|
''' |
|
* Adapted from BLIP (https://github.com/salesforce/BLIP) |
|
''' |
|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
import torch |
|
import os |
|
from urllib.parse import urlparse |
|
from timm.models.hub import download_cached_file |
|
from transformers import BertTokenizer |
|
from .vit import VisionTransformer, interpolate_pos_embed |
|
|
|
|
|
def init_tokenizer(): |
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) |
|
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) |
|
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] |
|
return tokenizer |
|
|
|
|
|
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): |
|
|
|
assert vit in ['base', 'large'], "vit parameter must be base or large" |
|
if vit=='base': |
|
vision_width = 768 |
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, |
|
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|
drop_path_rate=0 or drop_path_rate |
|
) |
|
elif vit=='large': |
|
vision_width = 1024 |
|
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, |
|
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, |
|
drop_path_rate=0.1 or drop_path_rate |
|
) |
|
return visual_encoder, vision_width |
|
|
|
|
|
def is_url(url_or_filename): |
|
parsed = urlparse(url_or_filename) |
|
return parsed.scheme in ("http", "https") |
|
|
|
def load_checkpoint(model,url_or_filename): |
|
if is_url(url_or_filename): |
|
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) |
|
checkpoint = torch.load(cached_file, map_location='cpu') |
|
elif os.path.isfile(url_or_filename): |
|
checkpoint = torch.load(url_or_filename, map_location='cpu') |
|
else: |
|
raise RuntimeError('checkpoint url or path is invalid') |
|
|
|
state_dict = checkpoint['model'] |
|
|
|
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) |
|
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): |
|
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], |
|
model.visual_encoder_m) |
|
for key in model.state_dict().keys(): |
|
if key in state_dict.keys(): |
|
if state_dict[key].shape!=model.state_dict()[key].shape: |
|
print(key, ": ", state_dict[key].shape, ', ', model.state_dict()[key].shape) |
|
del state_dict[key] |
|
|
|
msg = model.load_state_dict(state_dict,strict=False) |
|
print('load checkpoint from %s'%url_or_filename) |
|
return model,msg |
|
|
|
|