jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import asyncio
import inspect
import io
import os
import re
import shutil
import subprocess
import sys
import tempfile
import unittest
from contextlib import contextmanager
from functools import partial
from pathlib import Path
from typing import Union
from unittest import mock
import torch
import accelerate
from ..state import AcceleratorState
from ..utils import (
check_cuda_fp8_capability,
compare_versions,
gather,
is_aim_available,
is_bnb_available,
is_clearml_available,
is_comet_ml_available,
is_cuda_available,
is_datasets_available,
is_deepspeed_available,
is_dvclive_available,
is_fp8_available,
is_fp16_available,
is_habana_gaudi1,
is_hpu_available,
is_import_timer_available,
is_matplotlib_available,
is_mlflow_available,
is_mlu_available,
is_mps_available,
is_musa_available,
is_npu_available,
is_pandas_available,
is_pippy_available,
is_pytest_available,
is_schedulefree_available,
is_sdaa_available,
is_swanlab_available,
is_tensorboard_available,
is_timm_available,
is_torch_version,
is_torch_xla_available,
is_torchao_available,
is_torchdata_stateful_dataloader_available,
is_torchvision_available,
is_transformer_engine_available,
is_transformers_available,
is_triton_available,
is_wandb_available,
is_xpu_available,
str_to_bool,
)
def get_backend():
if is_torch_xla_available():
return "xla", torch.cuda.device_count(), torch.cuda.memory_allocated
elif is_cuda_available():
return "cuda", torch.cuda.device_count(), torch.cuda.memory_allocated
elif is_mps_available(min_version="2.0"):
return "mps", 1, torch.mps.current_allocated_memory
elif is_mps_available():
return "mps", 1, lambda: 0
elif is_mlu_available():
return "mlu", torch.mlu.device_count(), torch.mlu.memory_allocated
elif is_sdaa_available():
return "sdaa", torch.sdaa.device_count(), torch.sdaa.memory_allocated
elif is_musa_available():
return "musa", torch.musa.device_count(), torch.musa.memory_allocated
elif is_npu_available():
return "npu", torch.npu.device_count(), torch.npu.memory_allocated
elif is_xpu_available():
return "xpu", torch.xpu.device_count(), torch.xpu.memory_allocated
elif is_hpu_available():
return "hpu", torch.hpu.device_count(), torch.hpu.memory_allocated
else:
return "cpu", 1, lambda: 0
torch_device, device_count, memory_allocated_func = get_backend()
def get_launch_command(**kwargs) -> list:
"""
Wraps around `kwargs` to help simplify launching from `subprocess`.
Example:
```python
# returns ['accelerate', 'launch', '--num_processes=2', '--device_count=2']
get_launch_command(num_processes=2, device_count=2)
```
"""
command = ["accelerate", "launch"]
for k, v in kwargs.items():
if isinstance(v, bool) and v:
command.append(f"--{k}")
elif v is not None:
command.append(f"--{k}={v}")
return command
DEFAULT_LAUNCH_COMMAND = get_launch_command(num_processes=device_count, monitor_interval=0.1)
def parse_flag_from_env(key, default=False):
try:
value = os.environ[key]
except KeyError:
# KEY isn't set, default to `default`.
_value = default
else:
# KEY is set, convert it to True or False.
try:
_value = str_to_bool(value)
except ValueError:
# More values are supported, but let's keep the message simple.
raise ValueError(f"If set, {key} must be yes or no.")
return _value
_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False)
def skip(test_case):
"Decorator that skips a test unconditionally"
return unittest.skip("Test was skipped")(test_case)
def slow(test_case):
"""
Decorator marking a test as slow. Slow tests are skipped by default. Set the RUN_SLOW environment variable to a
truthy value to run them.
"""
return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case)
def require_cpu(test_case):
"""
Decorator marking a test that must be only ran on the CPU. These tests are skipped when a GPU is available.
"""
return unittest.skipUnless(torch_device == "cpu", "test requires only a CPU")(test_case)
def require_non_cpu(test_case):
"""
Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no
hardware accelerator available.
"""
return unittest.skipUnless(torch_device != "cpu", "test requires a GPU")(test_case)
def require_cuda(test_case):
"""
Decorator marking a test that requires CUDA. These tests are skipped when there are no GPU available or when
TorchXLA is available.
"""
return unittest.skipUnless(is_cuda_available() and not is_torch_xla_available(), "test requires a GPU")(test_case)
def require_cuda_or_hpu(test_case):
"""
Decorator marking a test that requires CUDA or HPU. These tests are skipped when there are no GPU available or when
TorchXLA is available.
"""
return unittest.skipUnless(
(is_cuda_available() and not is_torch_xla_available()) or is_hpu_available(), "test requires a GPU or HPU"
)(test_case)
def require_xpu(test_case):
"""
Decorator marking a test that requires XPU. These tests are skipped when there are no XPU available.
"""
return unittest.skipUnless(is_xpu_available(), "test requires a XPU")(test_case)
def require_cuda_or_xpu(test_case):
"""
Decorator marking a test that requires CUDA or XPU. These tests are skipped when there are no GPU available or when
TorchXLA is available.
"""
cuda_condition = is_cuda_available() and not is_torch_xla_available()
xpu_condition = is_xpu_available()
return unittest.skipUnless(cuda_condition or xpu_condition, "test requires a CUDA GPU or XPU")(test_case)
def require_non_xpu(test_case):
"""
Decorator marking a test that should be skipped for XPU.
"""
return unittest.skipUnless(torch_device != "xpu", "test requires a non-XPU")(test_case)
def require_non_hpu(test_case):
"""
Decorator marking a test that should be skipped for HPU.
"""
return unittest.skipUnless(torch_device != "hpu", "test requires a non-HPU")(test_case)
def require_fp16(test_case):
"""
Decorator marking a test that requires FP16. These tests are skipped when FP16 is not supported.
"""
return unittest.skipUnless(is_fp16_available(), "test requires FP16 support")(test_case)
def require_fp8(test_case):
"""
Decorator marking a test that requires FP8. These tests are skipped when FP8 is not supported.
"""
# is_fp8_available only checks for libraries
# ideally it should check for device capability as well
fp8_is_available = is_fp8_available()
if torch.cuda.is_available() and not check_cuda_fp8_capability():
fp8_is_available = False
if is_hpu_available() and is_habana_gaudi1():
fp8_is_available = False
return unittest.skipUnless(fp8_is_available, "test requires FP8 support")(test_case)
def require_mlu(test_case):
"""
Decorator marking a test that requires MLU. These tests are skipped when there are no MLU available.
"""
return unittest.skipUnless(is_mlu_available(), "test require a MLU")(test_case)
def require_sdaa(test_case):
"""
Decorator marking a test that requires SDAA. These tests are skipped when there are no SDAA available.
"""
return unittest.skipUnless(is_sdaa_available(), "test require a SDAA")(test_case)
def require_musa(test_case):
"""
Decorator marking a test that requires MUSA. These tests are skipped when there are no MUSA available.
"""
return unittest.skipUnless(is_musa_available(), "test require a MUSA")(test_case)
def require_npu(test_case):
"""
Decorator marking a test that requires NPU. These tests are skipped when there are no NPU available.
"""
return unittest.skipUnless(is_npu_available(), "test require a NPU")(test_case)
def require_mps(test_case):
"""
Decorator marking a test that requires MPS backend. These tests are skipped when torch doesn't support `mps`
backend.
"""
return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`")(test_case)
def require_huggingface_suite(test_case):
"""
Decorator marking a test that requires transformers and datasets. These tests are skipped when they are not.
"""
return unittest.skipUnless(
is_transformers_available() and is_datasets_available(),
"test requires the Hugging Face suite",
)(test_case)
def require_transformers(test_case):
"""
Decorator marking a test that requires transformers. These tests are skipped when they are not.
"""
return unittest.skipUnless(is_transformers_available(), "test requires the transformers library")(test_case)
def require_timm(test_case):
"""
Decorator marking a test that requires timm. These tests are skipped when they are not.
"""
return unittest.skipUnless(is_timm_available(), "test requires the timm library")(test_case)
def require_torchvision(test_case):
"""
Decorator marking a test that requires torchvision. These tests are skipped when they are not.
"""
return unittest.skipUnless(is_torchvision_available(), "test requires the torchvision library")(test_case)
def require_triton(test_case):
"""
Decorator marking a test that requires triton. These tests are skipped when they are not.
"""
return unittest.skipUnless(is_triton_available(), "test requires the triton library")(test_case)
def require_schedulefree(test_case):
"""
Decorator marking a test that requires schedulefree. These tests are skipped when they are not.
"""
return unittest.skipUnless(is_schedulefree_available(), "test requires the schedulefree library")(test_case)
def require_bnb(test_case):
"""
Decorator marking a test that requires bitsandbytes. These tests are skipped when they are not.
"""
return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library")(test_case)
def require_tpu(test_case):
"""
Decorator marking a test that requires TPUs. These tests are skipped when there are no TPUs available.
"""
return unittest.skipUnless(is_torch_xla_available(check_is_tpu=True), "test requires TPU")(test_case)
def require_non_torch_xla(test_case):
"""
Decorator marking a test as requiring an environment without TorchXLA. These tests are skipped when TorchXLA is
available.
"""
return unittest.skipUnless(not is_torch_xla_available(), "test requires an env without TorchXLA")(test_case)
def require_single_device(test_case):
"""
Decorator marking a test that requires a single device. These tests are skipped when there is no hardware
accelerator available or number of devices is more than one.
"""
return unittest.skipUnless(
torch_device != "cpu" and device_count == 1, "test requires a single device accelerator"
)(test_case)
def require_single_gpu(test_case):
"""
Decorator marking a test that requires CUDA on a single GPU. These tests are skipped when there are no GPU
available or number of GPUs is more than one.
"""
return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU")(test_case)
def require_single_xpu(test_case):
"""
Decorator marking a test that requires CUDA on a single XPU. These tests are skipped when there are no XPU
available or number of xPUs is more than one.
"""
return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU")(test_case)
def require_multi_device(test_case):
"""
Decorator marking a test that requires a multi-device setup. These tests are skipped on a machine without multiple
devices.
"""
return unittest.skipUnless(device_count > 1, "test requires multiple hardware accelerators")(test_case)
def require_multi_gpu(test_case):
"""
Decorator marking a test that requires a multi-GPU setup. These tests are skipped on a machine without multiple
GPUs.
"""
return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case)
def require_multi_xpu(test_case):
"""
Decorator marking a test that requires a multi-XPU setup. These tests are skipped on a machine without multiple
XPUs.
"""
return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs")(test_case)
def require_multi_gpu_or_xpu(test_case):
"""
Decorator marking a test that requires a multi-GPU setup. These tests are skipped on a machine without multiple
GPUs or XPUs.
"""
return unittest.skipUnless(
(is_cuda_available() or is_xpu_available()) and device_count > 1, "test requires multiple GPUs or XPUs"
)(test_case)
def require_deepspeed(test_case):
"""
Decorator marking a test that requires DeepSpeed installed. These tests are skipped when DeepSpeed isn't installed
"""
return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed")(test_case)
def require_tp(test_case):
"""
Decorator marking a test that requires TP installed. These tests are skipped when TP isn't installed
"""
return unittest.skipUnless(
is_torch_version(">=", "2.3.0") and compare_versions("transformers", ">=", "4.52.0"),
"test requires torch version >= 2.3.0 and transformers version >= 4.52.0",
)(test_case)
def require_torch_min_version(test_case=None, version=None):
"""
Decorator marking that a test requires a particular torch version to be tested. These tests are skipped when an
installed torch version is less than the required one.
"""
if test_case is None:
return partial(require_torch_min_version, version=version)
return unittest.skipUnless(is_torch_version(">=", version), f"test requires torch version >= {version}")(test_case)
def require_tensorboard(test_case):
"""
Decorator marking a test that requires tensorboard installed. These tests are skipped when tensorboard isn't
installed
"""
return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard")(test_case)
def require_wandb(test_case):
"""
Decorator marking a test that requires wandb installed. These tests are skipped when wandb isn't installed
"""
return unittest.skipUnless(is_wandb_available(), "test requires wandb")(test_case)
def require_comet_ml(test_case):
"""
Decorator marking a test that requires comet_ml installed. These tests are skipped when comet_ml isn't installed
"""
return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(test_case)
def require_aim(test_case):
"""
Decorator marking a test that requires aim installed. These tests are skipped when aim isn't installed
"""
return unittest.skipUnless(is_aim_available(), "test requires aim")(test_case)
def require_clearml(test_case):
"""
Decorator marking a test that requires clearml installed. These tests are skipped when clearml isn't installed
"""
return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case)
def require_dvclive(test_case):
"""
Decorator marking a test that requires dvclive installed. These tests are skipped when dvclive isn't installed
"""
return unittest.skipUnless(is_dvclive_available(), "test requires dvclive")(test_case)
def require_swanlab(test_case):
"""
Decorator marking a test that requires swanlab installed. These tests are skipped when swanlab isn't installed
"""
return unittest.skipUnless(is_swanlab_available(), "test requires swanlab")(test_case)
def require_pandas(test_case):
"""
Decorator marking a test that requires pandas installed. These tests are skipped when pandas isn't installed
"""
return unittest.skipUnless(is_pandas_available(), "test requires pandas")(test_case)
def require_mlflow(test_case):
"""
Decorator marking a test that requires mlflow installed. These tests are skipped when mlflow isn't installed
"""
return unittest.skipUnless(is_mlflow_available(), "test requires mlflow")(test_case)
def require_pippy(test_case):
"""
Decorator marking a test that requires pippy installed. These tests are skipped when pippy isn't installed It is
also checked if the test is running on a Gaudi1 device which doesn't support pippy.
"""
return unittest.skipUnless(is_pippy_available() and not is_habana_gaudi1(), "test requires pippy")(test_case)
def require_import_timer(test_case):
"""
Decorator marking a test that requires tuna interpreter installed. These tests are skipped when tuna isn't
installed
"""
return unittest.skipUnless(is_import_timer_available(), "test requires tuna interpreter")(test_case)
def require_transformer_engine(test_case):
"""
Decorator marking a test that requires transformers engine installed. These tests are skipped when transformers
engine isn't installed
"""
return unittest.skipUnless(is_transformer_engine_available(), "test requires transformers engine")(test_case)
def require_torchao(test_case):
"""
Decorator marking a test that requires torchao installed. These tests are skipped when torchao isn't installed
"""
return unittest.skipUnless(is_torchao_available(), "test requires torchao")(test_case)
def require_matplotlib(test_case):
"""
Decorator marking a test that requires matplotlib installed. These tests are skipped when matplotlib isn't
installed
"""
return unittest.skipUnless(is_matplotlib_available(), "test requires matplotlib")(test_case)
_atleast_one_tracker_available = (
any([is_wandb_available(), is_tensorboard_available(), is_swanlab_available()]) and not is_comet_ml_available()
)
def require_trackers(test_case):
"""
Decorator marking that a test requires at least one tracking library installed. These tests are skipped when none
are installed
"""
return unittest.skipUnless(
_atleast_one_tracker_available,
"test requires at least one tracker to be available and for `comet_ml` to not be installed",
)(test_case)
def require_torchdata_stateful_dataloader(test_case):
"""
Decorator marking a test that requires torchdata.stateful_dataloader.
These tests are skipped when torchdata with stateful_dataloader module isn't installed.
"""
return unittest.skipUnless(
is_torchdata_stateful_dataloader_available(), "test requires torchdata.stateful_dataloader"
)(test_case)
def run_first(test_case):
"""
Decorator marking a test with order(1). When pytest-order plugin is installed, tests marked with this decorator are
garanteed to run first.
This is especially useful in some test settings like on a Gaudi instance where a Gaudi device can only be used by a
single process at a time. So we make sure all tests that run in a subprocess are launched first, to avoid device
allocation conflicts.
If pytest is not installed, test will be returned as is.
"""
if is_pytest_available():
import pytest
return pytest.mark.order(1)(test_case)
return test_case
class TempDirTestCase(unittest.TestCase):
"""
A TestCase class that keeps a single `tempfile.TemporaryDirectory` open for the duration of the class, wipes its
data at the start of a test, and then destroyes it at the end of the TestCase.
Useful for when a class or API requires a single constant folder throughout it's use, such as Weights and Biases
The temporary directory location will be stored in `self.tmpdir`
"""
clear_on_setup = True
@classmethod
def setUpClass(cls):
"Creates a `tempfile.TemporaryDirectory` and stores it in `cls.tmpdir`"
cls.tmpdir = Path(tempfile.mkdtemp())
@classmethod
def tearDownClass(cls):
"Remove `cls.tmpdir` after test suite has finished"
if os.path.exists(cls.tmpdir):
shutil.rmtree(cls.tmpdir)
def setUp(self):
"Destroy all contents in `self.tmpdir`, but not `self.tmpdir`"
if self.clear_on_setup:
for path in self.tmpdir.glob("**/*"):
if path.is_file():
path.unlink()
elif path.is_dir():
shutil.rmtree(path)
class AccelerateTestCase(unittest.TestCase):
"""
A TestCase class that will reset the accelerator state at the end of every test. Every test that checks or utilizes
the `AcceleratorState` class should inherit from this to avoid silent failures due to state being shared between
tests.
"""
def tearDown(self):
super().tearDown()
# Reset the state of the AcceleratorState singleton.
AcceleratorState._reset_state(True)
class MockingTestCase(unittest.TestCase):
"""
A TestCase class designed to dynamically add various mockers that should be used in every test, mimicking the
behavior of a class-wide mock when defining one normally will not do.
Useful when a mock requires specific information available only initialized after `TestCase.setUpClass`, such as
setting an environment variable with that information.
The `add_mocks` function should be ran at the end of a `TestCase`'s `setUp` function, after a call to
`super().setUp()` such as:
```python
def setUp(self):
super().setUp()
mocks = mock.patch.dict(os.environ, {"SOME_ENV_VAR", "SOME_VALUE"})
self.add_mocks(mocks)
```
"""
def add_mocks(self, mocks: Union[mock.Mock, list[mock.Mock]]):
"""
Add custom mocks for tests that should be repeated on each test. Should be called during
`MockingTestCase.setUp`, after `super().setUp()`.
Args:
mocks (`mock.Mock` or list of `mock.Mock`):
Mocks that should be added to the `TestCase` after `TestCase.setUpClass` has been run
"""
self.mocks = mocks if isinstance(mocks, (tuple, list)) else [mocks]
for m in self.mocks:
m.start()
self.addCleanup(m.stop)
def are_the_same_tensors(tensor):
state = AcceleratorState()
tensor = tensor[None].clone().to(state.device)
tensors = gather(tensor).cpu()
tensor = tensor[0].cpu()
for i in range(tensors.shape[0]):
if not torch.equal(tensors[i], tensor):
return False
return True
class _RunOutput:
def __init__(self, returncode, stdout, stderr):
self.returncode = returncode
self.stdout = stdout
self.stderr = stderr
async def _read_stream(stream, callback):
while True:
line = await stream.readline()
if line:
callback(line)
else:
break
async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> _RunOutput:
if echo:
print("\nRunning: ", " ".join(cmd))
p = await asyncio.create_subprocess_exec(
cmd[0],
*cmd[1:],
stdin=stdin,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
env=env,
)
# note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe
# https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait
#
# If it starts hanging, will need to switch to the following code. The problem is that no data
# will be seen until it's done and if it hangs for example there will be no debug info.
# out, err = await p.communicate()
# return _RunOutput(p.returncode, out, err)
out = []
err = []
def tee(line, sink, pipe, label=""):
line = line.decode("utf-8").rstrip()
sink.append(line)
if not quiet:
print(label, line, file=pipe)
# XXX: the timeout doesn't seem to make any difference here
await asyncio.wait(
[
asyncio.create_task(_read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:"))),
asyncio.create_task(_read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:"))),
],
timeout=timeout,
)
return _RunOutput(await p.wait(), out, err)
def execute_subprocess_async(cmd: list, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput:
# Cast every path in `cmd` to a string
for i, c in enumerate(cmd):
if isinstance(c, Path):
cmd[i] = str(c)
loop = asyncio.get_event_loop()
result = loop.run_until_complete(
_stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo)
)
cmd_str = " ".join(cmd)
if result.returncode > 0:
stderr = "\n".join(result.stderr)
raise RuntimeError(
f"'{cmd_str}' failed with returncode {result.returncode}\n\n"
f"The combined stderr from workers follows:\n{stderr}"
)
return result
def pytest_xdist_worker_id():
"""
Returns an int value of worker's numerical id under `pytest-xdist`'s concurrent workers `pytest -n N` regime, or 0
if `-n 1` or `pytest-xdist` isn't being used.
"""
worker = os.environ.get("PYTEST_XDIST_WORKER", "gw0")
worker = re.sub(r"^gw", "", worker, 0, re.M)
return int(worker)
def get_torch_dist_unique_port():
"""
Returns a port number that can be fed to `torch.distributed.launch`'s `--master_port` argument.
Under `pytest-xdist` it adds a delta number based on a worker id so that concurrent tests don't try to use the same
port at once.
"""
port = 29500
uniq_delta = pytest_xdist_worker_id()
return port + uniq_delta
class SubprocessCallException(Exception):
pass
def run_command(command: list[str], return_stdout=False, env=None):
"""
Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture
if an error occurred while running `command`
"""
# Cast every path in `command` to a string
for i, c in enumerate(command):
if isinstance(c, Path):
command[i] = str(c)
if env is None:
env = os.environ.copy()
try:
output = subprocess.check_output(command, stderr=subprocess.STDOUT, env=env)
if return_stdout:
if hasattr(output, "decode"):
output = output.decode("utf-8")
return output
except subprocess.CalledProcessError as e:
raise SubprocessCallException(
f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}"
) from e
def path_in_accelerate_package(*components: str) -> Path:
"""
Get a path within the `accelerate` package's directory.
Args:
*components: Components of the path to join after the package directory.
Returns:
`Path`: The path to the requested file or directory.
"""
accelerate_package_dir = Path(inspect.getfile(accelerate)).parent
return accelerate_package_dir.joinpath(*components)
@contextmanager
def assert_exception(exception_class: Exception, msg: str = None) -> bool:
"""
Context manager to assert that the right `Exception` class was raised.
If `msg` is provided, will check that the message is contained in the raised exception.
"""
was_ran = False
try:
yield
was_ran = True
except Exception as e:
assert isinstance(e, exception_class), f"Expected exception of type {exception_class} but got {type(e)}"
if msg is not None:
assert msg in str(e), f"Expected message '{msg}' to be in exception but got '{str(e)}'"
if was_ran:
raise AssertionError(f"Expected exception of type {exception_class} but ran without issue.")
def capture_call_output(func, *args, **kwargs):
"""
Takes in a `func` with `args` and `kwargs` and returns the captured stdout as a string
"""
captured_output = io.StringIO()
original_stdout = sys.stdout
try:
sys.stdout = captured_output
func(*args, **kwargs)
except Exception as e:
raise e
finally:
sys.stdout = original_stdout
return captured_output.getvalue()