jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import importlib
import importlib.metadata
import os
import warnings
from functools import lru_cache, wraps
import torch
from packaging import version
from packaging.version import parse
from .environment import parse_flag_from_env, patch_environment, str_to_bool
from .versions import compare_versions, is_torch_version
# Try to run Torch native job in an environment with TorchXLA installed by setting this value to 0.
USE_TORCH_XLA = parse_flag_from_env("USE_TORCH_XLA", default=True)
_torch_xla_available = False
if USE_TORCH_XLA:
try:
import torch_xla.core.xla_model as xm # noqa: F401
import torch_xla.runtime
_torch_xla_available = True
except ImportError:
pass
# Keep it for is_tpu_available. It will be removed along with is_tpu_available.
_tpu_available = _torch_xla_available
# Cache this result has it's a C FFI call which can be pretty time-consuming
_torch_distributed_available = torch.distributed.is_available()
def _is_package_available(pkg_name, metadata_name=None):
# Check we're not importing a "pkg_name" directory somewhere but the actual library by trying to grab the version
package_exists = importlib.util.find_spec(pkg_name) is not None
if package_exists:
try:
# Some libraries have different names in the metadata
_ = importlib.metadata.metadata(pkg_name if metadata_name is None else metadata_name)
return True
except importlib.metadata.PackageNotFoundError:
return False
def is_torch_distributed_available() -> bool:
return _torch_distributed_available
def is_xccl_available():
if is_torch_version(">=", "2.7.0"):
return torch.distributed.distributed_c10d.is_xccl_available()
if is_ipex_available():
return False
return False
def is_ccl_available():
try:
pass
except ImportError:
print(
"Intel(R) oneCCL Bindings for PyTorch* is required to run DDP on Intel(R) XPUs, but it is not"
" detected. If you see \"ValueError: Invalid backend: 'ccl'\" error, please install Intel(R) oneCCL"
" Bindings for PyTorch*."
)
return importlib.util.find_spec("oneccl_bindings_for_pytorch") is not None
def get_ccl_version():
return importlib.metadata.version("oneccl_bind_pt")
def is_import_timer_available():
return _is_package_available("import_timer")
def is_pynvml_available():
return _is_package_available("pynvml") or _is_package_available("pynvml", "nvidia-ml-py")
def is_pytest_available():
return _is_package_available("pytest")
def is_msamp_available():
return _is_package_available("msamp", "ms-amp")
def is_schedulefree_available():
return _is_package_available("schedulefree")
def is_transformer_engine_available():
if is_hpu_available():
return _is_package_available("intel_transformer_engine", "intel-transformer-engine")
else:
return _is_package_available("transformer_engine", "transformer-engine")
def is_lomo_available():
return _is_package_available("lomo_optim")
def is_cuda_available():
"""
Checks if `cuda` is available via an `nvml-based` check which won't trigger the drivers and leave cuda
uninitialized.
"""
with patch_environment(PYTORCH_NVML_BASED_CUDA_CHECK="1"):
available = torch.cuda.is_available()
return available
@lru_cache
def is_torch_xla_available(check_is_tpu=False, check_is_gpu=False):
"""
Check if `torch_xla` is available. To train a native pytorch job in an environment with torch xla installed, set
the USE_TORCH_XLA to false.
"""
assert not (check_is_tpu and check_is_gpu), "The check_is_tpu and check_is_gpu cannot both be true."
if not _torch_xla_available:
return False
elif check_is_gpu:
return torch_xla.runtime.device_type() in ["GPU", "CUDA"]
elif check_is_tpu:
return torch_xla.runtime.device_type() == "TPU"
return True
def is_torchao_available():
package_exists = _is_package_available("torchao")
if package_exists:
torchao_version = version.parse(importlib.metadata.version("torchao"))
return compare_versions(torchao_version, ">=", "0.6.1")
return False
def is_deepspeed_available():
return _is_package_available("deepspeed")
def is_pippy_available():
return is_torch_version(">=", "2.4.0")
def is_bf16_available(ignore_tpu=False):
"Checks if bf16 is supported, optionally ignoring the TPU"
if is_torch_xla_available(check_is_tpu=True):
return not ignore_tpu
if is_cuda_available():
return torch.cuda.is_bf16_supported()
if is_mlu_available():
return torch.mlu.is_bf16_supported()
if is_xpu_available():
return torch.xpu.is_bf16_supported()
if is_mps_available():
return False
return True
def is_fp16_available():
"Checks if fp16 is supported"
if is_habana_gaudi1():
return False
return True
def is_fp8_available():
"Checks if fp8 is supported"
return is_msamp_available() or is_transformer_engine_available() or is_torchao_available()
def is_4bit_bnb_available():
package_exists = _is_package_available("bitsandbytes")
if package_exists:
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
return compare_versions(bnb_version, ">=", "0.39.0")
return False
def is_8bit_bnb_available():
package_exists = _is_package_available("bitsandbytes")
if package_exists:
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
return compare_versions(bnb_version, ">=", "0.37.2")
return False
def is_bnb_available(min_version=None):
package_exists = _is_package_available("bitsandbytes")
if package_exists and min_version is not None:
bnb_version = version.parse(importlib.metadata.version("bitsandbytes"))
return compare_versions(bnb_version, ">=", min_version)
else:
return package_exists
def is_bitsandbytes_multi_backend_available():
if not is_bnb_available():
return False
import bitsandbytes as bnb
return "multi_backend" in getattr(bnb, "features", set())
def is_torchvision_available():
return _is_package_available("torchvision")
def is_megatron_lm_available():
if str_to_bool(os.environ.get("ACCELERATE_USE_MEGATRON_LM", "False")) == 1:
if importlib.util.find_spec("megatron") is not None:
try:
megatron_version = parse(importlib.metadata.version("megatron-core"))
if compare_versions(megatron_version, ">=", "0.8.0"):
return importlib.util.find_spec(".training", "megatron")
except Exception as e:
warnings.warn(f"Parse Megatron version failed. Exception:{e}")
return False
def is_transformers_available():
return _is_package_available("transformers")
def is_datasets_available():
return _is_package_available("datasets")
def is_peft_available():
return _is_package_available("peft")
def is_timm_available():
return _is_package_available("timm")
def is_triton_available():
if is_xpu_available():
return _is_package_available("triton", "pytorch-triton-xpu")
return _is_package_available("triton")
def is_aim_available():
package_exists = _is_package_available("aim")
if package_exists:
aim_version = version.parse(importlib.metadata.version("aim"))
return compare_versions(aim_version, "<", "4.0.0")
return False
def is_tensorboard_available():
return _is_package_available("tensorboard") or _is_package_available("tensorboardX")
def is_wandb_available():
return _is_package_available("wandb")
def is_comet_ml_available():
return _is_package_available("comet_ml")
def is_swanlab_available():
return _is_package_available("swanlab")
def is_boto3_available():
return _is_package_available("boto3")
def is_rich_available():
if _is_package_available("rich"):
return parse_flag_from_env("ACCELERATE_ENABLE_RICH", False)
return False
def is_sagemaker_available():
return _is_package_available("sagemaker")
def is_tqdm_available():
return _is_package_available("tqdm")
def is_clearml_available():
return _is_package_available("clearml")
def is_pandas_available():
return _is_package_available("pandas")
def is_matplotlib_available():
return _is_package_available("matplotlib")
def is_mlflow_available():
if _is_package_available("mlflow"):
return True
if importlib.util.find_spec("mlflow") is not None:
try:
_ = importlib.metadata.metadata("mlflow-skinny")
return True
except importlib.metadata.PackageNotFoundError:
return False
return False
def is_mps_available(min_version="1.12"):
"Checks if MPS device is available. The minimum version required is 1.12."
# With torch 1.12, you can use torch.backends.mps
# With torch 2.0.0, you can use torch.mps
return is_torch_version(">=", min_version) and torch.backends.mps.is_available() and torch.backends.mps.is_built()
def is_ipex_available():
"Checks if ipex is installed."
def get_major_and_minor_from_version(full_version):
return str(version.parse(full_version).major) + "." + str(version.parse(full_version).minor)
_torch_version = importlib.metadata.version("torch")
if importlib.util.find_spec("intel_extension_for_pytorch") is None:
return False
_ipex_version = "N/A"
try:
_ipex_version = importlib.metadata.version("intel_extension_for_pytorch")
except importlib.metadata.PackageNotFoundError:
return False
torch_major_and_minor = get_major_and_minor_from_version(_torch_version)
ipex_major_and_minor = get_major_and_minor_from_version(_ipex_version)
if torch_major_and_minor != ipex_major_and_minor:
warnings.warn(
f"Intel Extension for PyTorch {ipex_major_and_minor} needs to work with PyTorch {ipex_major_and_minor}.*,"
f" but PyTorch {_torch_version} is found. Please switch to the matching version and run again."
)
return False
return True
@lru_cache
def is_mlu_available(check_device=False):
"""
Checks if `mlu` is available via an `cndev-based` check which won't trigger the drivers and leave mlu
uninitialized.
"""
if importlib.util.find_spec("torch_mlu") is None:
return False
import torch_mlu # noqa: F401
with patch_environment(PYTORCH_CNDEV_BASED_MLU_CHECK="1"):
available = torch.mlu.is_available()
return available
@lru_cache
def is_musa_available(check_device=False):
"Checks if `torch_musa` is installed and potentially if a MUSA is in the environment"
if importlib.util.find_spec("torch_musa") is None:
return False
import torch_musa # noqa: F401
if check_device:
try:
# Will raise a RuntimeError if no MUSA is found
_ = torch.musa.device_count()
return torch.musa.is_available()
except RuntimeError:
return False
return hasattr(torch, "musa") and torch.musa.is_available()
@lru_cache
def is_npu_available(check_device=False):
"Checks if `torch_npu` is installed and potentially if a NPU is in the environment"
if importlib.util.find_spec("torch_npu") is None:
return False
import torch_npu # noqa: F401
if check_device:
try:
# Will raise a RuntimeError if no NPU is found
_ = torch.npu.device_count()
return torch.npu.is_available()
except RuntimeError:
return False
return hasattr(torch, "npu") and torch.npu.is_available()
@lru_cache
def is_sdaa_available(check_device=False):
"Checks if `torch_sdaa` is installed and potentially if a SDAA is in the environment"
if importlib.util.find_spec("torch_sdaa") is None:
return False
import torch_sdaa # noqa: F401
if check_device:
try:
# Will raise a RuntimeError if no NPU is found
_ = torch.sdaa.device_count()
return torch.sdaa.is_available()
except RuntimeError:
return False
return hasattr(torch, "sdaa") and torch.sdaa.is_available()
@lru_cache
def is_hpu_available(init_hccl=False):
"Checks if `torch.hpu` is installed and potentially if a HPU is in the environment"
if (
importlib.util.find_spec("habana_frameworks") is None
or importlib.util.find_spec("habana_frameworks.torch") is None
):
return False
import habana_frameworks.torch # noqa: F401
if init_hccl:
import habana_frameworks.torch.distributed.hccl as hccl # noqa: F401
return hasattr(torch, "hpu") and torch.hpu.is_available()
def is_habana_gaudi1():
if is_hpu_available():
import habana_frameworks.torch.utils.experimental as htexp # noqa: F401
if htexp._get_device_type() == htexp.synDeviceType.synDeviceGaudi:
return True
return False
@lru_cache
def is_xpu_available(check_device=False):
"""
Checks if XPU acceleration is available either via `intel_extension_for_pytorch` or via stock PyTorch (>=2.4) and
potentially if a XPU is in the environment
"""
if is_ipex_available():
import intel_extension_for_pytorch # noqa: F401
else:
if is_torch_version("<=", "2.3"):
return False
if check_device:
try:
# Will raise a RuntimeError if no XPU is found
_ = torch.xpu.device_count()
return torch.xpu.is_available()
except RuntimeError:
return False
return hasattr(torch, "xpu") and torch.xpu.is_available()
def is_dvclive_available():
return _is_package_available("dvclive")
def is_torchdata_available():
return _is_package_available("torchdata")
# TODO: Remove this function once stateful_dataloader is a stable feature in torchdata.
def is_torchdata_stateful_dataloader_available():
package_exists = _is_package_available("torchdata")
if package_exists:
torchdata_version = version.parse(importlib.metadata.version("torchdata"))
return compare_versions(torchdata_version, ">=", "0.8.0")
return False
def torchao_required(func):
"""
A decorator that ensures the decorated function is only called when torchao is available.
"""
@wraps(func)
def wrapper(*args, **kwargs):
if not is_torchao_available():
raise ImportError(
"`torchao` is not available, please install it before calling this function via `pip install torchao`."
)
return func(*args, **kwargs)
return wrapper
# TODO: Rework this into `utils.deepspeed` and migrate the "core" chunks into `accelerate.deepspeed`
def deepspeed_required(func):
"""
A decorator that ensures the decorated function is only called when deepspeed is enabled.
"""
@wraps(func)
def wrapper(*args, **kwargs):
from accelerate.state import AcceleratorState
from accelerate.utils.dataclasses import DistributedType
if AcceleratorState._shared_state != {} and AcceleratorState().distributed_type != DistributedType.DEEPSPEED:
raise ValueError(
"DeepSpeed is not enabled, please make sure that an `Accelerator` is configured for `deepspeed` "
"before calling this function."
)
return func(*args, **kwargs)
return wrapper
def is_weights_only_available():
# Weights only with allowlist was added in 2.4.0
# ref: https://github.com/pytorch/pytorch/pull/124331
return is_torch_version(">=", "2.4.0")
def is_numpy_available(min_version="1.25.0"):
numpy_version = parse(importlib.metadata.version("numpy"))
return compare_versions(numpy_version, ">=", min_version)