|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
import functools |
|
import os |
|
import shutil |
|
import warnings |
|
from collections import defaultdict |
|
from contextlib import nullcontext |
|
from pathlib import Path |
|
from typing import Callable |
|
|
|
import torch |
|
|
|
from ..logging import get_logger |
|
from .constants import FSDP_MODEL_NAME, OPTIMIZER_NAME, SAFE_WEIGHTS_NAME, WEIGHTS_NAME |
|
from .dataclasses import get_module_class_from_name |
|
from .modeling import get_non_persistent_buffers, is_peft_model |
|
from .other import get_module_children_bottom_up, is_compiled_module, save |
|
from .versions import is_torch_version |
|
|
|
|
|
logger = get_logger(__name__) |
|
|
|
|
|
def enable_fsdp_ram_efficient_loading(): |
|
""" |
|
Enables RAM efficient loading of Hugging Face models for FSDP in the environment. |
|
""" |
|
|
|
if "ACCELERATE_USE_FSDP" not in os.environ: |
|
os.environ["ACCELERATE_USE_FSDP"] = "True" |
|
os.environ["FSDP_CPU_RAM_EFFICIENT_LOADING"] = "True" |
|
|
|
|
|
def disable_fsdp_ram_efficient_loading(): |
|
""" |
|
Disables RAM efficient loading of Hugging Face models for FSDP in the environment. |
|
""" |
|
os.environ["FSDP_CPU_RAM_EFFICIENT_LOADING"] = "False" |
|
|
|
|
|
def _get_model_state_dict(model, adapter_only=False, sd_options=None): |
|
if adapter_only and is_peft_model(model): |
|
from peft import get_peft_model_state_dict |
|
|
|
return get_peft_model_state_dict(model, adapter_name=model.active_adapter) |
|
|
|
|
|
if sd_options is not None: |
|
from torch.distributed.checkpoint.state_dict import get_model_state_dict |
|
|
|
return get_model_state_dict(model, options=sd_options) |
|
else: |
|
return model.state_dict() |
|
|
|
|
|
def _set_model_state_dict(model, state_dict, adapter_only=False, sd_options=None): |
|
if adapter_only and is_peft_model(model): |
|
from peft import set_peft_model_state_dict |
|
|
|
return set_peft_model_state_dict(model, state_dict, adapter_name=model.active_adapter) |
|
|
|
|
|
if sd_options is not None: |
|
from torch.distributed.checkpoint.state_dict import set_model_state_dict |
|
|
|
return set_model_state_dict(model, state_dict, options=sd_options) |
|
else: |
|
return model.load_state_dict(state_dict) |
|
|
|
|
|
def _prepare_sd_options(fsdp_plugin): |
|
sd_options = None |
|
|
|
|
|
if fsdp_plugin.fsdp_version == 2: |
|
from torch.distributed.checkpoint.state_dict import StateDictOptions |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType |
|
|
|
sd_options = StateDictOptions( |
|
full_state_dict=fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT, |
|
cpu_offload=getattr(fsdp_plugin.state_dict_config, "offload_to_cpu", False), |
|
broadcast_from_rank0=getattr(fsdp_plugin.state_dict_config, "rank0_only", False), |
|
) |
|
|
|
return sd_options |
|
|
|
|
|
def save_fsdp_model(fsdp_plugin, accelerator, model, output_dir, model_index=0, adapter_only=False): |
|
|
|
import torch.distributed.checkpoint as dist_cp |
|
from torch.distributed.checkpoint.default_planner import DefaultSavePlanner |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType |
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: |
|
|
|
|
|
is_multi_process = accelerator.num_processes > 1 |
|
fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process |
|
fsdp_plugin.state_dict_config.rank0_only = is_multi_process |
|
|
|
ctx = ( |
|
FSDP.state_dict_type( |
|
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config |
|
) |
|
if fsdp_plugin.fsdp_version == 1 |
|
else nullcontext() |
|
) |
|
sd_options = _prepare_sd_options(fsdp_plugin) |
|
|
|
with ctx: |
|
state_dict = _get_model_state_dict(model, adapter_only=adapter_only, sd_options=sd_options) |
|
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: |
|
weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin" |
|
output_model_file = os.path.join(output_dir, weights_name) |
|
if accelerator.process_index == 0: |
|
logger.info(f"Saving model to {output_model_file}") |
|
torch.save(state_dict, output_model_file) |
|
logger.info(f"Model saved to {output_model_file}") |
|
|
|
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: |
|
weights_name = ( |
|
f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin" |
|
if model_index == 0 |
|
else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" |
|
) |
|
output_model_file = os.path.join(output_dir, weights_name) |
|
logger.info(f"Saving model to {output_model_file}") |
|
torch.save(state_dict, output_model_file) |
|
logger.info(f"Model saved to {output_model_file}") |
|
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: |
|
ckpt_dir = os.path.join(output_dir, f"{FSDP_MODEL_NAME}_{model_index}") |
|
os.makedirs(ckpt_dir, exist_ok=True) |
|
logger.info(f"Saving model to {ckpt_dir}") |
|
state_dict = {"model": state_dict} |
|
|
|
dist_cp.save( |
|
state_dict=state_dict, |
|
storage_writer=dist_cp.FileSystemWriter(ckpt_dir), |
|
planner=DefaultSavePlanner(), |
|
) |
|
logger.info(f"Model saved to {ckpt_dir}") |
|
|
|
|
|
def load_fsdp_model(fsdp_plugin, accelerator, model, input_dir, model_index=0, adapter_only=False): |
|
|
|
import torch.distributed.checkpoint as dist_cp |
|
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType |
|
|
|
accelerator.wait_for_everyone() |
|
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: |
|
|
|
|
|
is_multi_process = accelerator.num_processes > 1 |
|
fsdp_plugin.state_dict_config.offload_to_cpu = is_multi_process |
|
fsdp_plugin.state_dict_config.rank0_only = is_multi_process |
|
|
|
ctx = ( |
|
FSDP.state_dict_type( |
|
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config |
|
) |
|
if fsdp_plugin.fsdp_version == 1 |
|
else nullcontext() |
|
) |
|
sd_options = _prepare_sd_options(fsdp_plugin) |
|
|
|
with ctx: |
|
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: |
|
if type(model) is not FSDP and accelerator.process_index != 0: |
|
if not fsdp_plugin.sync_module_states and fsdp_plugin.fsdp_version == 1: |
|
raise ValueError( |
|
"Set the `sync_module_states` flag to `True` so that model states are synced across processes when " |
|
"initializing FSDP object" |
|
) |
|
return |
|
weights_name = f"{FSDP_MODEL_NAME}.bin" if model_index == 0 else f"{FSDP_MODEL_NAME}_{model_index}.bin" |
|
input_model_file = os.path.join(input_dir, weights_name) |
|
logger.info(f"Loading model from {input_model_file}") |
|
state_dict = torch.load(input_model_file, weights_only=True) |
|
logger.info(f"Model loaded from {input_model_file}") |
|
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: |
|
weights_name = ( |
|
f"{FSDP_MODEL_NAME}_rank{accelerator.process_index}.bin" |
|
if model_index == 0 |
|
else f"{FSDP_MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin" |
|
) |
|
input_model_file = os.path.join(input_dir, weights_name) |
|
logger.info(f"Loading model from {input_model_file}") |
|
state_dict = torch.load(input_model_file, weights_only=True) |
|
logger.info(f"Model loaded from {input_model_file}") |
|
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: |
|
ckpt_dir = ( |
|
os.path.join(input_dir, f"{FSDP_MODEL_NAME}_{model_index}") |
|
if f"{FSDP_MODEL_NAME}" not in input_dir |
|
else input_dir |
|
) |
|
logger.info(f"Loading model from {ckpt_dir}") |
|
state_dict = {"model": _get_model_state_dict(model, adapter_only=adapter_only, sd_options=sd_options)} |
|
dist_cp.load( |
|
state_dict=state_dict, |
|
storage_reader=dist_cp.FileSystemReader(ckpt_dir), |
|
planner=DefaultLoadPlanner(), |
|
) |
|
state_dict = state_dict["model"] |
|
logger.info(f"Model loaded from {ckpt_dir}") |
|
|
|
load_result = _set_model_state_dict(model, state_dict, adapter_only=adapter_only, sd_options=sd_options) |
|
return load_result |
|
|
|
|
|
def save_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, output_dir, optimizer_index=0): |
|
|
|
import torch.distributed.checkpoint as dist_cp |
|
from torch.distributed.checkpoint.default_planner import DefaultSavePlanner |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType |
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
ctx = ( |
|
FSDP.state_dict_type( |
|
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config |
|
) |
|
if fsdp_plugin.fsdp_version == 1 |
|
else nullcontext() |
|
) |
|
|
|
sd_options = _prepare_sd_options(fsdp_plugin) |
|
|
|
with ctx: |
|
if fsdp_plugin.fsdp_version == 2: |
|
from torch.distributed.checkpoint.state_dict import get_optimizer_state_dict |
|
|
|
optim_state = get_optimizer_state_dict(model, optimizer, options=sd_options) |
|
else: |
|
optim_state = FSDP.optim_state_dict(model, optimizer) |
|
|
|
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: |
|
if accelerator.process_index == 0: |
|
optim_state_name = ( |
|
f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" |
|
) |
|
output_optimizer_file = os.path.join(output_dir, optim_state_name) |
|
logger.info(f"Saving Optimizer state to {output_optimizer_file}") |
|
torch.save(optim_state, output_optimizer_file) |
|
logger.info(f"Optimizer state saved in {output_optimizer_file}") |
|
else: |
|
ckpt_dir = os.path.join(output_dir, f"{OPTIMIZER_NAME}_{optimizer_index}") |
|
os.makedirs(ckpt_dir, exist_ok=True) |
|
logger.info(f"Saving Optimizer state to {ckpt_dir}") |
|
dist_cp.save( |
|
state_dict={"optimizer": optim_state}, |
|
storage_writer=dist_cp.FileSystemWriter(ckpt_dir), |
|
planner=DefaultSavePlanner(), |
|
) |
|
logger.info(f"Optimizer state saved in {ckpt_dir}") |
|
|
|
|
|
def load_fsdp_optimizer(fsdp_plugin, accelerator, optimizer, model, input_dir, optimizer_index=0, adapter_only=False): |
|
|
|
import torch.distributed.checkpoint as dist_cp |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP |
|
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType |
|
|
|
accelerator.wait_for_everyone() |
|
ctx = ( |
|
FSDP.state_dict_type( |
|
model, fsdp_plugin.state_dict_type, fsdp_plugin.state_dict_config, fsdp_plugin.optim_state_dict_config |
|
) |
|
if fsdp_plugin.fsdp_version == 1 |
|
else nullcontext() |
|
) |
|
sd_options = _prepare_sd_options(fsdp_plugin) |
|
with ctx: |
|
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: |
|
optim_state = None |
|
if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: |
|
optimizer_name = ( |
|
f"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else f"{OPTIMIZER_NAME}_{optimizer_index}.bin" |
|
) |
|
input_optimizer_file = os.path.join(input_dir, optimizer_name) |
|
logger.info(f"Loading Optimizer state from {input_optimizer_file}") |
|
optim_state = torch.load(input_optimizer_file, weights_only=True) |
|
logger.info(f"Optimizer state loaded from {input_optimizer_file}") |
|
else: |
|
ckpt_dir = ( |
|
os.path.join(input_dir, f"{OPTIMIZER_NAME}_{optimizer_index}") |
|
if f"{OPTIMIZER_NAME}" not in input_dir |
|
else input_dir |
|
) |
|
logger.info(f"Loading Optimizer from {ckpt_dir}") |
|
optim_state = {"optimizer": optimizer.state_dict()} |
|
dist_cp.load( |
|
optim_state, |
|
checkpoint_id=ckpt_dir, |
|
storage_reader=dist_cp.FileSystemReader(ckpt_dir), |
|
) |
|
optim_state = optim_state["optimizer"] |
|
logger.info(f"Optimizer loaded from {ckpt_dir}") |
|
|
|
if fsdp_plugin.fsdp_version == 1: |
|
flattened_osd = FSDP.optim_state_dict_to_load(model=model, optim=optimizer, optim_state_dict=optim_state) |
|
optimizer.load_state_dict(flattened_osd) |
|
else: |
|
from torch.distributed.checkpoint.state_dict import set_optimizer_state_dict |
|
|
|
set_optimizer_state_dict(model, optimizer, optim_state, options=sd_options) |
|
|
|
|
|
def _distributed_checkpoint_to_merged_weights(checkpoint_dir: str, save_path: str, safe_serialization: bool = True): |
|
""" |
|
Passthrough to `torch.distributed.checkpoint.format_utils.dcp_to_torch_save` |
|
|
|
Will save under `save_path` as either `model.safetensors` or `pytorch_model.bin`. |
|
""" |
|
|
|
import torch.distributed.checkpoint as dist_cp |
|
import torch.distributed.checkpoint.format_utils as dist_cp_format_utils |
|
|
|
state_dict = {} |
|
save_path = Path(save_path) |
|
save_path.mkdir(exist_ok=True) |
|
dist_cp_format_utils._load_state_dict( |
|
state_dict, |
|
storage_reader=dist_cp.FileSystemReader(checkpoint_dir), |
|
planner=dist_cp_format_utils._EmptyStateDictLoadPlanner(), |
|
no_dist=True, |
|
) |
|
save_path = save_path / SAFE_WEIGHTS_NAME if safe_serialization else save_path / WEIGHTS_NAME |
|
|
|
|
|
if len(state_dict.keys()) == 1: |
|
state_dict = state_dict[list(state_dict)[0]] |
|
save(state_dict, save_path, safe_serialization=safe_serialization) |
|
return save_path |
|
|
|
|
|
def merge_fsdp_weights( |
|
checkpoint_dir: str, output_path: str, safe_serialization: bool = True, remove_checkpoint_dir: bool = False |
|
): |
|
""" |
|
Merge the weights from sharded FSDP model checkpoints into a single combined checkpoint. Should be used if |
|
`SHARDED_STATE_DICT` was used for the model. Weights will be saved to `{output_path}/model.safetensors` if |
|
`safe_serialization` else `pytorch_model.bin`. |
|
|
|
Note: this is a CPU-bound process. |
|
|
|
Args: |
|
checkpoint_dir (`str`): |
|
The directory containing the FSDP checkpoints (can be either the model or optimizer). |
|
output_path (`str`): |
|
The path to save the merged checkpoint. |
|
safe_serialization (`bool`, *optional*, defaults to `True`): |
|
Whether to save the merged weights with safetensors (recommended). |
|
remove_checkpoint_dir (`bool`, *optional*, defaults to `False`): |
|
Whether to remove the checkpoint directory after merging. |
|
""" |
|
checkpoint_dir = Path(checkpoint_dir) |
|
from accelerate.state import PartialState |
|
|
|
if not is_torch_version(">=", "2.3.0"): |
|
raise ValueError("`merge_fsdp_weights` requires PyTorch >= 2.3.0`") |
|
|
|
|
|
if not checkpoint_dir.exists(): |
|
model_path_exists = (checkpoint_dir / "pytorch_model_fsdp_0").exists() |
|
optimizer_path_exists = (checkpoint_dir / "optimizer_0").exists() |
|
err = f"Tried to load from {checkpoint_dir} but couldn't find a valid metadata file." |
|
if model_path_exists and optimizer_path_exists: |
|
err += " However, potential model and optimizer checkpoint directories exist." |
|
err += f"Please pass in either {checkpoint_dir}/pytorch_model_fsdp_0 or {checkpoint_dir}/optimizer_0" |
|
err += "instead." |
|
elif model_path_exists: |
|
err += " However, a potential model checkpoint directory exists." |
|
err += f"Please try passing in {checkpoint_dir}/pytorch_model_fsdp_0 instead." |
|
elif optimizer_path_exists: |
|
err += " However, a potential optimizer checkpoint directory exists." |
|
err += f"Please try passing in {checkpoint_dir}/optimizer_0 instead." |
|
raise ValueError(err) |
|
|
|
|
|
state = PartialState() |
|
if state.is_main_process: |
|
logger.info(f"Merging FSDP weights from {checkpoint_dir}") |
|
save_path = _distributed_checkpoint_to_merged_weights(checkpoint_dir, output_path, safe_serialization) |
|
logger.info(f"Successfully merged FSDP weights and saved to {save_path}") |
|
if remove_checkpoint_dir: |
|
logger.info(f"Removing old checkpoint directory {checkpoint_dir}") |
|
shutil.rmtree(checkpoint_dir) |
|
state.wait_for_everyone() |
|
|
|
|
|
def ensure_weights_retied(param_init_fn, model: torch.nn.Module, device: torch.device): |
|
_tied_names = getattr(model, "_tied_weights_keys", None) |
|
if not _tied_names: |
|
|
|
return param_init_fn |
|
|
|
|
|
|
|
_tied_params = {} |
|
for name in _tied_names: |
|
name = name.split(".") |
|
name, param_name = ".".join(name[:-1]), name[-1] |
|
mod = model.get_submodule(name) |
|
param = getattr(mod, param_name) |
|
|
|
_tied_params[id(param)] = None |
|
|
|
|
|
def param_init_fn_tied_param(module: torch.nn.Module): |
|
|
|
|
|
params_to_tie = defaultdict(list) |
|
for n, param in module.named_parameters(recurse=False): |
|
if id(param) in _tied_params: |
|
params_to_tie[id(param)].append(n) |
|
|
|
|
|
|
|
module = param_init_fn(module) |
|
|
|
|
|
for id_key, _param_names in params_to_tie.items(): |
|
for param_name in _param_names: |
|
param = _tied_params[id_key] |
|
if param is None: |
|
|
|
|
|
_tied_params[id_key] = getattr(module, param_name) |
|
else: |
|
setattr(module, param_name, param) |
|
|
|
return module |
|
|
|
return param_init_fn_tied_param |
|
|
|
|
|
def fsdp2_load_full_state_dict(accelerator, model: torch.nn.Module, full_sd: dict): |
|
""" |
|
Loads the full state dict (could be only on rank 0) into the sharded model. This is done by broadcasting the |
|
parameters from rank 0 to all other ranks. This function modifies the model in-place. |
|
|
|
Args: |
|
accelerator (`Accelerator`): The accelerator instance |
|
model (`torch.nn.Module`): |
|
The model to load the state dict into, expected to be on meta device or a VRAM spike can occur |
|
full_sd (`dict`): The full state dict to load, can only be on rank 0 |
|
""" |
|
import torch.distributed as dist |
|
from torch.distributed.tensor import distribute_tensor |
|
|
|
|
|
meta_sharded_sd = model.state_dict() |
|
sharded_sd = {} |
|
|
|
|
|
def _infer_parameter_dtype(model, param_name, empty_param): |
|
try: |
|
old_param = model.get_parameter_or_buffer(param_name) |
|
except AttributeError: |
|
|
|
base_param_name, local_param_name = param_name.rsplit(".", 1) |
|
submodule = model.get_submodule(base_param_name) |
|
old_param = getattr(submodule, local_param_name) |
|
|
|
is_torch_e4m3fn_available = hasattr(torch, "float8_e4m3fn") |
|
casting_dtype = None |
|
is_param_float8_e4m3fn = is_torch_e4m3fn_available and empty_param.dtype == torch.float8_e4m3fn |
|
|
|
if empty_param.dtype.is_floating_point and not is_param_float8_e4m3fn: |
|
casting_dtype = old_param.dtype |
|
|
|
return old_param is not None and old_param.is_contiguous(), casting_dtype |
|
|
|
def _cast_and_contiguous(tensor, to_contiguous, dtype): |
|
if dtype is not None: |
|
tensor = tensor.to(dtype=dtype) |
|
if to_contiguous: |
|
tensor = tensor.contiguous() |
|
return tensor |
|
|
|
if accelerator.is_main_process: |
|
for (param_name, full_param), sharded_param in zip(full_sd.items(), meta_sharded_sd.values()): |
|
device_mesh = sharded_param.device_mesh |
|
full_param = full_param.detach().to(device_mesh.device_type) |
|
dist.broadcast(full_param, src=0, group=device_mesh.get_group()) |
|
sharded_tensor = distribute_tensor(full_param, device_mesh, sharded_param.placements) |
|
to_contiguous, casting_dtype = _infer_parameter_dtype( |
|
model, |
|
param_name, |
|
full_param, |
|
) |
|
sharded_tensor = _cast_and_contiguous(sharded_tensor, to_contiguous, casting_dtype) |
|
sharded_sd[param_name] = sharded_tensor |
|
|
|
else: |
|
for param_name, sharded_param in meta_sharded_sd.items(): |
|
device_mesh = sharded_param.device_mesh |
|
full_tensor = torch.empty(sharded_param.size(), device=device_mesh.device_type, dtype=sharded_param.dtype) |
|
dist.broadcast(full_tensor, src=0, group=device_mesh.get_group()) |
|
sharded_tensor = distribute_tensor(full_tensor, device_mesh, sharded_param.placements) |
|
to_contiguous, casting_dtype = _infer_parameter_dtype( |
|
model, |
|
param_name, |
|
full_tensor, |
|
) |
|
sharded_tensor = _cast_and_contiguous(sharded_tensor, to_contiguous, casting_dtype) |
|
sharded_sd[param_name] = sharded_tensor |
|
|
|
|
|
model.load_state_dict(sharded_sd, assign=True) |
|
return model |
|
|
|
|
|
def fsdp2_switch_optimizer_parameters(optimizer: torch.optim.Optimizer, mapping: dict): |
|
""" |
|
Switches the parameters of the optimizer to new ones (sharded parameters in usual case). This function modifies the |
|
optimizer in-place. |
|
|
|
Args: |
|
optimizer (`torch.optim.Optimizer`): Optimizer instance which contains the original model parameters |
|
mapping (`dict`): Mapping from the original parameter (specified by `data_ptr`) to the sharded parameter |
|
|
|
Raises: |
|
KeyError: |
|
If a parameter in the optimizer couldn't be switched to its sharded version. This should never happen and |
|
indicates a bug. If we kept the original params instead of raising, the training wouldn't be numerically |
|
correct and weights wouldn't get updated. |
|
""" |
|
try: |
|
for param_group in optimizer.param_groups: |
|
param_group["params"] = [mapping[p.data_ptr] for p in param_group["params"]] |
|
except KeyError: |
|
|
|
|
|
raise KeyError( |
|
"A parameter in the optimizer couldn't be switched to its sharded version. This breaks the training. Please raise an issue on GitHub." |
|
) |
|
|
|
|
|
def fsdp2_apply_ac(accelerator, model: torch.nn.Module): |
|
""" |
|
Applies the activation checkpointing to the model. |
|
|
|
Args: |
|
accelerator (`Accelerator`): The accelerator instance |
|
model (`torch.nn.Module`): The model to apply the activation checkpointing to |
|
|
|
Returns: |
|
`torch.nn.Module`: The model with the activation checkpointing applied |
|
""" |
|
|
|
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import ( |
|
checkpoint_wrapper, |
|
) |
|
|
|
auto_wrap_policy_func = fsdp2_prepare_auto_wrap_policy(accelerator.state.fsdp_plugin, model) |
|
|
|
for layer_name, layer in get_module_children_bottom_up(model, return_fqns=True)[:-1]: |
|
if len(layer_name.split(".")) > 1: |
|
parent_name, child_name = layer_name.rsplit(".", 1) |
|
else: |
|
parent_name = None |
|
child_name = layer_name |
|
|
|
parent_module = model.get_submodule(parent_name) if parent_name else model |
|
if auto_wrap_policy_func(parent_module): |
|
layer = checkpoint_wrapper(layer, preserve_rng_state=False) |
|
parent_module.register_module(child_name, layer) |
|
|
|
return model |
|
|
|
|
|
def fsdp2_prepare_model(accelerator, model: torch.nn.Module) -> torch.nn.Module: |
|
"""Prepares the model for FSDP2 in-place. Also returns the model to avoid misuse of the original model. |
|
|
|
Args: |
|
accelerator (`Accelerator`): The accelerator instance |
|
model (`torch.nn.Module`): The model to prepare |
|
|
|
Returns: |
|
`torch.nn.Module`: Prepared model |
|
""" |
|
from torch.distributed.fsdp import FSDPModule, MixedPrecisionPolicy, fully_shard |
|
|
|
is_type_fsdp = isinstance(model, FSDPModule) or ( |
|
is_compiled_module(model) and isinstance(model._orig_mod, FSDPModule) |
|
) |
|
if is_type_fsdp: |
|
return model |
|
|
|
fsdp2_plugin = accelerator.state.fsdp_plugin |
|
|
|
fsdp2_plugin.set_auto_wrap_policy(model) |
|
|
|
original_sd = model.state_dict() |
|
|
|
fsdp2_kwargs = { |
|
"reshard_after_forward": fsdp2_plugin.reshard_after_forward, |
|
"offload_policy": fsdp2_plugin.cpu_offload, |
|
|
|
"mp_policy": fsdp2_plugin.mixed_precision_policy or MixedPrecisionPolicy(), |
|
} |
|
|
|
model_has_params4bit = False |
|
for name, param in model.named_parameters(): |
|
|
|
|
|
|
|
if param.__class__.__name__ == "Params4bit": |
|
model_has_params4bit = True |
|
break |
|
|
|
if fsdp2_plugin.cpu_ram_efficient_loading and not model_has_params4bit: |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
non_persistent_buffer_fqns = get_non_persistent_buffers(model, recurse=True, fqns=True) |
|
original_non_persistent_buffers = copy.deepcopy( |
|
{k: v for k, v in model.named_buffers() if k in non_persistent_buffer_fqns} |
|
) |
|
|
|
model = model.to(torch.device("meta")) |
|
|
|
|
|
if hasattr(model, "tie_weights"): |
|
model.tie_weights() |
|
|
|
auto_wrap_policy_func = fsdp2_prepare_auto_wrap_policy(fsdp2_plugin, model) |
|
if auto_wrap_policy_func is not None: |
|
|
|
for module in get_module_children_bottom_up(model)[:-1]: |
|
if auto_wrap_policy_func(module) and not isinstance(module, FSDPModule): |
|
fully_shard(module, **fsdp2_kwargs) |
|
|
|
if not isinstance(model, FSDPModule): |
|
fully_shard(model, **fsdp2_kwargs) |
|
|
|
if fsdp2_plugin.cpu_ram_efficient_loading: |
|
|
|
|
|
fsdp2_load_full_state_dict(accelerator, model, original_sd) |
|
|
|
if fsdp2_plugin.cpu_ram_efficient_loading and not model_has_params4bit: |
|
|
|
for fqn, buffer_tensor in original_non_persistent_buffers.items(): |
|
buffer_tensor = buffer_tensor.to(accelerator.device) |
|
|
|
if "." in fqn: |
|
parent_fqn, local_buffer_name = fqn.rsplit(".", 1) |
|
parent_module = model.get_submodule(parent_fqn) |
|
else: |
|
local_buffer_name = fqn |
|
parent_module = model |
|
|
|
parent_module.register_buffer(local_buffer_name, buffer_tensor, persistent=False) |
|
|
|
|
|
|
|
|
|
|
|
if hasattr(model, "tie_weights"): |
|
model.tie_weights() |
|
|
|
|
|
|
|
model_dtype = getattr(model, "dtype", None) |
|
if accelerator.mixed_precision != "no" and (model_dtype is None or model_dtype != torch.float32): |
|
|
|
|
|
model = model.to(torch.float32) |
|
if accelerator.is_main_process: |
|
|
|
warnings.warn( |
|
"FSDP upcast of low precision parameters to fp32 (since mixed_precision != 'no') may affect the precision of model checkpoints." |
|
) |
|
return model |
|
|
|
|
|
def fsdp2_prepare_auto_wrap_policy(fsdp2_plugin, model: torch.nn.Module) -> Callable[[torch.nn.Module], bool]: |
|
"""Prepares the auto wrap policy based on its type, done to mimic the behaviour of FSDP1 auto wrap policy. |
|
|
|
Args: |
|
fsdp2_plugin (`FullyShardedDataParallelPlugin`): |
|
Instance of `FullyShardedDataParallelPlugin` containing the configuration options |
|
auto_wrap_policy_type (`str`): |
|
Either `transformer` or `size` |
|
model (`torch.nn.Module`): |
|
The model to wrap |
|
|
|
Returns: |
|
`Callable[[torch.nn.Module], bool]`: |
|
The auto wrap policy function to be applied to the model |
|
""" |
|
from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy, transformer_auto_wrap_policy |
|
|
|
fn = fsdp2_plugin.auto_wrap_policy |
|
|
|
if isinstance(fn, functools.partial): |
|
fn = fn.func |
|
|
|
if fn is transformer_auto_wrap_policy: |
|
no_split_modules = getattr(model, "_no_split_modules", None) |
|
if no_split_modules is None: |
|
no_split_modules = [] |
|
transformer_cls_names_to_wrap = list(no_split_modules) |
|
if fsdp2_plugin.transformer_cls_names_to_wrap is not None: |
|
transformer_cls_names_to_wrap = fsdp2_plugin.transformer_cls_names_to_wrap |
|
transformer_cls_to_wrap = set() |
|
|
|
for layer_class in transformer_cls_names_to_wrap: |
|
transformer_cls = get_module_class_from_name(model, layer_class) |
|
if transformer_cls is None: |
|
raise ValueError(f"Could not find the transformer layer class {layer_class} in the model.") |
|
transformer_cls_to_wrap.add(transformer_cls) |
|
|
|
def policy(module: torch.nn.Module) -> bool: |
|
if fsdp2_plugin.transformer_cls_names_to_wrap is None: |
|
return False |
|
return isinstance(module, tuple(transformer_cls_to_wrap)) |
|
|
|
elif fn is size_based_auto_wrap_policy: |
|
|
|
def policy(module: torch.nn.Module) -> bool: |
|
module_num_params = sum(p.numel() for p in module.parameters()) |
|
return module_num_params > fsdp2_plugin.min_num_params |
|
else: |
|
return None |
|
|
|
return policy |
|
|
|
|
|
def get_fsdp2_grad_scaler(**kwargs): |
|
""" |
|
Returns a `GradScaler` for FSDP2, as the current implementation of `get_grad_scaler` doesn't accept other args. We |
|
need this as current `get_grad_scaler` accepts only `distributed_type` as arg, which doesn't differentiate between |
|
FSDP1 and FSDP2 |
|
""" |
|
from torch.amp.grad_scaler import GradScaler |
|
|
|
return GradScaler(**kwargs) |
|
|
|
|
|
def fsdp2_canonicalize_names(named_params: dict) -> dict: |
|
"""Removes parameter name modifiers in order to map them back to their original names. |
|
|
|
See huggingface/accelerate#3554 for more context. |
|
|
|
Args: |
|
named_params (`dict`): The named parameters dictionary to canonicalize. |
|
|
|
Returns: |
|
`dict`: The canonicalized named parameters dictionary |
|
""" |
|
named_params = {k.replace("._checkpoint_wrapped_module", ""): v for k, v in named_params.items()} |
|
named_params = { |
|
k.replace("_orig_mod.", "") if k.startswith("_orig_mod.") else k: v for k, v in named_params.items() |
|
} |
|
named_params = {k.replace("._orig_mod", ""): v for k, v in named_params.items()} |
|
return named_params |
|
|