwargs) |
|
|
|
return wrapper |
|
|
|
|
|
def is_weights_only_available(): |
|
|
|
|
|
return is_torch_version(">=", "2.4.0") |
|
|
|
|
|
def is_numpy_available(min_version="1.25.0"): |
|
numpy_version = parse(importlib.metadata.version("numpy")) |
|
return compare_versions(numpy_version, ">=", min_version) |
|
|