jamtur01's picture
Upload folder using huggingface_hub
9c6594c verified
'''
@File : ReFL.py
@Time : 2023/05/01 19:36:00
@Auther : Jiazheng Xu
@Contact : xjz22@mails.tsinghua.edu.cn
@Description: ReFL Algorithm.
* Based on diffusers code base
* https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py
'''
import argparse
import logging
import math
import os
import random
from pathlib import Path
import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPTextModel, CLIPTokenizer
import io
from PIL import Image
import ImageReward as RM
from torchvision.transforms import Compose, Resize, CenterCrop, Normalize
try:
from torchvision.transforms import InterpolationMode
BICUBIC = InterpolationMode.BICUBIC
except ImportError:
BICUBIC = Image.BICUBIC
import diffusers
from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionPipeline, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from diffusers.utils import check_min_version, deprecate, is_wandb_available
from diffusers.utils.import_utils import is_xformers_available
if is_wandb_available():
import wandb
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
check_min_version("0.16.0.dev0")
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
"refl": ("image", "text"),
}
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument(
"--grad_scale", type=float, default=1e-3, help="Scale divided for grad loss value."
)
parser.add_argument(
"--input_pertubation", type=float, default=0, help="The scale of input pretubation. Recommended 0.1."
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that πŸ€— Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing an image."
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--validation_prompts",
type=str,
default=None,
nargs="+",
help=("A set of prompts evaluated every `--validation_epochs` and logged to `--report_to`."),
)
parser.add_argument(
"--output_dir",
type=str,
default="checkpoint/refl",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=2, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=100,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--snr_gamma",
type=float,
default=None,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.")
parser.add_argument(
"--non_ema_revision",
type=str,
default=None,
required=False,
help=(
"Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or"
" remote repository specified with --pretrained_model_name_or_path."
),
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=100,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=(
"Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
" See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
" for more docs"
),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument("--noise_offset", type=float, default=0, help="The scale of noise offset.")
parser.add_argument(
"--validation_epochs",
type=int,
default=5,
help="Run validation every X epochs.",
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="text2image-refl",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# default to using the same revision for the non-ema model if not specified
if args.non_ema_revision is None:
args.non_ema_revision = args.revision
return args
class Trainer(object):
def __init__(self, pretrained_model_name_or_path, train_data_dir, args):
self.pretrained_model_name_or_path = pretrained_model_name_or_path
self.train_data_dir = train_data_dir
# Sanity checks
if args.dataset_name is None and self.train_data_dir is None:
raise ValueError("Need either a dataset name or a training folder.")
if args.non_ema_revision is not None:
deprecate(
"non_ema_revision!=None",
"0.15.0",
message=(
"Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to"
" use `--variant=non_ema` instead."
),
)
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(total_limit=args.checkpoints_total_limit)
self.accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
logging_dir=logging_dir,
project_config=accelerator_project_config,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(self.accelerator.state, main_process_only=False)
if self.accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if self.accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
self.repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
# Load scheduler, tokenizer and models.
self.noise_scheduler = DDPMScheduler.from_pretrained(self.pretrained_model_name_or_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(
self.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
)
self.text_encoder = CLIPTextModel.from_pretrained(
self.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
)
self.vae = AutoencoderKL.from_pretrained(self.pretrained_model_name_or_path, subfolder="vae", revision=args.revision)
self.unet = UNet2DConditionModel.from_pretrained(
self.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision
)
self.reward_model = RM.load("ImageReward-v1.0", device=self.accelerator.device)
# Freeze vae and text_encoder
self.vae.requires_grad_(False)
self.text_encoder.requires_grad_(False)
self.reward_model.requires_grad_(False)
# Create EMA for the unet.
if args.use_ema:
self.ema_unet = UNet2DConditionModel.from_pretrained(
self.pretrained_model_name_or_path, subfolder="unet", revision=args.revision
)
self.ema_unet = EMAModel(self.ema_unet.parameters(), model_cls=UNet2DConditionModel, model_config=self.ema_unet.config)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warn(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
self.unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `self.accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if args.use_ema:
self.ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema"))
for i, model in enumerate(models):
model.save_pretrained(os.path.join(output_dir, "unet"))
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
if args.use_ema:
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel)
self.ema_unet.load_state_dict(load_model.state_dict())
self.ema_unet.to(self.accelerator.device)
del load_model
for i in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
self.accelerator.register_save_state_pre_hook(save_model_hook)
self.accelerator.register_load_state_pre_hook(load_model_hook)
if args.gradient_checkpointing:
self.unet.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * self.accelerator.num_processes
)
# Initialize the optimizer
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
)
optimizer_cls = bnb.optim.AdamW8bit
else:
optimizer_cls = torch.optim.AdamW
self.optimizer = optimizer_cls(
self.unet.parameters(),
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
)
else:
data_files = {}
data_files["train"] = self.train_data_dir
dataset = load_dataset(
"json",
data_files=data_files,
cache_dir=args.cache_dir,
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# Get the column names for input/target.
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
if args.image_column is None:
image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
image_column = args.image_column
if image_column not in column_names:
raise ValueError(
f"--image_column' value '{args.image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.caption_column is None:
caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
caption_column = args.caption_column
if caption_column not in column_names:
raise ValueError(
f"--caption_column' value '{args.caption_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
def tokenize_captions(examples, is_train=True):
captions = []
for caption in examples[caption_column]:
if isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if is_train else caption[0])
else:
raise ValueError(
f"Caption column `{caption_column}` should contain either strings or lists of strings."
)
inputs = tokenizer(
captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
)
return inputs.input_ids
def preprocess_train(examples):
examples["input_ids"] = tokenize_captions(examples)
examples["rm_input_ids"] = self.reward_model.blip.tokenizer(examples[caption_column], padding='max_length', truncation=True, max_length=35, return_tensors="pt").input_ids
examples["rm_attention_mask"] = self.reward_model.blip.tokenizer(examples[caption_column], padding='max_length', truncation=True, max_length=35, return_tensors="pt").attention_mask
return examples
with self.accelerator.main_process_first():
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
self.train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
input_ids = torch.stack([example["input_ids"] for example in examples])
rm_input_ids = torch.stack([example["rm_input_ids"] for example in examples])
rm_attention_mask = torch.stack([example["rm_attention_mask"] for example in examples])
input_ids = input_ids.view(-1, input_ids.shape[-1])
rm_input_ids = rm_input_ids.view(-1, rm_input_ids.shape[-1])
rm_attention_mask = rm_attention_mask.view(-1, rm_attention_mask.shape[-1])
return {"input_ids": input_ids, "rm_input_ids": rm_input_ids, "rm_attention_mask": rm_attention_mask}
# DataLoaders creation:
self.train_dataloader = torch.utils.data.DataLoader(
self.train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
self.num_update_steps_per_epoch = math.ceil(len(self.train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * self.num_update_steps_per_epoch
overrode_max_train_steps = True
self.lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=self.optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `self.accelerator`.
self.unet, self.optimizer, self.train_dataloader, self.lr_scheduler = self.accelerator.prepare(
self.unet, self.optimizer, self.train_dataloader, self.lr_scheduler
)
if args.use_ema:
self.ema_unet.to(self.accelerator.device)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
self.weight_dtype = torch.float32
if self.accelerator.mixed_precision == "fp16":
self.weight_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
self.weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu and cast to self.weight_dtype
self.text_encoder.to(self.accelerator.device, dtype=self.weight_dtype)
self.vae.to(self.accelerator.device, dtype=self.weight_dtype)
self.reward_model.to(self.accelerator.device, dtype=self.weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
self.num_update_steps_per_epoch = math.ceil(len(self.train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * self.num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / self.num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if self.accelerator.is_main_process:
tracker_config = dict(vars(args))
tracker_config.pop("validation_prompts")
self.accelerator.init_trackers(args.tracker_project_name, tracker_config)
def train(self, args):
# Train!
total_batch_size = args.train_batch_size * self.accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(self.train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
self.accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
else:
self.accelerator.print(f"Resuming from checkpoint {path}")
self.accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
resume_global_step = global_step * args.gradient_accumulation_steps
first_epoch = global_step // self.num_update_steps_per_epoch
resume_step = resume_global_step % (self.num_update_steps_per_epoch * args.gradient_accumulation_steps)
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not self.accelerator.is_local_main_process)
progress_bar.set_description("Steps")
for epoch in range(first_epoch, args.num_train_epochs):
self.unet.train()
train_loss = 0.0
for step, batch in enumerate(self.train_dataloader):
# Skip steps until we reach the resumed step
if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
if step % args.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with self.accelerator.accumulate(self.unet):
encoder_hidden_states = self.text_encoder(batch["input_ids"])[0]
latents = torch.randn((args.train_batch_size, 4, 64, 64), device=self.accelerator.device)
self.noise_scheduler.set_timesteps(40, device=self.accelerator.device)
timesteps = self.noise_scheduler.timesteps
mid_timestep = random.randint(30, 39)
for i, t in enumerate(timesteps[:mid_timestep]):
with torch.no_grad():
latent_model_input = latents
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, t)
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=encoder_hidden_states,
).sample
latents = self.noise_scheduler.step(noise_pred, t, latents).prev_sample
latent_model_input = latents
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timesteps[mid_timestep])
noise_pred = self.unet(
latent_model_input,
timesteps[mid_timestep],
encoder_hidden_states=encoder_hidden_states,
).sample
pred_original_sample = self.noise_scheduler.step(noise_pred, timesteps[mid_timestep], latents).pred_original_sample.to(self.weight_dtype)
pred_original_sample = 1 / self.vae.config.scaling_factor * pred_original_sample
image = self.vae.decode(pred_original_sample.to(self.weight_dtype)).sample
image = (image / 2 + 0.5).clamp(0, 1)
# image encode
def _transform():
return Compose([
Resize(224, interpolation=BICUBIC),
CenterCrop(224),
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
rm_preprocess = _transform()
image = rm_preprocess(image).to(self.accelerator.device)
rewards = self.reward_model.score_gard(batch["rm_input_ids"], batch["rm_attention_mask"], image)
loss = F.relu(-rewards+2)
loss = loss.mean() * args.grad_scale
# Gather the losses across all processes for logging (if we use distributed training).
avg_loss = self.accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(self.unet.parameters(), args.max_grad_norm)
self.optimizer.step()
self.lr_scheduler.step()
self.optimizer.zero_grad()
# Checks if the self.accelerator has performed an optimization step behind the scenes
if self.accelerator.sync_gradients:
if args.use_ema:
self.ema_unet.step(self.unet.parameters())
progress_bar.update(1)
global_step += 1
self.accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if global_step % args.checkpointing_steps == 0:
if self.accelerator.is_main_process:
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
self.accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
logs = {"step_loss": loss.detach().item(), "lr": self.lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if self.accelerator.is_main_process:
if args.validation_prompts is not None and epoch % args.validation_epochs == 0:
if args.use_ema:
# Store the UNet parameters temporarily and load the EMA parameters to perform inference.
self.ema_unet.store(self.unet.parameters())
self.ema_unet.copy_to(self.unet.parameters())
if args.use_ema:
# Switch back to the original UNet parameters.
self.ema_unet.restore(self.unet.parameters())
# Create the pipeline using the trained modules and save it.
self.accelerator.wait_for_everyone()
if self.accelerator.is_main_process:
self.unet = self.accelerator.unwrap_model(self.unet)
if args.use_ema:
self.ema_unet.copy_to(self.unet.parameters())
pipeline = StableDiffusionPipeline.from_pretrained(
self.pretrained_model_name_or_path,
text_encoder=self.text_encoder,
vae=self.vae,
unet=self.unet,
revision=args.revision,
)
pipeline.save_pretrained(args.output_dir)
if args.push_to_hub:
upload_folder(
repo_id=self.repo_id,
folder_path=args.output_dir,
commit_message="End of training",
ignore_patterns=["step_*", "epoch_*"],
)
self.accelerator.end_training()