jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Needed utilities for torchao FP8 training.
"""
from functools import partial
from typing import TYPE_CHECKING, Callable, Optional
import torch
from .imports import is_torchao_available, torchao_required
if TYPE_CHECKING:
if is_torchao_available():
from torchao.float8.float8_linear import Float8LinearConfig
def find_first_last_linear_layers(model: torch.nn.Module):
"""
Finds the first and last linear layer names in a model.
This is needed during FP8 to avoid issues with instability by keeping the first and last layers unquantized.
Ref: https://x.com/xariusrke/status/1826669142604141052
"""
first_linear, last_linear = None, None
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
if first_linear is None:
first_linear = name
last_linear = name
return first_linear, last_linear
def filter_linear_layers(module, fqn: str, layers_to_filter: list[str]) -> bool:
"""
A function which will check if `module` is:
- a `torch.nn.Linear` layer
- has in_features and out_features divisible by 16
- is not part of `layers_to_filter`
Args:
module (`torch.nn.Module`):
The module to check.
fqn (`str`):
The fully qualified name of the layer.
layers_to_filter (`List[str]`):
The list of layers to filter.
"""
if isinstance(module, torch.nn.Linear):
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
return False
if fqn in layers_to_filter:
return False
return True
def filter_first_and_last_linear_layers(module, fqn: str) -> bool:
"""
A filter function which will filter out all linear layers except the first and last.
<Tip>
For stability reasons, we skip the first and last linear layers Otherwise can lead to the model not training or
converging properly
</Tip>
Args:
module (`torch.nn.Module`):
The module to check.
fqn (`str`):
The fully qualified name of the layer.
"""
first_linear, last_linear = find_first_last_linear_layers(module)
return filter_linear_layers(module, fqn, layers_to_filter=[first_linear, last_linear])
@torchao_required
def has_ao_layers(model: torch.nn.Module):
from torchao.float8.float8_linear import Float8Linear
for name, module in model.named_modules():
if isinstance(module, Float8Linear):
return True
return False
@torchao_required
def convert_model_to_fp8_ao(
model: torch.nn.Module,
config: Optional["Float8LinearConfig"] = None,
module_filter_func: Optional[Callable] = filter_first_and_last_linear_layers,
):
"""
Converts all `nn.Linear` layers in the model (except the first and last) to torchao's `Float8Linear` layer inplace.
Args:
model (`torch.nn.Module`):
The model to convert.
config (`torchao.float8.Float8LinearConfig`, *optional*):
The configuration for the FP8 training. Recommended to utilize
`torchao.float8.recipe_name_to_linear_config` to generate this. In general, the default config should be
sufficient (what is passed when set to `None`).
module_filter_func (`Callable`, *optional*, defaults to `filter_linear_layers`):
Optional function that must take in a module and layer name, and returns a boolean indicating whether the
module should be converted to FP8. Defaults to `filter_linear_layers`. See it for an example.
Example:
```python
from accelerate.utils.ao import convert_model_to_fp8_ao
model = MyModel()
model.to("cuda")
convert_to_float8_training(model)
model.train()
```
"""
from torchao.float8 import convert_to_float8_training
first_linear, last_linear = find_first_last_linear_layers(model)
if module_filter_func is None:
module_filter_func = partial(filter_linear_layers, layers_to_filter=[first_linear, last_linear])
convert_to_float8_training(model, module_filter_fn=module_filter_func, config=config)