File size: 18,676 Bytes
9c6594c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
"""tensorboard watcher."""
import glob
import logging
import os
import queue
import socket
import sys
import threading
import time
from typing import TYPE_CHECKING, Any, Dict, List, Optional
import wandb
from wandb import util
from wandb.plot import CustomChart
from wandb.sdk.interface.interface import GlobStr
from wandb.sdk.lib import filesystem
from . import run as internal_run
if TYPE_CHECKING:
from queue import PriorityQueue
from tensorboard.backend.event_processing.event_file_loader import EventFileLoader
from tensorboard.compat.proto.event_pb2 import ProtoEvent
from wandb.proto.wandb_internal_pb2 import RunRecord
from wandb.sdk.interface.interface import FilesDict
from ..interface.interface_queue import InterfaceQueue
from .settings_static import SettingsStatic
HistoryDict = Dict[str, Any]
# Give some time for tensorboard data to be flushed
SHUTDOWN_DELAY = 5
ERROR_DELAY = 5
REMOTE_FILE_TOKEN = "://"
logger = logging.getLogger(__name__)
def _link_and_save_file(
path: str, base_path: str, interface: "InterfaceQueue", settings: "SettingsStatic"
) -> None:
# TODO(jhr): should this logic be merged with Run.save()
files_dir = settings.files_dir
file_name = os.path.relpath(path, base_path)
abs_path = os.path.abspath(path)
wandb_path = os.path.join(files_dir, file_name)
filesystem.mkdir_exists_ok(os.path.dirname(wandb_path))
# We overwrite existing symlinks because namespaces can change in Tensorboard
if os.path.islink(wandb_path) and abs_path != os.readlink(wandb_path):
os.remove(wandb_path)
os.symlink(abs_path, wandb_path)
elif not os.path.exists(wandb_path):
os.symlink(abs_path, wandb_path)
# TODO(jhr): need to figure out policy, live/throttled?
interface.publish_files(dict(files=[(GlobStr(glob.escape(file_name)), "live")]))
def is_tfevents_file_created_by(
path: str, hostname: Optional[str], start_time: Optional[float]
) -> bool:
"""Check if a path is a tfevents file.
Optionally checks that it was created by [hostname] after [start_time].
tensorboard tfevents filename format:
https://github.com/tensorflow/tensorboard/blob/f3f26b46981da5bd46a5bb93fcf02d9eb7608bc1/tensorboard/summary/writer/event_file_writer.py#L81
tensorflow tfevents filename format:
https://github.com/tensorflow/tensorflow/blob/8f597046dc30c14b5413813d02c0e0aed399c177/tensorflow/core/util/events_writer.cc#L68
"""
if not path:
raise ValueError("Path must be a nonempty string")
basename = os.path.basename(path)
if basename.endswith((".profile-empty", ".sagemaker-uploaded")):
return False
fname_components = basename.split(".")
try:
tfevents_idx = fname_components.index("tfevents")
except ValueError:
return False
# check the hostname, which may have dots
if hostname is not None:
for i, part in enumerate(hostname.split(".")):
try:
fname_component_part = fname_components[tfevents_idx + 2 + i]
except IndexError:
return False
if part != fname_component_part:
return False
if start_time is not None:
try:
created_time = int(fname_components[tfevents_idx + 1])
except (ValueError, IndexError):
return False
# Ensure that the file is newer then our start time, and that it was
# created from the same hostname.
# TODO: we should also check the PID (also contained in the tfevents
# filename). Can we assume that our parent pid is the user process
# that wrote these files?
if created_time < int(start_time):
return False
return True
class TBWatcher:
_logdirs: "Dict[str, TBDirWatcher]"
_watcher_queue: "PriorityQueue"
def __init__(
self,
settings: "SettingsStatic",
run_proto: "RunRecord",
interface: "InterfaceQueue",
force: bool = False,
) -> None:
self._logdirs = {}
self._consumer: Optional[TBEventConsumer] = None
self._settings = settings
self._interface = interface
self._run_proto = run_proto
self._force = force
# TODO(jhr): do we need locking in this queue?
self._watcher_queue = queue.PriorityQueue()
wandb.tensorboard.reset_state() # type: ignore
def _calculate_namespace(self, logdir: str, rootdir: str) -> Optional[str]:
namespace: Optional[str]
dirs = list(self._logdirs) + [logdir]
if os.path.isfile(logdir):
filename = os.path.basename(logdir)
else:
filename = ""
if rootdir == "":
rootdir = util.to_forward_slash_path(
os.path.dirname(os.path.commonprefix(dirs))
)
# Tensorboard loads all tfevents files in a directory and prepends
# their values with the path. Passing namespace to log allows us
# to nest the values in wandb
# Note that we strip '/' instead of os.sep, because elsewhere we've
# converted paths to forward slash.
namespace = logdir.replace(filename, "").replace(rootdir, "").strip("/")
# TODO: revisit this heuristic, it exists because we don't know the
# root log directory until more than one tfevents file is written to
if len(dirs) == 1 and namespace not in ["train", "validation"]:
namespace = None
else:
namespace = logdir.replace(filename, "").replace(rootdir, "").strip("/")
return namespace
def add(self, logdir: str, save: bool, root_dir: str) -> None:
logdir = util.to_forward_slash_path(logdir)
root_dir = util.to_forward_slash_path(root_dir)
if logdir in self._logdirs:
return
namespace = self._calculate_namespace(logdir, root_dir)
# TODO(jhr): implement the deferred tbdirwatcher to find namespace
if not self._consumer:
self._consumer = TBEventConsumer(
self, self._watcher_queue, self._run_proto, self._settings
)
self._consumer.start()
tbdir_watcher = TBDirWatcher(
self, logdir, save, namespace, self._watcher_queue, self._force
)
self._logdirs[logdir] = tbdir_watcher
tbdir_watcher.start()
def finish(self) -> None:
for tbdirwatcher in self._logdirs.values():
tbdirwatcher.shutdown()
for tbdirwatcher in self._logdirs.values():
tbdirwatcher.finish()
if self._consumer:
self._consumer.finish()
class TBDirWatcher:
def __init__(
self,
tbwatcher: "TBWatcher",
logdir: str,
save: bool,
namespace: Optional[str],
queue: "PriorityQueue",
force: bool = False,
) -> None:
self.directory_watcher = util.get_module(
"tensorboard.backend.event_processing.directory_watcher",
required="Please install tensorboard package",
)
# self.event_file_loader = util.get_module(
# "tensorboard.backend.event_processing.event_file_loader",
# required="Please install tensorboard package",
# )
self.tf_compat = util.get_module(
"tensorboard.compat", required="Please install tensorboard package"
)
self._tbwatcher = tbwatcher
self._generator = self.directory_watcher.DirectoryWatcher(
logdir, self._loader(save, namespace), self._is_our_tfevents_file
)
self._thread = threading.Thread(target=self._thread_except_body)
self._first_event_timestamp = None
self._shutdown = threading.Event()
self._queue = queue
self._file_version = None
self._namespace = namespace
self._logdir = logdir
self._hostname = socket.gethostname()
self._force = force
self._process_events_lock = threading.Lock()
def start(self) -> None:
self._thread.start()
def _is_our_tfevents_file(self, path: str) -> bool:
"""Check if a path has been modified since launch and contains tfevents."""
if not path:
raise ValueError("Path must be a nonempty string")
path = self.tf_compat.tf.compat.as_str_any(path)
if self._force:
return is_tfevents_file_created_by(path, None, None)
else:
return is_tfevents_file_created_by(
path, self._hostname, self._tbwatcher._settings.x_start_time
)
def _loader(
self, save: bool = True, namespace: Optional[str] = None
) -> "EventFileLoader":
"""Incredibly hacky class generator to optionally save / prefix tfevent files."""
_loader_interface = self._tbwatcher._interface
_loader_settings = self._tbwatcher._settings
try:
from tensorboard.backend.event_processing import event_file_loader
except ImportError:
raise Exception("Please install tensorboard package")
class EventFileLoader(event_file_loader.EventFileLoader):
def __init__(self, file_path: str) -> None:
super().__init__(file_path)
if save:
if REMOTE_FILE_TOKEN in file_path:
logger.warning(
"Not persisting remote tfevent file: %s", file_path
)
else:
# TODO: save plugins?
logdir = os.path.dirname(file_path)
parts = list(os.path.split(logdir))
if namespace and parts[-1] == namespace:
parts.pop()
logdir = os.path.join(*parts)
_link_and_save_file(
path=file_path,
base_path=logdir,
interface=_loader_interface,
settings=_loader_settings,
)
return EventFileLoader
def _process_events(self, shutdown_call: bool = False) -> None:
try:
with self._process_events_lock:
for event in self._generator.Load():
self.process_event(event)
except (
self.directory_watcher.DirectoryDeletedError,
StopIteration,
RuntimeError,
OSError,
) as e:
# When listing s3 the directory may not yet exist, or could be empty
logger.debug("Encountered tensorboard directory watcher error: %s", e)
if not self._shutdown.is_set() and not shutdown_call:
time.sleep(ERROR_DELAY)
def _thread_except_body(self) -> None:
try:
self._thread_body()
except Exception:
logger.exception("generic exception in TBDirWatcher thread")
raise
def _thread_body(self) -> None:
"""Check for new events every second."""
shutdown_time: Optional[float] = None
while True:
self._process_events()
if self._shutdown.is_set():
now = time.time()
if not shutdown_time:
shutdown_time = now + SHUTDOWN_DELAY
elif now > shutdown_time:
break
time.sleep(1)
def process_event(self, event: "ProtoEvent") -> None:
# print("\nEVENT:::", self._logdir, self._namespace, event, "\n")
if self._first_event_timestamp is None:
self._first_event_timestamp = event.wall_time
if event.HasField("file_version"):
self._file_version = event.file_version
if event.HasField("summary"):
self._queue.put(Event(event, self._namespace))
def shutdown(self) -> None:
self._process_events(shutdown_call=True)
self._shutdown.set()
def finish(self) -> None:
self.shutdown()
self._thread.join()
class Event:
"""An event wrapper to enable priority queueing."""
def __init__(self, event: "ProtoEvent", namespace: Optional[str]):
self.event = event
self.namespace = namespace
self.created_at = time.time()
def __lt__(self, other: "Event") -> bool:
if self.event.wall_time < other.event.wall_time:
return True
return False
class TBEventConsumer:
"""Consume tfevents from a priority queue.
There should always only be one of these per run_manager. We wait for 10 seconds of
queued events to reduce the chance of multiple tfevent files triggering out of order
steps.
"""
def __init__(
self,
tbwatcher: TBWatcher,
queue: "PriorityQueue",
run_proto: "RunRecord",
settings: "SettingsStatic",
delay: int = 10,
) -> None:
self._tbwatcher = tbwatcher
self._queue = queue
self._thread = threading.Thread(target=self._thread_except_body)
self._shutdown = threading.Event()
self.tb_history = TBHistory()
self._delay = delay
# This is a bit of a hack to get file saving to work as it does in the user
# process. Since we don't have a real run object, we have to define the
# datatypes callback ourselves.
def datatypes_cb(fname: GlobStr) -> None:
files: FilesDict = dict(files=[(fname, "now")])
self._tbwatcher._interface.publish_files(files)
# this is only used for logging artifacts
self._internal_run = internal_run.InternalRun(run_proto, settings, datatypes_cb)
self._internal_run._set_internal_run_interface(self._tbwatcher._interface)
def start(self) -> None:
self._start_time = time.time()
self._thread.start()
def finish(self) -> None:
self._delay = 0
self._shutdown.set()
self._thread.join()
while not self._queue.empty():
event = self._queue.get(True, 1)
if event:
self._handle_event(event, history=self.tb_history)
items = self.tb_history._get_and_reset()
for item in items:
self._save_row(
item,
)
def _thread_except_body(self) -> None:
try:
self._thread_body()
except Exception:
logger.exception("generic exception in TBEventConsumer thread")
raise
def _thread_body(self) -> None:
while True:
try:
event = self._queue.get(True, 1)
# Wait self._delay seconds from consumer start before logging events
if (
time.time() < self._start_time + self._delay
and not self._shutdown.is_set()
):
self._queue.put(event)
time.sleep(0.1)
continue
except queue.Empty:
event = None
if self._shutdown.is_set():
break
if event:
self._handle_event(event, history=self.tb_history)
items = self.tb_history._get_and_reset()
for item in items:
self._save_row(
item,
)
# flush uncommitted data
self.tb_history._flush()
items = self.tb_history._get_and_reset()
for item in items:
self._save_row(item)
def _handle_event(
self, event: "ProtoEvent", history: Optional["TBHistory"] = None
) -> None:
wandb.tensorboard._log( # type: ignore
event.event,
step=event.event.step,
namespace=event.namespace,
history=history,
)
def _save_row(self, row: "HistoryDict") -> None:
chart_keys = set()
for k, v in row.items():
if isinstance(v, CustomChart):
chart_keys.add(k)
v.set_key(k)
self._tbwatcher._interface.publish_config(
key=v.spec.config_key,
val=v.spec.config_value,
)
for k in chart_keys:
chart = row.pop(k)
if isinstance(chart, CustomChart):
row[chart.spec.table_key] = chart.table
self._tbwatcher._interface.publish_history(
self._internal_run,
row,
publish_step=False,
)
class TBHistory:
_data: "HistoryDict"
_added: "List[HistoryDict]"
def __init__(self) -> None:
self._step = 0
self._step_size = 0
self._data = dict()
self._added = []
def _flush(self) -> None:
if not self._data:
return
# A single tensorboard step may have too much data
# we just drop the largest keys in the step if it does.
# TODO: we could flush the data across multiple steps
if self._step_size > util.MAX_LINE_BYTES:
metrics = [(k, sys.getsizeof(v)) for k, v in self._data.items()]
metrics.sort(key=lambda t: t[1], reverse=True)
bad = 0
dropped_keys = []
for k, v in metrics:
# TODO: (cvp) Added a buffer of 100KiB, this feels rather brittle.
if self._step_size - bad < util.MAX_LINE_BYTES - 100000:
break
else:
bad += v
dropped_keys.append(k)
del self._data[k]
wandb.termwarn(
f"Step {self._step} exceeds max data limit, dropping {len(dropped_keys)} of the largest keys:"
)
print("\t" + ("\n\t".join(dropped_keys))) # noqa: T201
self._data["_step"] = self._step
self._added.append(self._data)
self._step += 1
self._step_size = 0
def add(self, d: "HistoryDict") -> None:
self._flush()
self._data = dict()
self._data.update(self._track_history_dict(d))
def _track_history_dict(self, d: "HistoryDict") -> "HistoryDict":
e = {}
for k in d.keys():
e[k] = d[k]
self._step_size += sys.getsizeof(e[k])
return e
def _row_update(self, d: "HistoryDict") -> None:
self._data.update(self._track_history_dict(d))
def _get_and_reset(self) -> "List[HistoryDict]":
added = self._added[:]
self._added = []
return added
|